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Abstract— In this paper, we use elements of graph theory and
port-Hamiltonian systems to develop a modular dynamic model
describing the hydraulic behavior of 4th generation district
heating networks. In contrast with earlier generation networks
with a single or few heat sources and pumps, newer installations
will prominently feature distributed heat generation units,
bringing about a number of challenges for the control and stable
operation of these systems, e.g., flow reversals and interactions
among pumps controllers, which may lead to severe oscillations.
We focus thus on flexible system setups with an arbitrary
number of distributed heat sources and end-users intercon-
nected through a meshed, multi-layer distribution network of
pipes. Moreover, differently from related works on the topic, we
incorporate dynamic models for the pumps in the system and
explicitly account for the presence of pressure holding units.
By inferring suitable (power-preserving) interconnection ports,
we provide a number of claims about the passivity properties
of the overall, interconnected system, which proves to be highly
beneficial in the design of decentralized control schemes and
stability analyses.

Index terms: Modeling; Networked control systems; Port-
Hamiltonian systems; District heating networks; Energy sys-
tems.

I. INTRODUCTION

District heating networks (DHNs) are a key element for a
holistic energy transition, particularly in densely populated
areas [1]–[4]. For their operation, well-defined, stable pres-
sures and volume flow rates, i.e., hydraulic conditions, are
a fundamental requirement as they form the basis for the
actual heat power flows [3], [5]. Particularly in the transient
regime, i.e., seconds after a disturbance or alteration of
desired operation points, the hydraulic processes govern the
system dynamics [5], [6].

In the operation of traditional 2nd or 3rd generation
DHNs, the hydraulics and the thermal power flows are well-
understood. Originating from a few main heat sources with
large circulation pumps, the heat power flows follow decreas-
ing pressure levels along the supply pipe layer to the end-
user substations and back via the return pipe layer (see e.g.,
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[7, pp. 52–54]). However, emerging 4th generation DHNs
bring about new challenges that call for new strategies and
methods of operating, controlling and analyzing DHNs [1]–
[3], [8], [9].1 Most prominently, we see a rising integration of
small pumps distributed throughout future DHNs. Primarily,
this is due to the utilization of ever more distributed heat
generation units (DGUs) such as heat pumps, combined heat
and power, waste/biomass-to-energy, solar and geothermal
heat plants, and waste heat recycling [1], [2]. Furthermore,
supply/return temperatures are being decreased from around
80 °C–120 °C/40 °C–70 °C in 2nd or 3rd generation DHNs
to 40 °C–70 °C/20 °C–40 °C in 4th generation DHNs [1],
[3][10, pp. 33,59][7, p. 44]. One the one hand, this allows for
the efficient integration of renewable heat sources and new
consumers (e.g., low-energy buildings). On the other hand,
together with decreasing pipe diameters, lower temperatures
reduce the heat distribution losses. However, lower temper-
atures and smaller pipes require higher volume flow rates
to carry the same amount of energy, which leads to higher
pressure losses. This in turn requires additional pumps, which
are typically added at end-user substations (see e.g. [1], [11]).

Additionally, the results of [4], [12] and the references
therein have shown that a distributed pump setup, in which
pumps are installed at every DGU and end-user substation,
has considerable potential to reduce the overall electrical en-
ergy required to operate DHN pumps. On top of that, closed,
hydraulic circuits such as DHNs require so-called pressure
holding (or pressure control) units [4] [7, pp. 54–55]. In
DHNs, these are typically pressure dictation pumps located
between a container and the DHN (see [13, Fig. 1]). They
compensate volume changes due to temperature variations
and keep the pressures in the network within permissible
limits. Particularly at the suction side of DGU circulation
pumps, a minimum pressure must be ensured to avoid
damaging the pumps through cavitation [14].

