
Vol.:(0123456789)1 3

Production Engineering 
https://doi.org/10.1007/s11740-022-01152-9

PRODUCTION MANAGEMENT

Hybrid Monte Carlo tree search based multi‑objective scheduling

Constantin Hofmann1   · Xinhong Liu1 · Marvin May1 · Gisela Lanza1

Received: 20 April 2022 / Accepted: 20 July 2022 
© The Author(s) 2022

Abstract
As markets demand targeted products for highly differentiated use cases, the number of variants in production increases, 
whilst the volume per variant decreases. Different product variants result in differences in work content on workstation 
level which cause takt time losses and result in a poor utilization. In this context, matrix-structured production systems 
with neither temporal nor spacial linkage emerged to reduce the effects of different work content on the entire production 
system. However, matrix-structured production systems require far more complex production control. To that end, this paper 
presents a scheduling approach. The proposed scheduling system considers variable process sequences and their allocation 
to different workstations in order to optimize scheduling objectives. This contribution presents a Monte Carlo tree search 
based optimizer combined with local search as post optimizer to derive schedules in a short time span to enabling reactive 
scheduling. The application of the scheduler to a benchmark problem and an industrial scheduling problem demonstrates 
the quality of the results and illustrates how the scheduler reassigns the work content dynamically.

Keywords  Scheduling · Matrix production · Monte Carlo tree search · Production systems

1  Introduction

State-of-the-art production systems strive to reconcile prod-
uct individualization with short delivery times and the cost 
and quality of mass production [1]. Product individualiza-
tion often results in an increased number of variants with 
different work content per workstation. In this setting, rigid 
production lines with temporal and spacial linking suffer 
from a loss of efficiency due to the unequally distributed 
work content between the different workstations [2]. Sub-
sequently, new concepts are emerging which aim to over-
come the takt time dependency with flexible production sys-
tems without temporal or spacial linkage. These concepts, 
known as matrix production [3], line-less assembly [4], 
modular assembly or cubeTec rely on placing multi-purpose 

workstations in a matrix-like structure in space without hav-
ing a common takt time for the entire production system. 
This flexible production structure opens new possibilities to 
distribute workload in the production system as the schedul-
ing system can vary the order of the required processes steps 
within the flexibility that the individual precedence graph 
of each variant offers [5]. At the same time, the free mate-
rial flow makes it possible to optimize different production 
objectives for each order. On the downside, the complexity 
for the scheduling system increases significantly with each 
further degree of freedom. To achieve a reactive scheduling 
that is capable of using these degrees of freedom, highly 
efficient scheduling approaches are needed. Depending on 
the market characteristics, different objectives, e.g. mini-
mal delay, high output or high utilization, are relevant for 
the production. These objectives should be optimized, even 
in a highly dynamic environment with disturbances in the 
production system. This paper presents thus a hybrid reac-
tive scheduling approach capable of optimizing different 
objectives.

In the following, the relevant literature will be presented 
(Sect. 2) before the hybrid scheduling system is introduced 
(Sects. 3.1, 3.2) along with means to improve its perfor-
mance and interaction with the base optimizer (Sect. ref-
searchstrategy). Section 4 provides the results of the different 

 *	 Constantin Hofmann 
	 constantin.hofmann@kit.edu

	 Marvin May 
	 marvin.may@kit.edu

	 Gisela Lanza 
	 gisela.lanza@kit.edu

1	 wbk Institute of Production Science, Karlsruhe Institute 
of Technology KIT, Kaiserstraße 12, 76131 Karlsruhe, 
Baden‑Wuerttemberg, Germany

http://orcid.org/0000-0001-7302-5709
http://crossmark.crossref.org/dialog/?doi=10.1007/s11740-022-01152-9&domain=pdf


	 Production Engineering

1 3

modifications (Sects. 4.2–4.5) and shows the performance 
of the scheduling system on a benchmark problem as well 
as on an industrial use case (Sects. 4.6 and 4.7). This paper 
concludes with a conclusion and outlook.

2 � Literature review

The scheduling task of a matrix production system consists 
of three sub-decisions. First, selecting one of the feasi-
ble operations for each product respecting the restrictions 
defined by the precedence graph. Second, allocating the 
selected operation to a workstation. Third, scheduling the 
start of the operation on the selected workstation. These 
decisions can be taken sequentially or simultaneously. Trans-
port, setup and cycle times as well as the status and possible 
processes of the workstations are restrictions to the problem. 
Relevant scheduling objectives are for instance the minimi-
zation of tardiness, throughput time or makespan and the 
maximization of utilization [6].

Scheduling is known as an NP hard problem (non-deter-
ministic polynomial-time) [7]. Therefore, exact optimization 
approaches are mostly used to generate optimal solutions for 
static reference problems. Research in this field addresses 
the challenge of finding efficient problem representations 
[8]. Since the reactive scheduling task at hand requires a 
short computing time and a feasible solution at all times, 
exact optimization procedures are unsuitable and, thus, not 
discussed further.

