KIT | KIT-Bibliothek | Impressum | Datenschutz

Determination of topological edge quantum numbers of fractional quantum Hall phases by thermal conductance measurements

Srivastav, Saurabh Kumar; Kumar, Ravi; Spånslätt, Christian; Watanabe, K.; Taniguchi, T.; Mirlin, Alexander D. 1,2; Gefen, Yuval 2; Das, Anindya
1 Institut für Theorie der Kondensierten Materie (TKM), Karlsruher Institut für Technologie (KIT)
2 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract:

To determine the topological quantum numbers of fractional quantum Hall (FQH) states hosting counter-propagating (CP) downstream (N$_{d}$) and upstream (N$_{u}$) edge modes, it is pivotal to study quantized transport both in the presence and absence of edge mode equilibration. While reaching the non-equilibrated regime is challenging for charge transport, we target here the thermal Hall conductance G$_{Q}$, which is purely governed by edge quantum numbers N$_{d}$ and N$_{u}$. Our experimental setup is realized with a hexagonal boron nitride (hBN) encapsulated graphite gated single layer graphene device. For temperatures up to 35 mK, our measured G$_{Q}$ at ν = 2/3 and 3/5 (with CP modes) match the quantized values of non-equilibrated regime (N$_{d}$ + N$_{u}$)κ$_{0}$T, where κ$_{0}$T is a quanta of G$_{Q}$. With increasing temperature, G$_{Q}$ decreases and eventually takes the value of the equilibrated regime ∣N$_{d}$ − N$_{u}$∣κ$_{0}$T. By contrast, at ν = 1/3 and 2/5 (without CP modes), G$_{Q}$ remains robustly quantized at N$_{d}$κ$_{0}$T independent of the temperature. Thus, measuring the quantized values of G$_{Q}$ in two regimes, we determine the edge quantum numbers, which opens a new route for finding the topological order of exotic non-Abelian FQH states.


Verlagsausgabe §
DOI: 10.5445/IR/1000150645
Veröffentlicht am 27.09.2022
Originalveröffentlichung
DOI: 10.1038/s41467-022-32956-z
Scopus
Zitationen: 23
Web of Science
Zitationen: 14
Dimensions
Zitationen: 27
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für QuantenMaterialien und Technologien (IQMT)
Institut für Theorie der Kondensierten Materie (TKM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000150645
HGF-Programm 47.12.01 (POF IV, LK 01) Advanced Solid-State Qubits and Qubit Systems
Erschienen in Nature Communications
Verlag Nature Research
Band 13
Heft 1
Seiten Art.Nr. 5185
Vorab online veröffentlicht am 03.09.2022
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page