From a control point of view, the integration of dis-
tributed pumps in DGUs, end-users, and pressure holding
units introduces more diverse and complex pressure and
volume flow dynamics. We see, e.g., more frequent volume
flow reversals in pipes [15], [16] or interactions between
the pump controllers, which may lead to severe hydraulic
oscillations [4], [12], [14]. Furthermore, DGUs and thus their
pumps naturally show intermittent operational behavior [2],
[17]. Besides that, the classical two-layer supply and return
pipe network topology can be extended in future DHNs

1See [1] for a comparison and overview of the different DHN generations.



by additional layers (see e.g., [10]). The return pipes of a
traditional DHN may then serve as the supply for a new
DHN part which, e.g., supplies low-energy buildings.

Upon closer examination, it becomes evident that the
discussion above shows parallels to the trends and challenges
in future power systems, particularly to the prominent mi-
crogrid paradigm (see, e.g., [18] or the discussion in [8]).
Thus, it seems promising to follow the established view
of the microgrid and power system control community and
focus on decentralized control designs for novel pressure and
volume flow rate controllers.2 A major means of design-
ing decentralized controllers are passivity-based designs (cf.
[19]–[21]). As illustrated for example in recent works on
microgrids [22]–[25], the compositional properties of passive
systems provide a promising framework for control that can
cope with complex, frequently changing network topologies
and dynamically interacting subsystems and controllers, re-
spectively. Due to their inherent passivity properties and
port perspective, which gives a clear understanding of how
subsystems interact with each other, port-Hamiltonian system
(PHS) models are a natural starting point for such passivity-
based, decentralized controller designs (see [19], [20], [22],
[26]).

In the literature, the field of port-Hamiltonian modeling
of DHNs is largely unexplored. In [8], first results are given
that model the hydraulic dynamics of DGUs, end-users, and
pipes as input-state-output PHS (ISO-PHS). In [27], a com-
prehensive PDE-based thermohydraulic, spatially-discretized
port-Hamiltonian model of DHNs is proposed. In [28], a
PHS model of the thermal dynamics in an electro-thermal
microgrid is developed. General dynamic models to describe
the hydraulic behavior of DHNs have been developed in [11],
[29] for systems with one heat source (see also [27]), and
in [9], [30] for systems with multiple, distributed sources.
Nevertheless, none of these references consider pressure
holding units nor dynamic pump models.

Therefore, in this work, we set the basis for decentralized
pressure and volume flow rate control designs by providing
a comprehensive dynamic, hydraulic PHS model of a 4th
generation DHN with flexible topology. Specifically, we
allow for an arbitrary number of DGUs and end-users to be
connected via a flexible, multi-layer pipe network topology.
We extend existing hydraulic DHN models (see, e.g., [8],
[9], [11], [29], [31]) by considering dynamic models for
the circulation pumps as well as for the pressure holding
units. Inspired by practically oriented results (see, e.g., [32]),
we use linear second-order models to represent both the
pressure holding and the circulation pump dynamics. For all
subsystem models, we give explicit input-state-output port-
Hamiltonian system (ISO-PHS) representations. From the
ISO-PHS models, we deduce some inherent properties of the
overall DHN model such as a power-preserving subsystem
interconnection structure and passivity. These properties pave

2In microgrids and power systems, the control tasks are split up
hierarchically [18]. At the lowest, fastest acting control layer, the basic
voltage, current, and frequency control tasks are conducted by decentralized
controllers.

the way to designing pressure and volume flow rate control-
lers that asymptotically stabilize desired hydraulic equilibria
in 4th generation DHNs with flexible topologies.3

II. MODELING

In this section, we model the hydraulics of a general class
of 4th generation DHNs with flexible topologies comprising
pipes connecting an arbitrary number of DGUs and end-
users. First, we formally describe the DHN as a weakly
connected digraph. Afterwards, we present the models of the
three main subsystems: DGU, end-user, and pipe. In contrast
to existing models (see e.g., [8], [9], [11], [29], [31]), we
extend the DGU and end-user models by dynamic, linear,
second-order pump models and add a pressure holding unit
to each DGU. For the modeling, we make the following as-
sumptions which are valid under normal operating conditions
(see [6], [11]):

Assumption 1: The compressibility of water is neglected.
Any reference and nominal pressure values as well as all
model parameters are strictly positive. Pressure losses inside
pipes λ(q) and valves µ(q, sv) are continuously differentiable
(C1) functions that are strictly monotonically increasing with
λ(0) = 0 and µ(0, sv) = 0 for all valve stem positions sv,
respectively.