Dynamic scheduling addresses the problem of deriving 
a schedule in the context of dynamic events e.g. when a 
break-down occurs, a processes takes longer than expected 
(resource-related event) or a new order arrives (job-related 
event) [9]. In this context, predictive-reactive scheduling 
describes a scheduling approach where a schedule is derived 
based on assumptions of the future. However, when a devi-
ation occurs, the schedule is either partly or completely 
revised [9]. Due to the resulting time constraints, heuristics 
play a predominant role.

Problem-specific heuristics, also known as priority rules, 
are a well-researched field. It could be shown that the choice 
of the priority rule depends on the optimization objectives 
[10] and that their performance degrades with increasing 
system complexity [11]. A matrix production system offers 
many degrees of freedom, therefore approaches purely based 
on problem-specific heuristics are not advisable.

Meta-heuristics such as genetic algorithms (GA) or sim-
ulated annealing (SA) play an important role for solving 
highly complex problems. Balancing search speed with the 
potential pitfall of early convergence against a local mini-
mum and thorough search are very challenging [12]. To 
counterbalance the global search of a GA, local search is 
often applied as a post-optimizer to enhance the local search 

abilities. This combination is known as memetic algorithm 
[13].

The domain of games also features highly complex 
markov decision problems and as such has brought forth 
promising approaches that can be adapted to solve complex 
problems in other domains such as scheduling. Inspired by 
the game-play of two opposing players, bi-objective schedul-
ing problems can be modeled as a game between two play-
ers competing to optimize their respective objective. This 
approach has favorable properties regarding complexity 
growth and thus reduces solution time [14]. Alternatively, 
the scheduling problem can be modelled as N + 1 game 
where n production orders try to optimize their cycle time 
and the production system as single player thrives for high 
utilization [15]. Lately, Monte Carlo tree search (MCTS) has 
gained a lot of interest as means to solve complex problems 
in gaming [16] but also in the domain of scheduling [17–19]. 
Monte Carlo tree search as an algorithm is an iterative 
anytime approach using search trees to represent Markov 
decision problems. The four-phase approach consists of a 
selection phase, in which a node (Markov state) is selected 
for expansion. In the expansion phase, one of the possible 
actions is executed. In the following rollout phase, random 
actions are applied until a terminal state is reached. In the 
fourth phase, the backpropagation, the reached terminal state 
is evaluated with respect to the objectives and the nodes 
on the path to the terminal state are updated accordingly. 
These four steps are repeated until a time or iteration-based 
termination criterion is reached [17]. MCTS can be used to 
solve multi-objective scheduling problems and, as domain-
independent approach, does not require the transformation 
of the problem to a specific form other then a markov deci-
sion problem.

Local search designates optimization approaches that 
evaluate neighboring solutions around an initial solution in 
the search for an improved result [20]. The neighborhood 
is defined by a neighborhood structure. Even though there 
are many different neighborhood structures, in the context 
of scheduling, most structures rely on shifting and swap-
ping of operations. For scheduling problems, local search is 
mostly applied to the critical path. The critical path denotes 
a sequence of operations without a temporal buffer between 
operations. Any deviation on the critical path leads to an 
overall deviation [21].

Especially hybrid MO-MCTS approaches have demon-
strated their abilities by solving the Pareto Kacem bench-
mark problem [19, 22, 23]. However, the Kacem benchmark 
problem does not cover important restrictions (transport, 
setup) and does not offer process flexibility. Therefore, the 
MCTS approaches found in literature as well as the local 
search methods do not cover these restrictions. This paper 
proposes a hybrid multi-objective MCTS (MO-MCTS) 
combined with local search (MO-MCTS + LS) tailored for 



Production Engineering	

1 3

scheduling of a matrix production with transport, setup and 
process flexibility. The focus lies on the interaction between 
base-optimizer and local search as well as on the search 
strategy applied.

3 � Approach

The scheduling system consists of two main components. 
First, the MO-MCTS optimizer that generates a complete 
schedule and secondly the local search to explore the neigh-
borhood around one or several solutions generated by the 
MO-MCTS optimizer. In the following, the base optimizer 
is introduced shortly before the local search is presented as 
well as several measures to improve the search performance.

3.1 � MO‑MCTS base optimizer

To model the scheduling problem as search tree, it is trans-
ferred into nodes and edges. Each node represents a state 
which is defined by a schedule with operations allocated 
to workstations in a specific time periods. Each edge of 
the graph represents an action of adding one operation to a 
workstation’s schedule.

The optimization run begins with the currently fixed 
schedule as the starting point. At the beginning of the period 
the schedule is empty. For subsequent runs, started opera-
tions as well as operations that cannot be changed any more 
are already included in the schedule. MO-MCTS is given 
an iteration budget until the run terminates. The optimiza-
tion objective is the maximization of the Pareto front. The 
Pareto front is quantified by the hypervolume of dominated 
space under the Pareto points [24]. During selection, the 
node with the highest UCT-value (Upper Confidence bounds 
applied to Trees) [25] is chosen based on hypervolume. The 
UCT-value is composed of two terms. First the hypervol-
ume of the Pareto front (Exploitation) and secondly a score 
based on the number of visits of this state in relation to the 
overall number of visits. The second term, also known as 
exploration term, takes high values for states with few visits. 
Exploitation and exploration is balanced by a factor. In the 
second MO-MCTS phase, an action is added to the selected 
node based on the mechanism described in [26]. The roll-
out phase used the same selection mechanism to determine 
actions until a terminal state is reached. During backpropa-
gation the Pareto front of each node is updated. These four 
phases are repeated until the iteration limit is reached.

