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Abstract

We study a system composed of a hydrogen atom interacting with an infinite conductor wall. The

interaction energy decays like L
´3, where L is the distance between the atom and the wall, due to the

emergence of the van der Waals forces. In this paper we show how, considering the contributions from

the quantum fluctuations of the electromagnetic field, the interaction is weakened to a decay of order L´4

giving rise to the retardation effects which fall under the name of Casimir-Polder effect. The analysis

is done by studying a suitable Pauli-Fierz model associated to the system, in dipole approximation and

reduced to the interaction with 0 and 1 photon.
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Introduction

The intermolecular and interatomic interactions are at the basis of several important phenomena which occur
in our world [35, 3, 4]. If we consider two neutral atoms, it is a well known fact [32] that the fluctuations of
the charge distribution of one atom create an instantaneous dipole which polarizes the other atom, allowing
the emergence of multipole moments which influence back the dipole of the first atom. This process gives
rise to an attractive interaction which is known as the van der Waals interaction. Van der Waals forces have
universal decaying behaviors with respect to the distances between the interacting interfaces, and depend
only on the geometry of the interfaces. There are two paradigmatic simple examples where this is evident:
the interaction between two hydrogen atoms and the interaction between an hydrogen atom and an infinite
surface, perfect conductor (called, from now on, “wall”). If we denote by W

qm
L the van der Waals energy at

distance L ą 0 in a quantum mechanical description, i.e., where the interaction is considered instantaneous
and originated only by the static Coulomb potentials, its decay for the aforementioned examples is

W
qm
L »

$
’&
’%

´C1

L6
, for two hydrogen atoms,

´C2

L3
, for a hydrogen atom and a wall,

(1)
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for suitable values of C1, C2 ą 0, see [5, 2, 24]. This description neglects, however, the retardation effects
given by the interference with the quantum fluctuations of the field. If we take in consideration the fact
that the electromagnetic field propagates at the speed of light (which is finite) the interaction is retarded.
The behavior in (1) holds, indeed, up to a distance L of approximately 100 Bohr radii. At this distance, the
information about the first atom’s electron motion reaches the second interface in a time that is comparable
with the average circulation time of the electron. This breaks the correlation between the two objects and
weakens the interaction [23]. This effect was studied and formalized in 1948 by Casimir and Polder [14],
from which the phenomenon took its name. By perturbation theory techniques they showed how, for the
cases of the two atoms and the atom plus the wall, the behavior of the interaction energy with quantum
fields, now denoted by W

QFT
L , is

W
QFT
L »

$
’&
’%

´D1

L7
, for two hydrogen atoms,

´D2

L4
, for a hydrogen atom and a wall,

(2)

for suitable D1, D2 ą 0 and a distance L ą 1 large enough. Despite being a remarkable result of quantum
field theory, the theoretical work of Casimir and Polder is not mathematical rigorous, mainly because they
calculated only the first terms of the perturbative expansions of the interaction energy. Aim of the present
work is to give a rigorous mathematical proof, with precise estimates, of the calculation of the interaction
energy for the case of the atom plus the wall.

The quantum nature of the van der Waals forces was first studied by London [26]. The first mathematical
rigorous result is due to Lieb and Thirring in [25], were they derived an upper bound for the interaction
energy between molecules, giving the universal L´6 decay. The analysis was completed in [5] for the case of
several atoms, deriving the correct leading order expression. The literature about van der Waals interaction
is extensive and includes results about further order expansions [9] and about interactions between various
types of interfaces [33].

Casimir and Polder studied the retardation in the interaction in a non relativistic quantum electrody-
namics description via a fourth (second) order expansion for the energy for two atoms (atom plus wall). At
the best of our knowledge, there are many results in the physics literature continuing the line of research
of Casimir and Polder (see [28] for an extensive bibliographic collection), but few ones taking a theoretical,
mathematical rigorous approach. In [29, 30] the two atoms case is studied by the authors, who derived the
decay L´7 using a path integral formulation, making however the strong assumption that the cumulants
over the second order give smaller contributions in terms of the inverse of the distance. In [31] one of the two
authors obtained again the L´7 decay using similar techniques and estimating the higher order cumulants
too, but assuming a dipole approximation and strong binding of the electrons to the nuclei (harmonic traps
approximating the Coulomb attraction). Nevertheless, the cancellation of the van der Waals term of order
L´6 is not obtained by the contribution of the radiation, which is a fundamental mechanism to explain
the retardation effects, as it is clear from [14]. The cancellation of the van der Waals term is recovered in
Koppen’s PhD thesis [23]: the author considers a quantum electrodynamics model introducing an infrared
cutoff in the Hamiltonian and studying the fourth order perturbative expansion of the energy in dipole
approximation. To take the infrared limit is however known to be a very difficult problem and the result is
affected by the same problem of considering a truncated perturbative expansion.