A. Digraph representation of a DHN

We describe a DHN as a weakly connected digraph G =
(V, E) without self-loops as shown in Fig. 1. The edges E
are partitioned into three sets: D = {1, . . . , D}, D ≥ 1,
represents the DGUs, L = {D+ 1, · · · , D+L}, L ≥ 1, the
end-users (loads), and P = {D+L+1, · · · , D+L+P}, P ≥
2, the pipes. For each node a ∈ V , N+

a = {(x, y) ∈ E : y =
a} and N−

a = {(x, y) ∈ E : x = a} denote the sets of
edges incoming/outgoing to/from a, respectively. For edge
j = 4 = (3, 7) in Fig. 1, which represents end-user 4, we
for example get the sets of incoming and outgoing edges at
tail a = 3 ∈ V , N+

3 = {((2, 3) = 8)}, N−
3 = {(3, 4) = 9}

and at head b = 7 ∈ V , N+
7 = {(8, 7) = 12, (11, 7) = 15},

N−
7 = {(7, 6) = 11}. The nodes correspond to ideal

connection points of the DGUs and end-users to the pipe
network of the DHN. Thus, all volume flow rates at a
node c ∈ V sum up to zero. This can be understood as a
generalized version of Kirchhoff’s current law (KCL) (see
[33, p. 126]). Furthermore, DGUs and end-users are always
connected via pipes and never directly connect to the same
node. That is, all nodes a, b ∈ V that are tails or heads of
edges (a, b) ∈ D ∪ L, are connected via edges l ∈ P (see
Fig. 1). The orientation of the edges represents the reference
direction of positive flows.

B. Hydraulic DGU Model with Pressure Holding

The hydraulic DGU circuit at an edge i = (a, b) ∈ D in
the DHN comprises two main parts (see Fig. 2): a pressure
holding unit (red) (see [7, pp. 54–55]) and a circulation
circuit (black/blue) (see [34], [35]).
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Fig. 1. Digraph representation of an exemplary DHN containing 2 DGUs
D = {1, 2}, 4 end-users L = {3, 4, 5, 6}, and 10 pipes P = {7, . . . , 16}
in a three-layer topology; the 12 nodes V = {1, . . . , 12} represent simple
hydraulic connection points at which the sum of all volume flow rates is
zero
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Fig. 2. Equivalent circuit of a hydraulic DGU model with pressure holding
(red) and circulation circuit (black/blue); without loss of generality, the
capacitance CRi may be lumped with the pressure holding (see Section II-
B.3)

1) Dynamic Pump Model: In both the pressure holding
and the circulation circuit, pumps are essential components.
In prevalent literature (see e.g., [4], [8], [9], [11], [12], [29],
[31]), pumps are usually considered as ideal pressure sources
modeled by a voltage source in the equivalent circuit diagram
as illustrated in Fig. 2. However, the dynamics of pumps,
particularly the ones of centrifugal pumps widely used in
DHNs [11], [36], lie in the range of several hundred ms (see
[32, Fig. 8–9]). As this is a time scale comparable to that of
the overall DHN hydraulics (see [3], [6]), a more accurate
control design and system analysis can be performed if pump
dynamics are considered as well.

We note that in practice, the actual control input of a pump
system is a desired rotational speed, which enters into an

3Summaries of the abbreviations and symbols used in this paper appear
in Appendices I and II, respectively.
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Fig. 3. Equivalent circuit of a linear, second-order approximation of pump
dynamics (cf. [32]).

automatic speed control of the AC motor driving the pump
[37, pp. 28,51]. In this work, we suggest approximating the
dynamics arising from the complex arrangement of power
electronics, speed-controlled AC motor, and pump hydraulics
by a linear second-order system. The linear second-order
system relates some kind of input pressure pα,i, which results
from the quadratic dependency on the rotational speed set
point pα,i ∝ (ω∗

α)
2, to the actual output pressure pPα,i of

the pump (see [32]). The corresponding actual output volume
flow rate of the pump is qPα,i.