3.2 � Local search post optimizer

Local search by moving one operation (LSONE) [27] com-
bined with MO-MCTS [22] has achieved remarkable per-
formance on the Kacem benchmark problems. However, 

LSONE does not consider transport and setup times since 
the original Kacem problem is only a simplified form of a 
matrix production. For LSONE, an operation is critical if 
the earliest starting point sE and the latest starting point sL 
are identical. A critical path consists only of critical opera-
tions and defines the makespan of the schedule. LSONE 
uses directed graphs to represent the scheduling problem. 
In the first step, the first critical operation is deleted from 
the Graph G to obtain the reduced graph G− . Then, a new 
position for the previously deleted operation is determined 
that fulfills all time constraints. If an interval is found, the 
operation is inserted to obtain a complete schedule again. 
This is repeated until it is no longer possible to find a new 
interval [27]. LSONE has been applied by several authors 
in combination with MCTS [22]. The local search is usu-
ally executed after each roll-out. An important modifica-
tion of LSONE has altered the original criteria applied to 
identify intervals to be more restrictive [22].

To accommodate transport and setup restrictions, 
changes have to be made regarding the definition of the 
critical path and the identification of suitable intervals. 
First, the definition of the critical path needs to be revised. 
The earliest starting time of operation v is given by sE(v) . 
The earliest finishing time is equal to the cycle time of 
operation v at workstation w plus the earliest starting time 
s
E(v) . The latest start and finishing time are respectively 

defined as cE and cL . To determine the earliest starting 
time, it is necessary to verify both the earliest finishing 
time of the previous operation of this order cE(PJ(v)) as 
well as the earliest completion time of the previous oper-
ation before operation v at the workstation w given by 
c
E(PM(v)) . The maximum denotes the earliest starting time 

of operation v. Setup operations are regarded as previous 
operations on workstations and transport operations are 
modelled as previous operations of the order.

Secondly, the identification of possible intervals has to 
be adapted to account for additional or no-longer-needed 
setup or transport operations. The approach will be illus-
trated using the example in Fig. 1.

Figure 1 shows how the interval of operation v is deter-
mined. In this particular case, additional setup operations 
and a transport operation is needed. Starting point (a) is 
the reduced graph G− without operation v of process OP2. 
To determine whether v(OP2) can be placed between the 
operation PM(u)(OP1) and u(OP1), the earliest finishing 
time of the predecessors and the latest start of the suc-
cessors have to be calculated. Both for the workstation as 
well as for the production order. The earliest starting time 
is restricted by the maximum of the earliest finishing time 
of the predecessor operation of the workstation cE−(PM(u)) 
and of the production order cE−(PJ(v)) . Therefore, the ear-
liest starting time is given by Eq. 1.



	 Production Engineering

1 3

The second restriction of the interval is given by the latest 
starting time of the predecessors, both on the workstation 
s
L−(u) and of the production order sL−(SJ(v)) . Thus, the latest 

starting time is denoted by Eq. 2.

In the last step, additional setup and transportation opera-
tions need to be added to the graph. In the case illustrated, 
the production order needs to be transported t

m
v
,m

u
 and an 

additional setup operation is needed before t
OP1�→OP2 and 

after the process OP2, t
OP2�→OP1 . As a result t1 is updated to 

Eq. 3. t2 is changed respectively, see Eq. 4.

(1)t1 = max{cE−(PJ(v)), cE−(PM(u))}

(2)t2 = min{sL−(SJ(v)), sL−(u)}

(3)t
�
1
=max{cE−(PJ(v)) + t

m
v
,m

u
, c

E−(PM(u)) + t
OP1���→OP2

}

The limits t′
1
 and t′

2
 are the borders of the assignable interval 

for the critical operation v.

3.3 � Search strategy and interaction of local search 
and MO‑MCTS

In this section two approaches will be presented to guide the 
local search. The first approach influences the order in which 
critical orders are considered and which assignable intervals 
are evaluated first. The second approach provides a means 
to undo changes that have not lead to the desired outcome.

3.3.1 � Sorting of intervals and critical operations

Given a local search problem, there might exist several 
critical operations as well as several assignable intervals 

(4)t
�
2
=min{sL−(SJ(v)), sL−(u) − t

OP2���→OP1
}

Fig. 1   Illustrative example to 
demonstrate how to determine 
the interval for operation v



Production Engineering	

1 3

for each operation. The main idea is to use domain knowl-
edge when choosing the intervals as well as operations to 
evaluate more promising alternatives first. This approach 
is in line with existing approaches in literature, e.g. pre-
ferring alternatives with shorter cycle times [28] or sort-
ing the workstations according to the cycle time [29].

To sort critical operations, the following exemplary 
criteria has been tested. Other criteria can be applied as 
well:

•	 Duration.
•	 Earliest starting time.
•	 Ratio between setup times and cycle times.
•	 Delay.
•	 Waiting time.