Other rigorous results concern only the Casimir effect [13] where, if the interaction with the matter is
neglected and the radiation is influenced only by the geometry of the classical interfaces, the electromagnetic
vacuum energy is calculated [10, 11, 19, 20, 21, 12].

In [15] the authors apply the same techniques as [29] to the case of the atom and the wall reobtaining
the behaviors (1) and (2), but still lacking full mathematical rigor.

The rigorous proof of the Casimir-Polder effect for the general setting is, thus, still an open problem.
In this paper we study the Casimir-Polder effect for the case of the atom interacting with the wall. In

[2] the van der Waals interaction energy for the electrostatic setting is rigorously computed and is coherent
with the decay (1):

W
qm
L “ ´α2

L3
` O

´α2

L5

¯
, (3)

where L is the distance between the atom’s nucleus and the wall and α is the fine structure constant, whose
approximate value is

α » 1

173
, (4)
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and in the right units it corresponds to the value of the square of electron charge: e “ ?
α. It is a common

strategy in quantum field theory to consider this as a small parameter and study expansions of the physical
quantities w.r.t. α, see [8, 7, 6].

In order to prove the appearance of the retardation effects and relative faster decay of the interaction
after a suitable distance for the quantum fields, we consider the Pauli-Fierz model. The Pauli-Fierz model
has been widely used to solve problems in non relativistic quantum electrodynamics [17, 16, 18]. We make
the following assumptions:

pA1q the dipole approximation;

pA2q reduction of the action of the Hamiltonian to the interaction with 0 and 1 photons between matter
and field.

Our approach relies on the use of precise estimates for the ground state energies of the interaction and
free systems inspired by the perturbation theory, like in [8], and on the calculation of line integrals on the
complex plane inspired by [14]. This last step allows us to obtain the important cancellation of the van der
Waals term in (3) generated by the Coulomb contribution and to derive the new leading term, as stated in
the main result in Theorem 2.2:

W
QFT
L » ´ α

L4
ℵα,L, (5)

which, for short distances (less than 10 Bohr radii), gives again the decay in (3) because ℵα,L » αL

while for large distances (bigger than 100 Bohr radii) gives the L´4 behavior predicted in (2) because
ℵα,L » const., and in the intermediate region expresses the transition of the behavior. The techniques used
let us enlighten how the retardation effects are originated from the exchanges of one photon with the matter
and the interaction with the vacuum flactuations (see the calculations in Subsection 2.3).

At the best of our knowledge, our result is the first one where the Casimir-Polder effect for the model
of the atom plus the wall is proven with rigorous estimates and without recurring to infrared cut-off or to
perturbative expansions. The result is, nevertheless, unsatisfactory in some aspects: one would like to drop
assumptions pA1q and pA2q and obtain the result for the full model. Furthermore, as explained in Section 3,
the result gives the decay behavior of the interaction energy discussed above, but the error produced in the
calculations is smaller than the leading term only up to approximately 165 Bohr radii. After that distance
the expression (5) ceases to be the leading term because, for technical difficulties, parts of the error term are
uniform on the distance. In a future paper we would like to give the result for the full, non approximated
model with an error suitably dependent on the distance.

The structure of the paper is the following:

• in Section 1 we introduce the Pauli-Fierz model, a quantum electrodynamics model describing the joint
system of the hydrogen atom interacting with the radiation and we recall a result from [8], adapted
to our approximated case, for the estimate of the ground state energy of this free system;

• in Section 2 we introduce a modified version of the Pauli-Fierz model to describe the interaction
between the hydrogen atom and radiation with the wall, whose construction is justified in Appendix
C, and we state our main result in Theorem 2.2. The proof is given in the following parts: in
Subsections 2.1 and 2.2 we prove upper and lower bounds, respectively, for the ground state energy of
the interaction system. Then, in Subsection 2.3, we calculate the difference between the ground state
energies of the interaction and free systems with the technical line integral calculations postponed in
Appendix B.

• In Section 3 we discuss the relation between the term in (5) and the error terms to identify the leading
term in the different regimes of distance.