The above can be understood as a linear RLC circuit as
illustrated in Fig. 3. The parameters RPα, JPα, and CPα are
pure black box parameters without physical meaning. This
is due to the fact that in the RLC circuit representation,
the speed control and AC motor dynamics are merged
with the hydraulic pump dynamics comprising fluid mass
inertia, pressure losses, and hydraulic capacitance due to
fluid compressibility and fluid volume (see e.g., [32]). By
applying Kirchhoff’s voltage law (KVL) and KCL to Fig. 3
, we obtain the dynamics

JPα,iq̇α,i = −pPα,i −RPα,iqPα,i + pα,i,

CPα,iṗPα,i = qα,i − qPα,i,
(1)

which may be written in linear ISO-PHS form (see [38,
p. 116]) as follows:

ẋPα,i = [JPα,i −RPα,i]
∂HPα,i(xPα,i)

∂xPα,i

+GPα,iuPα,i +KPα,idPα,i, (2a)

yPα,i =GT
Pα,i

∂HPα,i(xPα,i)

∂xPα,i
, (2b)

zPα,i =KT
Pα,i

∂HPα,i(xPα,i)

∂xPα,i
, (2c)

HPα,i(xPα,i) =
1

2
xT

Pα,i Diag
[

1

JPα,i
,

1

CPα,i

]
︸ ︷︷ ︸

QPα,i

xPα,i. (2d)

In (2), the states and co-states are given by

xPα,i = [JPα,iqα,i, CPα,ipPα,i]
T (2e)

and
∂HPα,i(xPα,i)

∂xPα,i
= QPα,ixPα,i = [qα,i, pPα,i]

T
, (2f)

respectively. The control port pair is (uPα,i = pα,i, yPα,i =
qα,i). The uncontrolled interaction (coupling) port pair is

(dPα,i = −qPα,i, zPα,i = pPα,i). (2g)

The interconnection matrix, the damping matrix, the input
matrix, and the interaction matrix are given by

JPα,i =

[
0 −1
1 0

]
, RPα,i =

[
RPα,i 0
0 0

]
, (2h)

GPα,i = [1, 0]
T, and KPα,i = [0, 1]

T, respectively. Thus, in
the following, we consider the red and blue voltage sources
in Fig. 2 to represent RLC circuits as given in Fig. 3. For



the pressure holding, we set α = 1. For the circulation pump
in the circulation circuit, we set α = 2.

Remark 1: In practice, the parameters RPα, JPα, and
CPα can be identified from measurement data obtained by
operating the pump in typical scenarios. Alternatively, they
could be fitted in simulations to match characteristic curves
provided in data sheets. However, we note that some robust
control schemes may not require such knowledge of the plant
parameters (see, e.g., passivity-based control [24]).

2) Circulation Circuit Model: The equivalent circuit dia-
gram of the hydraulic circulation circuit is illustrated in
black and blue in Fig. 2. It comprises a serial connection
of a circulation pump, a control valve, pipes, and a heat ex-
changer (see [34], [35]). All pipes are described by nonlinear,
volume flow-dependent resistances λi(qP2,i) and inductances
Ji which represent the pipe friction and volume inertia,
respectively. The control valve is modeled as a nonlinear
resistance µi(qP2,i, svi) with an adjustable parameter svi. The
two capacitances CRi, CSi represent the hydraulic elasticity
of the components in the DGU circulation circuit. Note that
heat exchangers contribute significantly to these elasticities
(see [39], [40]). To simplify the situation, we may, without
loss of generality, consider the capacitance CRi to be lumped
with CP1,i from the dynamic pump model (replace the red
voltage source in Fig. 2 with Fig. 3 and set α = 1).
The circulation pump is modeled as a linear second-order
system of form (2) with α = 2, whose interaction with the
circulation circuit is represented by the blue voltage source.
The pressures pRi, pSi are the connection pressures at the
return and supply side of a DGU with corresponding return
inflow qRi and supply outflow qSi.

