KIT | KIT-Bibliothek | Impressum | Datenschutz

Probing porosity in metals by electrical conductivity: Nanoscale experiments and multiscale simulations

Kaiser, Tobias ; Dehm, Gerhard; Kirchlechner, Christoph 1; Menzel, Andreas; Bishara, Hanna
1 Institut für Angewandte Materialien – Werkstoff- und Grenzflächenmechanik (IAM-MMI), Karlsruher Institut für Technologie (KIT)

Abstract:

Motivated by the significant influence of the underlying microstructure on the effective electrical properties of a material system and the desire to monitor defect evolution through non-destructive electrical characterisation, this contribution is concerned with a detailed study of conductivity changes caused by the presence of sub-microscale pores. Reducing the complexity of the material system, geometrically well-defined pore arrays are created by focused ion beam (FIB) milling in Cu thin films and characterised by 4-point probe electrical measurements. The experiment is designed such that it reduces to a (quasi-)one-dimensional electrical problem which is amenable to analytical techniques when invoking a computational homogenisation scheme to approximate the effective electrical properties of a given microstructure. The applicability of the proposed approach is shown in a first step by comparing simulation results for different pore volume fractions and pore shapes against their experimental counterparts. In a second step, a sensitivity analysis of the experimental data is carried out and the usefulness of the proposed modelling approach in interpreting the experimental data is demonstrated. ... mehr

Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Werkstoff- und Grenzflächenmechanik (IAM-MMI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2023
Sprache Englisch
Identifikator ISSN: 0997-7538
KITopen-ID: 1000150636
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in European Journal of Mechanics - A/Solids
Verlag Elsevier
Band 97
Seiten Art.-Nr.: 104777
Schlagwörter Porosity; Electrical resistivity/conductivity; Computational homogenisation; Nanoscale experiments
Nachgewiesen in Dimensions
Web of Science
Scopus

Verlagsausgabe §
DOI: 10.5445/IR/1000150636
Veröffentlicht am 13.09.2022
Originalveröffentlichung
DOI: 10.1016/j.euromechsol.2022.104777
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Seitenaufrufe: 107
seit 13.09.2022
Downloads: 82
seit 13.09.2022
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page