To sort available assignable intervals similar criteria can 
be applied:

•	 Size of the interval.
•	 Earliest starting time.
•	 Ratio between setup times and cycle times.
•	 Setup state.
•	 Workload of the workstation.
•	 Idle time.

To save time by eliminating setup times, it is advisable to 
first test critical operations which belong to orders with 
a high ratio of setup time to cycle time and to evaluate 
assignable intervals with the required setup state.

3.3.2 � Reallocation

In case of several assignable intervals for a critical opera-
tion, the choice of the assignable interval can be influ-
enced by sorting, see Sect. 3.3.1. An alternative approach 
is to test multiple intervals in one iteration before select-
ing an allocation. To evaluate the resulting solution, the 
objective value of the resulting schedule can be com-
pared to the initial objective value of the original sched-
ule. To accept a solution, both static as well as dynamic 
thresholds are valid approaches. In case of local optima, 
sometimes a slight deterioration of the solution has to 
be accepted in one iteration to be able to leave the local 
optimum. The following criteria have been evaluated:

•	 Constant tolerance.
•	 Linear declining tolerance depending on the iteration 

count.
•	 Non-linear decline by Simulated annealing where the 

iteration count is used as temperature substitute.

3.3.3 � Interaction of local search and base optimizer

In this section, the interaction between MO-MCTS as base-
optimizer and local search are discussed. In general, local 
search can be ran on any complete schedule. Accounting 
for the fact that only minor improvement is to be expected 
by a neighborhood search, a pre-selection of the solutions 
to execute local search on is advisable. In literature [19, 22, 
23] local search is executed on rollout states. To improve the 
efficiency of the entire optimizer, the following strategies 
have been developed:

•	 Rollout sampling: execution of local search after each 
rollout

•	 Intermediate Pareto states: This approach interrupts the 
execution of MO-MCTS after a fixed number of itera-
tions or a fixed time budget and executes local search on 
a set of Pareto states.

•	 Final Pareto states: this approach executes local search 
on a set of Pareto states after the MO-MCTS execution 
has finished.

4 � Results

This section discusses the effects of the modification of 
LSONE and assess the performance by applying the sched-
uler to a benchmark problem and an industrial use case. 
First, the modifications of LSONE to take setup and trans-
portation into account are evaluated. Secondly, the effects 
of sorting of intervals and critical operations are assessed. 
Thirdly, the reallocation mechanism to test several moves in 
one iteration is discussed. To compare the scheduler to other 
approaches, it is applied to the Kacem benchmark problem. 
Lastly, the interaction of the scheduler and the production is 
demonstrated using an industrial application.

4.1 � Use case

To evaluate the effects of the different approaches, the matrix 
production assembly of a supplier for electric drives for 
industrial applications has been taken as basis. The assem-
bly process starts with the gearbox, followed by oil injection, 
motor assembly, testing and painting. In the real production 
system the gearbox assembly has to take place at a dedicated 
assembly station to simplify logistics. To represent a matrix 
production the assumption has been made that the logistics 
system of the gearbox assembly has been improved lead-
ing to a free choice of the assembly workstation. The cycle, 
setup and transport times are based on estimations from the 
planning phase [26].



	 Production Engineering

1 3

4.2 � Influence of LSONE modifications

LSONE has been modified compared to the original ver-
sion [27] to account for transport and setup operations. 
To evaluate the effects of the modifications, the hypervol-
ume and the equally-weighted objective value for delay, 
throughput time, makespan, total workload and maximum 
workload are compared.

Figure 2 shows the boxplots of 10 executions. The plot 
shows an improvement of the hybrid approach compared 
to the stand-alone optimizer in terms of hypervolume and 
equally-weighted objective values. The modified LSONE 
achieves superior results. The original LSONE criteria 
does not take into account setup and transportation times 
leading to the wrong identification of assignable inter-
vals. It is worth noticing that the variance of the solution 
increases in both hybrid approaches. Compared to MO-
MCTS, local search is less targeted and, thus, the solutions 

identified in the neighborhood of the starting point vary 
also in quality.

4.3 � Sorting of critical operations and intervals

In this section, the influence of priority rules to sort critical 
operations and intervals are evaluated. Two different sorting 
schemes are discussed. First, the rules for sorting the critical 
operations and critical intervals are selected randomly. Sec-
ondly, matching rules for sorting are selected, e.g. if opera-
tions are prioritized according to the setup times then the 
equivalent rule is applied to sort the intervals.

Figure 3 shows the result of no sorting and the afore-
mentioned sorting schemes regarding hypervolume and 
regarding the ratio of moves that lead to an improvement. 
It is evident, that sorting improves both hypervolume and 
the ratio of moves that lead to an improvement in terms of 
solution quality. Random sorting results in a comparable 

Fig. 2   Hypervolume (a) and equally-weighted objective value (b) for hybrid MO-MCTS with LSONE [27], modified LSONE and MO-MCTS 
as stand-alone optimizer

Fig. 3   Hypervolume (a) and ratio of moves (b) that leads to an improvement for different sorting schemes



Production Engineering	

1 3

performance as forced combinations. Random sorting even 
outperforms the forced combinations in rare cases. Regard-
ing the success rate however, forced combinations lead to a 
more stable ratio of successful moves. The results suggest 
that forced combinations are a good approach in most local 
search situations but at the same time there remain many 
cases where additional effects across multiple machines and 
orders are not captured by these simple rules.