By applying KVL and KCL to the blue part in Fig. 2, we
obtain the dynamics

Jiq̇P2,i = −pSi − λi(qP2,i)− µi(qP2,i,svi) + pP2,i + pP1,i,

CSiṗSi = qP2,i − qSi, (3)

which may be written as an ISO-PHS with a nonlinear
resistive structure (see [38, p. 114]) as follows:

ẋi = Ji
∂Hi(xi)

∂xi
−Ri(xi) +Kidi, (4a)

zi = KT
i

∂Hi(xi)

∂xi
, (4b)

Hi(xi) =
1

2
xT
i Diag

[
1

Ji
,

1

CSi

]
︸ ︷︷ ︸

Qi

xi. (4c)

In (4), the states and co-states are given by

xi = [JiqP2,i, CSipSi]
T (4d)

and
∂Hi(xi)

∂xi
= Qixi = [qP2,i, pSi]

T
, (4e)

respectively. The interaction (coupling) input is

di =

pP1,i
pP2,i
−qSi

 =

 pP1,i
pP2,i∑

l∈N+
b
ql −

∑
l∈N−

b
ql

 (4f)

and the corresponding conjugated output reads as

zi = [qP1,i, qP2,i, pSi]
T
. (4g)

The interconnection matrix, the interaction matrix and the
damping function are given by

Ji =

[
0 −1
1 0

]
, Ki =

[
1 1 0
0 0 1

]
,

Ri(xi) =
[
λi(qP2,i) + µi(qP2,i,svi), 0

]T
,

(4h)

respectively. The interaction (coupling) between (2) with α =
2 and (4) is established via

d2,i = pP2,i = zP2,i
dP2,i = −qP2,i = −z2,i

⇔
[
d2,i
dP2,i

]
=

[
0 1
−1 0

][
z2,i
zP2,i

]
. (5)

3) Pressure Holding Model: The pressure holding unit in
DHNs is typically a dynamic pressure control conducted by
a pressure dictation pump with an overflow valve located
between a pressurized container and the DHN [7, pp. 54–
55], [13, Fig. 1]. It is almost exclusively connected to the
suction side of the circulation pump (pre-pressure control)
(see Fig. 2) and is instrumental in preventing cavitation in
the circulation pump [7, pp. 54–55], [14]. As outlined in
Section II-B.1, we approximate the pump dynamics by a
linear second-order system of form (2) with α = 1. In the
case of the pressure holding unit, we find it more convenient
to think of the red voltage source in Fig. 2 as being replaced
with the RLC circuit in Fig. 3, where α = 1. That is, in
contrast to the circulation pump, which still needs to be
coupled with the circulation circuit (blue part in Fig. 2),
the red voltage source already represents the entire pressure
holding unit. For this, we consider the dictation pump to be
lumped together with the pressurized container, and allow
for the container to operate in both charging and discharging
mode.

C. Hydraulic End-User Models

In future DHNs, additional pumps are expected to be
included in end-user circuits. On the one hand, this allows
to compensate higher pressure losses in the network due to
smaller pipe diameters [1], [11]. On the other hand, results
from [4], [12] and the references therein suggest that such a
setup considerably reduces the electrical energy required to
operate the pumps in DHNs. As a result, the hydraulic end-
user circuit at an edge j = (a, b) ∈ L is modeled similarly
to the hydraulic DGU circulation circuit in blue in Fig. 2
(see Fig. 4, [8, Fig. 2]). The only differences are the working
direction of the pump and the sign conventions of the volume
flow rates [7, pp. 87,143]. This allows for a more intuitive
perspective of water flowing from the supply into end-users
(qSj) and out at the return (qRj) for positive volume flow rate
values. By applying KVL and KCL to Fig. 4 , we obtain the
dynamics

Jj q̇P2,j = pSj − pRj − λj(qP2,j)− µj(qP2,j ,svj) + pP2,j ,

CSj ṗSj = −qP2,j + qSj , (6)
CRj ṗRj = qP2,j − qRj ,
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Fig. 4. Equivalent circuit of a hydraulic end-user model [8, Fig. 2]

which may be written as an ISO-PHS with a nonlinear
resistive structure (see [38, p. 114]) as follows:

ẋj = Jj
∂Hj(xj)

∂xj
−Rj(xj) +Kjdj , (7a)

zj = KT
j

∂Hj(xj)

