KIT | KIT-Bibliothek | Impressum | Datenschutz

Short-term bitcoin market prediction via machine learning

Jaquart, Patrick 1; Dann, David 1; Weinhardt, Christof ORCID iD icon 1
1 Institut für Wirtschaftsinformatik und Marketing (IISM), Karlsruher Institut für Technologie (KIT)

Abstract:

We analyze the predictability of the bitcoin market across prediction horizons ranging from 1 to 60 min. In doing so, we test various machine learning models and find that, while all models outperform a random classifier, recurrent neural networks and gradient boosting classifiers are especially well-suited for the examined prediction tasks. We use a comprehensive feature set, including technical, blockchain-based, sentiment-/interest-based, and asset-based features. Our results show that technical features remain most relevant for most methods, followed by selected blockchain-based and sentiment-/interest-based features. Additionally, we find that predictability increases for longer prediction horizons. Although a quantile-based long-short trading strategy generates monthly returns of up to 39% before transaction costs, it leads to negative returns after taking transaction costs into account due to the particularly short holding periods.

Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2021
Sprache Englisch
Identifikator ISSN: 2405-9188
KITopen-ID: 1000150665
Erschienen in The Journal of Finance and Data Science
Verlag Elsevier
Band 7
Seiten 45–66
Nachgewiesen in Dimensions
OpenAlex
Scopus

Verlagsausgabe §
DOI: 10.5445/IR/1000150665
Veröffentlicht am 04.10.2022
Originalveröffentlichung
DOI: 10.1016/j.jfds.2021.03.001
Scopus
Zitationen: 91
Dimensions
Zitationen: 113
Seitenaufrufe: 289
seit 05.10.2022
Downloads: 769
seit 05.10.2022
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page