4.4 � Reallocation

Before discussing different limits for reallocation, the 
effects of different definitions of an acceptable solutions are 
evaluated.

Figure 4 shows positive as well as negative constant tol-
erance values. Negative values mean that a decrease of the 
solution quality is permitted. It is clearly visible, that a tol-
erance of zero, thus, the acceptance of any solution that is 
at least as good as the previous solution leads to the highest 
hypervolume. Being to demanding (positive values) means 
that in case there are only marginal improvements possible 
no solution will be accepted. Regarding dynamic tolerance 
values, both simulated annealing with different starting val-
ues and linear functions have been tested. Both approaches 
show a comparable performance which is however inferior 
to the results of a constant tolerance level of zero. Therefore, 
a constant tolerance level of zero will be adopted for all 
further experiments.

The remainder of this section discusses the effects of 
a shallow compared to a thorough search. Three different 
influence factors are varied. First, the number of Pareto 
points to be considered as starting point for local search. 
The Pareto points are sorted by their equally-weighted objec-
tive value. The second influence factor is the total number 

of local search iterations to be performed. A value of 5 
means that five different moves are performed. Each new 
move starting from the schedule resulting from the previ-
ous move. Lastly, the number of reassignments per iteration 
is defined. This value defines how many reassignments in 
one iteration starting from the same solution are conducted 
before the best one is selected. This variable determines the 
search thoroughness.

Figure 5 shows the result for the different combinations. 
The comparison of the extreme points (All, 1 × 5) and (5, 7 
× all) reveals that a thorough search with seven iterations and 
maximum reassignment leads to better results compared to 
a shallow search. Thus, a thorough search on only 5 Pareto 
points leads to better results than a search with only one 
iteration on all Pareto points. Regarding the solution qual-
ity, a thorough search on fewer points is recommended. To 
compare the execution time, configurations which lead to the 
same hypervolume can be compared. Looking at the execu-
tion time, it is evident, that a thorough search not only leads 
to better results but also to a shorter execution time. The 
points (20, 3 × 10) and (10, 5 × all) have almost an identical 
hypervolume but the thorough search is 24% faster. Hence, 
a thorough search favoring iterations and reallocations is 
recommended.

4.5 � Interaction with MO‑MCTS

To demonstrate the different effects of local search depend-
ing on the quality of the base optimizer, the experiments 
have been conducted with different numbers of simultane-
ously considered orders by MO-MCTS. This parameter is 
a complexity driver and has a significant impact on perfor-
mance [26].

Fig. 4   Effect of different values for accepting solutions on the hypervolume



	 Production Engineering

1 3

Figure 6 shows the results in terms of hypervolume for 
MO-MCTS alone, the three interaction strategies of local 
search combined with MO-MCTS and a combination of all 
three depending on the number of simultaneously considered 
orders. Under regular circumstances, this parameter would 
be determined autonomously [26], for the purpose of dem-
onstrating the varying effects of local search fixed numbers 
have been used in this experiment. The first observation is 
that the effect of local search is more pronounced when the 
MO-MCTS is not properly configured. For approximately 
seven orders, the improvement of the hybrid scheduler com-
pared to MO-MCTS alone is less important. Intermediate 
sampling, here every 80 iterations, and final Pareto states 
sampling leads to very comparable results as the two curves 
demonstrate. Rollout sampling with a probability of 0.1 
leads to improved results especially for non-ideal param-
eters of MO-MCTS. This is likely due to the fact, that taking 

random terminal states as a starting point for local search, 
increases the variability of the starting solutions. The combi-
nation of all three schemes results in a slightly better hyper-
volume for a well-tuned MO-MCTS but lower performance 
on the edges.

Overall, the experiment shows that in conjunction with 
a well-configured MO-MCTS all schemes lead to improve-
ments. Rollout sampling slightly dominates the other alter-
natives at this point. However, final Pareto states sampling 
reduces the overall complexity of the scheduling system 
significantly as the Pareto points are handed over the local 
search at the end of the run and there is no effort for merg-
ing and restarting MO-MCTS required. If the interaction on 
both systems has been solved however, rollout sampling is 
recommended.

4.6 � Application to Kacem benchmark

The Kacem benchmark problem is a widely-used scheduling 
problem in literature. Even though the Kacem benchmark 
lags some important characteristics of a matrix production 
such as transport and setup times, it is nonetheless a valu-
able means to compare different approaches. Besides the 
aforementioned shortcomings, the Kacem benchmark does 
neither provide alternative process sequences nor due dates. 
Additionally it has a strong focus on resource-related objec-
tives (total workload and maximum workload) and on the 
makespan as overall performance indicator. Regarding the 
matrix production, the Kacem benchmark can be modelled 
as a simplified matrix with setup and transport times being 
zero and due dates in the far future.

Table  1 shows the results of relevant approaches on 
the five different instances of the Kacem benchmark. The 
approaches from literature are tailored to solve the Kacem 
benchmark whereas no modifications have been made to the 
scheduling approach presented in this paper.