∂xj
, (7b)

Hj(xj) =
1

2
xT
j Diag

[
1

Jj
,

1

CSj
,

1

CRj

]
︸ ︷︷ ︸

Qj

xj . (7c)

In (7), the states and co-states are given by

xj = [JjqP2,j , CSjpSj , CRjpRj ]
T (7d)

and
∂Hj(xj)

∂xj
= Qjxj = [qP2,j , pSj , pRj ]

T
, (7e)

respectively. Note that in this case both capacitors CRj and
CSj are considered explicitly, as there is no pressure holding
unit with which to lump them. The uncontrolled interaction
(coupling) input is

dj =

 qSj
pP2,j
−qRj

 =


∑

l∈N+
a
ql −

∑
l∈N−

a
ql

pP2,j∑
l∈N+

b
ql −

∑
l∈N−

b
ql

 (7f)

and the corresponding conjugated output reads as zj =

[pSj , qP2,j , pRj ]
T. The interconnection matrix, the interaction

matrix and the damping function are given by

Jj =

 0 1 −1
−1 0 0
1 0 0

 , Kj =

0 1 0
1 0 0
0 0 1

 ,

Rj(xj) =
[
λj(qP2,j) + µj(qP2,j ,svj), 0, 0

]T
,

(7g)

respectively. The end-user pump is modeled similarly to the
DGU circulation pump by a linear second-order system of
form (2) with i = j, α = 2. It is coupled to (7) via

d2,j = pP2,j = zP2,j
dP2,j = −qP2,j = −z2,j

⇔
[
d2,j
dP2,j

]
=

[
0 1
−1 0

][
z2,j
zP2,j

]
. (8)

Remark 2: To the best of our knowledge, pressure holding
units as described for DGUs in Section II-B.3 are not used in
end-user circuits. On the one hand, this makes sense from an

ql
λl(ql) Jl

p1,l

p0 = 1bar

p2,l

p0 = 1bar

Fig. 5. Equivalent circuit of a hydraulic pipe model [8, Fig. 3]

engineering perspective, as the suction side pressure of the
end-user pump is the supply pressure. During feasible DHN
operation, this supply pressure should always be sufficiently
high to avoid any cavitation problems in the end-user pump.
On the other hand, adding pressure holding units at every
end-user would lead to unnecessary high implementation
costs.

D. Hydraulic Pipe Model

For the hydraulic pipe model at an edge l ∈ P , we directly
follow the results of [8], [9], [11]. As illustrated in Fig. 5,
we model the pipe friction by a nonlinear, volume flow-
dependent resistance λl(ql) and the volume inertia by the
linear inductance Jl. By applying KVL to Fig. 5, we obtain
the dynamic equation

Jlq̇l = −λl(ql) + p1,l − p2,l (9)

which may be written as an ISO-PHS model with a nonlinear
resistive structure (see [38, p. 114]) as follows:

ẋl = −Rl(xl) +Kldl, (10a)

zl = KT
l

∂Hl(xl)

∂xl
, (10b)

Hl(xl) =
1

2Jl
xl. (10c)

In (10), we have the state xl = Jlql, the co-state dHl(xl)
dxl

=
ql, and the uncontrolled interaction (coupling) port pair(

dl = [p1,l, p2,l]
T
, zl = [ql,−ql]

T
)
. (10d)

The damping function and the interaction matrix are

Rl(xl) = λl(ql), Kl =
[
1, −1

]
. (10e)

III. MODEL PROPERTIES

In this section, we highlight some inherent properties of
the DHN model provided in Section II. In particular, we fo-
cus on properties that are beneficial for pressure and volume
flow rate control of the pumps in the pressure holding and
circulation circuits. Firstly, in Lemma 1, we show the power-
preserving nature of the overall interconnection structure
between the different DHN subsystem models developed in
Section II. Then, in Subsection III-B, we make statements
about the passivity properties of these DHN subsystem
models. Together with the power-preserving interconnection
structure, the inference of such passivity properties provide
direct guidelines for pressure and volume flow rate control
designs (see [41]).