• In Appendix A we collected some useful estimates on the one-photon vector Φy
# useful through all the

paper.

We make a comment here about the notation that is going to be used in the paper: C ą 0 is going
to denote a positive constant which is independent of the parameters of interest α and L and which can
vary from line to line. The notation Op¨q has to be intended in the usual sense, but we remark that we
did not take track of the dependence on the ultra-violet cut-off Λ, meaning that we assume Λ to be fixed,
independent of α and L and we are not interested in studying the ultra-violet problem.
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1 Free hydrogen atom with radiation: Pauli-Fierz model

We consider a non-relativistic, quantum, spinless electron in a hydrogen atom model, therefore interacting
via an electrostatic Coulomb potential with a fixed nucleus. We study the joint system of the electron and
a quantum electromagnetic field with their mutual interaction.

We fix the nucleus of the atom in position 0 P R3 and define the position variable of the electron to be
x “ px1, x2, x3q P R

3, so that the Hilbert space associated to the hydrogen atom model is L2pR3; dxq. The
radiation is described in a Fock space representation

Γsphq “
8à

n“0

hbsn, (6)

where the n´th sector is associated to n photons, and the one photon space is

h :“ L2pR3;C2; dkq, (7)

of square integrable functions with two components in complex numbers associated to the two perpendicular
polarization directions of the electromagnetic field. In our chosen notation, we are going to denote by
superscripts the components of the vectors in the sectors of the Fock space:

Ψ P Γsphq, Ψ “ pΨp0q,Ψp1q,Ψp2q, . . .q. (8)

The Hilbert space for the full system is then

H “ L2pR3; dxq b Γsphq. (9)

We can define operator-valued distribution for the creation and annihilation operators ta:
γpkq, aγpkquγ“1,2

which create or destroy a photon, respectively, with frequency k P R3 for each direction of polarization and
have the following canonical commutation relations, for γ, δ P t1, 2u and k, h P R3,

raγpkq, aδphqs “ 0 “ ra:
γpkq, a:

δphqs, raγpkq, a:
δphqs “ δγ,δδpk ´ hq. (10)

The associated field operators are then, for any λ P h,

apλq “
ÿ

γ“1,2

ż
dk λγpkqaγpkq, a:pλq “

ÿ

γ“1,2

ż
dk λγpkqa:

γpkq. (11)

If the wall is at infinite distance, the system composed by the hydrogen atom and the radiation is unaffected
by it and its dynamics is generated by the so-called Pauli-Fierz Hamiltonian, that we denote by HPF

8 and
is formally defined by the following sum

HPF
8 “ pP b 1 ´ α1{2A8pxqq2 ` 1 b Hf ´ α

|x| b 1, (12)

where α plays the role both of the square of the charge and of the coupling between matter and field. Here
P “ i∇x is the momentum operator for the electron and

Hf “ dΓpωq “
ÿ

γ“1,2

ż
dk ωpkq a:

γpkqaγpkq,

is the free energy operator for the field with the usual dispersion relation for the massless photons

ωpkq “ |k|. (13)
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The vector field potential A8pxq describes the interaction between electron and field. It can be expressed
as the sum

A8pxq “ A`
8pxq ` A´

8pxq, (14)

where
A`

8pxq “ a:pλ8pxqq, A´
8pxq “ apλ8pxqq, (15)

and A`
8pxq and A´

8pxq create and annihilate a photon with state λ8pxq, respectively, from the interaction
with an electron with position variable x. The form factor λ8 P L8pR3; hq expression is given by

λ8pxq “
"

χΛpkq?
2π|k|1{2

eγpkqeikx
*

γ“1,2

(16)

with χΛ being defined, for a fixed, finite Λ ą 0

χΛpkq “ χ

ˆ |k|
Λ

˙
, χ P C8

0 pR`q, χprq “
#
1, if r ă 1{2,
0, if r ą 1,

χ P r0, 1s. (17)

In this way χΛ is a cut-off function for frequencies of the photons over |k| ă Λ. The peγqγ“1,2 are the two

polarization vectors which form with k̂ “ k
|k| an orthonormal basis for R3. The vector field can be rewritten

in a formal but useful way by means of the operator-valued distributions

A8pxq “
ÿ

γ“1,2

ż

R3

dk
χΛpkq?
2π|k|1{2

eγpkqpaγpkqeikx ` a:
γpkqe´ikxq. (18)

Since |α| ď 1 and λ8, ω´1{2λ8 P L8pR3; hq, by [34, Theorem 13.3] and Kato-Rellich Theorem, the Pauli-
Fierz Hamiltonian is self-adjoint on the domain DpH8q “ H2pR3q b DpdΓpωqq (for more general conditions
see [22]).