The last line shows the results obtained by the given 
approach. 15 of the 18 known Pareto points can be identi-
fied in a 120 seconds run on an ordinary dual core laptop. 
The Pareto points of the largest instance are missed by one 
unit ((12, 91, 11) and (13, 93, 10)). Taking (12, 92, 11) as a 
starting point, local search can improve the result to obtain 
(11, 93, 11).

The application to the Kacem benchmark shows that the 
given approach leads to good results even compared with 
approaches that are tailored to the Kacem problem structure 
and objectives.

4.7 � Industrial use case

To illustrate the reactive behavior of the scheduler, it is 
applied to an industrial use. The real production system is 
represented by an discrete-event simulation model.

Fig. 5   Hypervolume (a) and execution time (b) depending on the 
number of iterations and number of reallocations and the number of 
Pareto points considered. The darkness of the colour gradient high-
lights large hypervolumes or longer execution times



Production Engineering	

1 3

The production system consists of six gear assembly 
workstations (GA1–GA6), followed by oil filling, motor 
assembly (MA1–MA6), testing (T1–T4) and painting 
as introduced in Sect. 4.1. This production system also 
serves as basis for the generic system used to evaluate the 
scheduler in the preceding sections. In this real-life sce-
nario, break-downs occur and operations can be delayed. 

To account for the inflexibility due to material transport, 
production orders are not allowed to be reallocated within 
the next 20 min, unless a break-down occurred. The hybrid 
scheduling system determines the best schedule and trans-
fers it to the simulation. The simulation system returns 
the current state each time an operation has finished or 
should be finished, a new order arrives or a machine status 

Fig. 6   Hypervolume depending 
on the number of simultane-
ously considered orders and the 
interaction of local search with 
MO-MCTS

Table 1   Results on the Kacem 
benchmark [30] not found



	 Production Engineering

1 3

changes. The hybrid scheduling system then verifies if the 
current state is still in line with the planning. If this is not 
the case, a new schedule is calculated based on the current 
situation.

Figure 7 shows the schedule at two different points 
in time. On the bottom line is the first schedule that has 
been generated at the beginning. The second line depicts 
a schedule of a later iteration after a break-down at GA5 
occurred. The reassignment of the impacted operations to 
different workstations is clearly visible. GA3 demonstrates 
how the hybrid scheduler reacts to deviations within the 
20 minutes corridor of reduced flexibility. In this scenario, 
local search improves makespan by 12.7% on average.

5 � Conclusion and outlook

This paper addresses scheduling of a matrix production tak-
ing into account realistic restrictions such as transport and 
setup times. Building on the findings that hybrid MCTS 
schedulers have achieved remarkable results on the related 
but simpler Kacem benchmark problem, this paper con-
tributes a hybrid MO-MCTS approach for matrix produc-
tion. Core of this paper is the adaption of the local search 
approach LSONE to incorporate setup and transport as addi-
tional restrictions. The modifications of LSONE are ana-
lyzed in detail and the obtained scheduler is tested on the 
Kacem benchmark and on an industrial problem to illustrate 

Fig. 7   Initial schedule and inter-
mediate schedule for an indus-
trial example in the context of 
break downs and delays



Production Engineering	

1 3

its behavior in the context of break-downs and delays. It can 
be shown that the hybrid scheduling system performs well 
on the benchmark and is able to react on disturbances in the 
industrial use case. A thorough evaluation of the scheduling 
approach in the context of an industrial production system 
cannot be provided and should be addressed in a separate 
study. Whilst the MO-MCTS base optimizer improves all 
given objectives, by design, the local search approach mainly 
reduces makespan. This weakness is worth addressing in 
future work by applying dedicated swap and shift strate-
gies in order to target other objectives likewise. Regarding 
further research, different strategies of interacting with the 
production could be evaluated. In the current example, dis-
turbances are not anticipated. An analysis of an appropri-
ate strategy depending on the disturbances (break-downs, 
delays) would be beneficial to pave the way for a real appli-
cation. Building on the finding, that sorting of intervals and 
critical operations based on domain knowledge improved the 
results, further research could focus on an adaptive approach 
to identify suitable problem-specific heuristics.

Acknowledgements  Funded by the Deutsche Forschungsgemeinschaft 
(DFG, German Research Foundation)—LA 2351/51.

Funding  Open Access funding enabled and organized by Projekt 
DEAL.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Hu SJ, Zhu X, Wang H, Koren Y (2008) Product variety and 
manufacturing complexity in assembly systems and supply chains. 
CIRP Ann 57(1):45–48. https://​doi.​org/​10.​1016/j.​cirp.​2008.​03.​
138

	 2.	 Lanza G, Nyhuis P, Fisel J, Jacob A, Nielsen L, Schmidt M, 
Stricker N (2018) Wandlungsfähige, menschzentrierte Strukturen 
in Fabriken und Netzwerken der Industrie 4.0 (acatech Studie). 
Technical report. Deutsche Akademie der Technikwissenschaften, 
acatech, München

	 3.	 Greschke PI (2016) Matrix-Produktion Als Konzept Einer Taktun-
abhängigen Fließfertigung, Universität Braunschweig, Disserta-
tion. Vulkan Verlag, Essen