A. Interconnection Structure

The interconnection structure comprises two main parts:
(i) the interconnection of DGUs i ∈ D and end-users j ∈ L
to pipes l ∈ P at nodes c ∈ V in the DHN graph (see
Fig. 1); (ii) the interconnection of the DGU and end-user
circulation circuits (see Figs. 2 and 4) to their respective
DGU circulation pump models ((2) with α = 2) and end-
user pump models ((2) with j instead of i and α = 2). In the
following Lemma, we show that the overall interconnection
structure is power-preserving.

Lemma 1: Consider a DHN as described in Section II.
The interconnections between DGUs i ∈ D, end-users j ∈
L, and pipes l ∈ P are power-preserving. Furthermore, the
interconnection of a dynamic pump model with its respective
DGU or end-user circulation circuit is power-preserving.

Proof: As outlined in Section II-A, the interconnection
points of DGUs i ∈ D and end-user j ∈ L with their
incoming and outgoing pipes, i.e., the nodes in V , are ideal
flow (volume flow rate) constraints that follow KCL. In
detail, we get that at a tail node a ∈ V of a DGU edge
i = (a, b) ∈ D the following holds (see (2g) and (4g)):

d1,i
dP1,i
d+
a

d−
a

 =


0 1 0 0
−1 0 −1T −1T

0 1 0 0
0 1 0 0



z1,i
zP1,i
z+
a

z−
a

 , (11)

with d+
a = col (d2,l)l∈N+

a
, z+

a = col (z2,l)l∈N+
a

, and d−
a =

col (d1,l)l∈N−
a
, z−

a = col (z1,l)l∈N−
a

. Note that the pressure
holding model, i.e., (2) with α = 1, also enters here via its
interaction port pair dP1,i, zP1,i (see Fig. 2 and (2g)). At a
head node b ∈ V of a DGU edge i = (a, b) ∈ D, we get thatd3,id+

b

d−
b

 =

0 −1T −1T

1 0 0
1 0 0

z3,iz+
b

z−
b

 , (12)

with d+
b = col (d2,l)l∈N+

b
, z+

b = col (z2,l)l∈N+
b

and d−
b =

col (d1,l)l∈N−
b
, z−

b = col (z1,l)l∈N−
b

(see Fig. 2). Analog-
ously, we find thatd1,jd+

a

d−
a

 =

0 −1T −1T

1 0 0
1 0 0

z1,jz+
a

z−
a

 (13)

and d3,jd+
b

d−
b

 =

0 −1T −1T

1 0 0
1 0 0

z3,jz+
b

z−
b

 (14)

hold at a tail node a ∈ V and a head node b ∈ V of
an end-user edge j = (a, b) ∈ L (see Fig. 4). As the
interconnection matrices in (11)–(14) are skew-symmetric,
the interconnection structure represented by the nodes in V
is power-preserving. The interconnection of a dynamic pump
model with its respective circulation circuit model (4) and
(7), respectively, is given by (see (5) and (8))[

dα,m
dPα,m

]
=

[
0 1
−1 0

][
zα,m
zPα,m

]
. (15)

with {m ∈ D, α = 1} ∪ {m ∈ D ∪ L, α = 2}. As the in-
terconnection matrix is skew-symmetric, the interconnection
is power-preserving. The overall interconnection structure is
thus a power-preserving Dirac structure [38, pp. 140], which
satisfies

0 =
∑
i∈D

(
zT
i di + zP1,idP1,i + zP2,idP2,i

)
+

∑
j∈L

(
zT
j dj + zP2,jdP2,j

)
+
∑
l∈P

zT
l dl.

(16)

B. Passivity of the Subsystem Models

Inferring passivity properties of the models for pumps
(2), DGU circulation circuits (4), end-user circuits (7), and
pipes (10) is straightforward in this case. As all models
are represented in ISO-PHS form, they are all at least
passive with respect to their Hamiltonians (storage functions)
and their control and interaction ports [38, p. 116]. With
Lemma 1, we can directly conclude that the overall hydraulic
DHN model is passive as well. Its Hamiltonian is given
by the sum of the positive definite Hamiltonians of the
subsystems

HDHN(xDHN) =
∑
i∈D

(Hi(xi) +HP1,i(xP1,i) +HP2,i(xP2,i))

+
∑
j∈L

(Hj(xj) +HP2,j(xP2,j)) +
∑
l∈P

Hl(xl) (17)

and is thus again positive definite. The time derivative of
(17) satisfies

ḢDHN(xDHN) ≤
∑
i∈D

yP1,iuP1,i +
∑

k∈D∪L

yP2,kuP2,k (18)

which makes HDHN(xDHN) a Lyapunov function for uP1,i =
uP2,k = 0 and thus ensures stability of the origin x∗

DHN =
0. Naturally, during real DHN operation, desired pressures
and volume flow rates need to be asymptotically stabilized
at DGUs and end-users, which implies a forced, nonzero
equilibrium x∗

DHN ̸= 0. To achieve this, control designs
for the pressure holding and circulation pumps may have
the following implications: (i) a change in the dynamics of
system (2), i.e., the matrices JPα,i,RPα,i and JP2,j ,RP2,j ,
respectively; (ii) an extension of the system dynamics of (2)
by adding integrator states; (iii) a shift of the equilibrium
of (2) to desired pressure or volume flow rate values by
modifying the Hamiltonian. However, in order to still allow
for a modular stability analysis as outlined above, it is desired
to preserve passivity with respect to the interaction port pairs
(dPα,i, zPα,i) and (dP2,j , zP2,j), respectively (see also [8],
[22]).

IV. CONCLUDING REMARKS

In this work, we have presented comprehensive ISO-PHS
models that describe the dynamic behavior of the hydraulics
in a general class of DHNs with flexible topologies. The
models are capable of describing traditional DHNs as well as
future DHNs with multiple distributed heat sources, pumps,



and multi-layer pipe network topologies. We extend prior
works (e.g. [8], [9]) by explicitly considering the dynamics
of pumps with a linear, second-order approximation and
adding pressure holding units, which are essential for DHN
operation. By means of the proposed digraph representation
of a DHN in which the volume flow rates at nodes sum
up to zero, as well as the ISO-PHS representation of the
DHN subsystem models, we can readily infer passivity
properties of the overall hydraulic DHN model and thus
stability of its equilibrium. Particularly the clear understand-
ing of interaction (coupling) ports provided by the ISO-PHS
models and their inherent passivity properties prove to be
highly beneficial. In future works, we will build upon these
insights to design pressure and volume flow rate controllers
to asymptotically stabilize desired hydraulic equilibria.
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APPENDIX I
LIST OF ABBREVIATIONS

DHN District heating network
DGU Distributed (heat) generation unit
PHS Port-Hamiltonian system
ISO-PHS Input-state-output port-Hamiltonian system
KVL Kirchhoff’s voltage law
KCL Kirchhoff’s current law

APPENDIX II
SYMBOLS DESCRIPTION

G,V, E DHN graph, vertices (Kirchhoff nodes),
and edges

D,L,P Edge sets representing DGUs, end-users (loads),
and pipes

N+
c ,N−

c Set of incoming and outgoing edges at
a node c ∈ V

µi, µj Pressure drop due to nonlinear valve friction in
DGUs i ∈ D and end-users j ∈ L

λi, λj , λl Pressure drop due to nonlinear pipe friction in
DGUs i ∈ D, end-users j ∈ L, and pipes l ∈ L

Ji, Jj , Jl Inertia of the volume in hydraulic circuits of
DGUs i ∈ D, end-users j ∈ L, and pipes l ∈ L

CRi, CRj Elasticity of the hydraulic circuits of
DGUs i ∈ D and end-users j ∈ L summarized
at the return side

CSi, CSj Elasticity of the hydraulic circuits of
DGUs i ∈ D and end-users j ∈ L summarized
at the supply side

(·)Pα Quantity associated to the pressure holding
α = 1 or the dynamic pump model α = 2

xk,m, dk,m, zk,m kth component of the vector x, d and z associated
with edge m ∈ E , respectively

JPα, RPα, CPα Black box parameters to approximate the
pressure holding and pump dynamics

col (xi)i∈I Column vector of real elements xi ordered
according to an index set I
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