	 4.	 Hüttemann G (2021) Model-based: a priori analysis of line-less 
mobile assembly systems, RWTH Aachen University, Disserta-
tion. Apprimus Verlag, Aachen

	 5.	 Schönemann M, Herrmann C, Greschke P, Thiede S (2015) Simu-
lation of matrix-structured manufacturing systems. J Manuf Syst 
37:104–112. https://​doi.​org/​10.​1016/J.​JMSY.​2015.​09.​002

	 6.	 Pinedo ML (2016) Scheduling: theory, algorithms, and systems. 
Springer, New York

	 7.	 Garey MR, Johnson DS, Sethi R (1976) The complexity of 
flowshop and jobshop scheduling. Math Oper Res 1(2):117–129

	 8.	 Özgüven C, Özbakır L, Yavuz Y (2010) Mathematical models 
for job-shop scheduling problems with routing and process plan 
flexibility. Appl Math Model 34(6):1539–1548. https://​doi.​org/​10.​
1016/J.​APM.​2009.​09.​002

	 9.	 Ouelhadj D, Petrovic S (2008) A survey of dynamic scheduling in 
manufacturing systems. J Sched 12(4):417–431. https://​doi.​org/​
10.​1007/​s10951-​008-​0090-8

	10.	 Uzsoy R, Lee CY, Martin-Vega LA (1994) A review of production 
planning and scheduling models in the semiconductor industry 
part II: shop-floor control. IIE Trans (Institute of Industrial Engi-
neers) 26(5):44–55. https://​doi.​org/​10.​1080/​07408​17940​89666​27

	11.	 Scholz-Reiter B, Görges M, Philipp T (2009) Autonomously 
controlled production systems-Influence of autonomous con-
trol level on logistic performance. CIRP Ann 58(1):395–398. 
https://​doi.​org/​10.​1016/J.​CIRP.​2009.​03.​011

	12.	 Wang X, Gao L, Zhang C, Shao X (2010) A multi-objective 
genetic algorithm based on immune and entropy principle for 
flexible job-shop scheduling problem. Int J Adv Manuf Technol 
51(5–8):757–767. https://​doi.​org/​10.​1007/​s00170-​010-​2642-2

	13.	 Chiang T-C, Lin H-J (2012) Flexible job shop scheduling using 
a multiobjective memetic algorithm. In: Huang DS, Gan Y, Bev-
ilacqua V, Figueroa JC (eds) Advanced intelligent computing, 
7th international conference, ICIC 2011, 11–14. August 2011, 
Zhengzhou. Springer, Berlin, pp 49–56

	14.	 Zhen H-L, Wang Z, Li X, Zhang Q, Yuan M, Zeng J (2021) 
Accelerate the optimization of large-scale manufacturing plan-
ning using game theory. Complex Intell Syst. https://​doi.​org/​10.​
1007/​s40747-​021-​00352-7

	15.	 Nie L, Wang X, Pan F (2019) A game-theory approach based 
on genetic algorithm for flexible job shop scheduling problem. 
J Phys Conf Ser 1187(3):32095. https://​doi.​org/​10.​1088/​1742-​
6596/​1187/3/​032095

	16.	 Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den 
Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam 
V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, 
Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, 
Hassabis D (2016) Mastering the game of Go with deep neural 
networks and tree search. Nature 529(7587):484–489

	17.	 Browne C, Powley E, Whitehouse D, Lucas S, Cowling P, 
Rohlfshagen P, Tavener S, Liebana D, Samothrakis S, Colton 
S (2012) A survey of Monte Carlo tree search methods. IEEE 
Trans Comput Intell AI Games 4(1):1–49

	18.	 Lubosch M, Kunath M, Winkler H (2018) Industrial scheduling 
with Monte Carlo tree search and machine learning. In: Wang 
L (ed) Procedia CIRP, 51st CIRP conference on manufacturing 
systems (CMS), 16–18. May 2018, Stockholm. Elsevier B.V., 
Amsterdam, pp 1283–1287. https://​doi.​org/​10.​1016/J.​PROCIR.​
2018.​03.​171

	19.	 Lu C-L, Chiu S-Y, Wu J, Chao L-P (2016) Dynamic Monte-
Carlo tree search algorithm for multi-objective flexible job-shop 
scheduling problem. Appl Math 10(4):1531–1539

	20.	 Domschke W, Drexl A, Klein R, Scholl A (2015) Einführung in 
operations research. Springer, Berlin. https://​doi.​org/​10.​1007/​
978-3-​662-​48216-2

	21.	 Blazewicz J, Domschke W, Pesch E (1996) The job shop sched-
uling problem: conventional and new solution techniques. Eur J 
Oper Res 93(1):1–33

	22.	 Wu T, Wu I, Liang C (2013) Multi-objective Flexible job shop 
scheduling problem based on Monte-Carlo tree search. In: Li 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cirp.2008.03.138
https://doi.org/10.1016/j.cirp.2008.03.138
https://doi.org/10.1016/J.JMSY.2015.09.002
https://doi.org/10.1016/J.APM.2009.09.002
https://doi.org/10.1016/J.APM.2009.09.002
https://doi.org/10.1007/s10951-008-0090-8
https://doi.org/10.1007/s10951-008-0090-8
https://doi.org/10.1080/07408179408966627
https://doi.org/10.1016/J.CIRP.2009.03.011
https://doi.org/10.1007/s00170-010-2642-2
https://doi.org/10.1007/s40747-021-00352-7
https://doi.org/10.1007/s40747-021-00352-7
https://doi.org/10.1088/1742-6596/1187/3/032095
https://doi.org/10.1088/1742-6596/1187/3/032095
https://doi.org/10.1016/J.PROCIR.2018.03.171
https://doi.org/10.1016/J.PROCIR.2018.03.171
https://doi.org/10.1007/978-3-662-48216-2
https://doi.org/10.1007/978-3-662-48216-2


	 Production Engineering

1 3

D (ed.) TAAI ’13: proceedings of the 2013 conference on tech-
nologies and applications of artificial intelligence, 2013 confer-
ence on technologies and applications of artificial intelligence, 
6–8 Dez 2013, Taipei. IEEE, Washington, pp 73–78. https://​doi.​
org/​10.​1109/​TAAI.​2013.​27

	23.	 Chou JJ, Liang CC, Wu HC, Wu IC, Wu TY (2015) A new 
MCTS-based algorithm for multi-objective flexible job shop 
scheduling problem. In: Wang H-C, Chen R-M, Chang B-R 
(eds) Proceedings of a meeting held 20–22 November 2015, 
Tainan, 2015 conference on technologies and applications of 
artificial intelligence (TAAI 2015), 20–22 November 2015, 
Tainan. IEEE, New York, pp 136–141. https://​doi.​org/​10.​1109/​
TAAI.​2015.​74070​61

	24.	 Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: 
a comparative case study and the strength Pareto approach. IEEE 
Trans Evol Comput 3(4):257–271

	25.	 Kocsis L, Szepesvári C (2006) Bandit based Monte-Carlo plan-
ning. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Machine 
learning: ECML 2006, 17th European conference on machine 
learning, 18–22 2006, Berlin. Springer, Berlin, pp 282–293

	26.	 Stricker N, Kuhnle A, Hofmann C, Deininger P (2021) Self-
adjusting multi-objective scheduling based on Monte Carlo 
tree search for matrix production assembly systems. CIRP Ann 
70(1):381–384

	27.	 Gao J, Sun L, Gen M (2008) A hybrid genetic and variable 
neighborhood descent algorithm for flexible job shop scheduling 

problems. Comput Oper Res 35(9):2892–2907. https://​doi.​org/​10.​
1016/j.​cor.​2007.​01.​001

	28.	 Ho NB, Tay JC (2008) Solving multiple-objective flexible job 
shop problems by evolution and local search. IEEE Trans Syst 
Man Cybern Part C (Applications and Reviews) 38(5):674–685. 
https://​doi.​org/​10.​1109/​TSMCC.​2008.​923888

	29.	 Xia W, Wu Z (2005) An effective hybrid optimization approach 
for multi-objective flexible job-shop scheduling problems. Com-
put Ind Eng 48(2):409–425. https://​doi.​org/​10.​1016/J.​CIE.​2005.​
01.​018

	30.	 Kacem I, Hammadi S, Borne P (2002) Pareto-optimality approach 
for flexible job-shop scheduling problems: hybridization of evo-
lutionary algorithms and fuzzy logic. Math Comput Simul 60(3–
5):245–276. https://​doi.​org/​10.​1016/​S0378-​4754(02)​00019-8

	31.	 Chiang T-C, Lin H-J (2013) A simple and effective evolutionary 
algorithm for multiobjective flexible job shop scheduling. Int J 
Prod Econ 141(1):87–98. https://​doi.​org/​10.​1016/j.​ijpe.​2012.​03.​
034

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations

https://doi.org/10.1109/TAAI.2013.27
https://doi.org/10.1109/TAAI.2013.27
https://doi.org/10.1109/TAAI.2015.7407061
https://doi.org/10.1109/TAAI.2015.7407061
https://doi.org/10.1016/j.cor.2007.01.001
https://doi.org/10.1016/j.cor.2007.01.001
https://doi.org/10.1109/TSMCC.2008.923888
https://doi.org/10.1016/J.CIE.2005.01.018
https://doi.org/10.1016/J.CIE.2005.01.018
https://doi.org/10.1016/S0378-4754(02)00019-8
https://doi.org/10.1016/j.ijpe.2012.03.034
https://doi.org/10.1016/j.ijpe.2012.03.034

	Hybrid Monte Carlo tree search based multi-objective scheduling
	Abstract
	1 Introduction
	2 Literature review
	3 Approach
	3.1 MO-MCTS base optimizer
	3.2 Local search post optimizer
	3.3 Search strategy and interaction of local search and MO-MCTS
	3.3.1 Sorting of intervals and critical operations
	3.3.2 Reallocation
	3.3.3 Interaction of local search and base optimizer


	4 Results
	4.1 Use case
	4.2 Influence of LSONE modifications
	4.3 Sorting of critical operations and intervals
	4.4 Reallocation
	4.5 Interaction with MO-MCTS
	4.6 Application to Kacem benchmark
	4.7 Industrial use case

	5 Conclusion and outlook
	Acknowledgements 
	References