Assuming to work in Coulomb gauge, expressed by the condition ∇x ¨ Apxq “ 0, the Pauli-Fierz Hamil-
tonian can be rewritten, calculating the square, in the following way:

H8 “ hα ` Hf ´ 2α1{2RepPA8pxqq ` αA2
8pxq, (19)

where, from now on, we drop the tensor products with the identity in order to ease the notation. The hα

is the hydrogen atom Hamiltonian

hα “ ´∆x ´ α

|x| , uαpxq “ α3{2

?
8π

e´α
|x|
2 , eα “ ´α2

4
, (20)

with uα and eα being the ground state and ground state energy, respectively. When needed, we are going
to use as well the notation h1 :“ hα“1, e1 :“ eα“1, u1 :“ uα“1.

As we anticipated, we are going to work with the dipole approximated Hamiltonian whose action is
restricted to 0 and 1 photons. In order to do that we introduce the projector to the first sectors of the Fock
space

Π : Γsphq ÝÑ C ‘ h

Ψ ÞÝÑ pΨp0q,Ψp1qq,

whose action on pure tensors is

Πpf b Ψq :“ f b ΠΨ “ f b pΨp0q,Ψp1qq, f P L2pR3; dxq,Ψ P Γsphq. (21)

We apply the substitution below on the new Hamiltonian ΠH8Π:, called dipole approximation,

A˘
8pxq ÞÝÑ A˘

8p0q “: A˘
8 (22)

which turns the argument of the creation and annihilation operators to be

λ8 :“ λ8p0q “
"

χΛpkq?
2π|k|1{2

eγpkq
*

γ“1,2

, (23)

5



obtaining the new approximated, free Hamiltonian

H8 :“ hα ` Hf ´ 2α1{2RePA8 ` α}λ8}2 ` 2αA`
8A´

8, (24)

acting on the space
H8 :“ ΠH “ L2pR3; dxq b pC ‘ hq. (25)

We make the observation that the third term in (24) is the only one which changes the number of photons.
Let us further denote by

E8 :“ inf σpH8q, (26)

the ground state energy of the approximated free Hamiltonian. We are now ready to state an adaptation
of the result [8, Theorem] in our setting with at most one photon. Let us introduce the scalar products on
H8,

x¨ | ¨y# :“ x¨ | phα ´ eα ` Hf q | ¨y, x¨ | ¨y˚ :“ x¨ |Hf | ¨y, (27)

and the vectors

Φ8
# :“ 2α1{2phα ´ eα ` Hf q´1Puα b A`

8Ω, Φ8
˚ :“ 2α1{2PuαH

´1
f A`

8Ω,

where the second one is not a vector belonging to the Hilbert space, but it is going to appear only in
expressions which make sense. We also define the following vector

Φ˚
1 “ H´1

f PfA
´
8H´1

f A`
8A`

8Ω,

where Pf :“ dΓpkq is the momentum operator for the field.

Theorem 1.1. There exists an α0 ą 0 such that, for any 0 ă α ă α0,

E8 “ eα ` α}λ8}2 ´ }Φ8
#}2# ´ 4α3}Φ˚

1 }2˚ ` Opα4 logpα´1qq. (28)

Proof. From [8, Theorem 5.1] we get the upper bound, adapted for the Hamiltonian with 0 and 1 photons,

E8 ď eα ` α}λ8}2 ´ }Φ8
#}2# ´ 4α3}Φ˚

1 }2˚ ` Opα4 logpα´1qq, (29)

by choosing a suitable trial function. We observe that instead of having an error of order Opα4q we get
a Opα4 logpα´1qq term because of the appearance of the additional term α}λ8}2}Φ8

#}2 in the calculations
compared to the original version, which is treated in a similar way as its analogous in the interaction model
(see formula (65)).

By [8, Theorem 5.2] we obtain the lower bound

E8 ě eα ` α}λ8}2 ´ }Φ8
˚ }2˚ ´ 4α3}Φ˚

1 }2˚ ` Opα4 logpα´1qq. (30)

The substitution of }Φ8
˚ }2˚ with }Φ8

#}2# produces the error term, thanks to [8, Lemma C.5],

}Φ8
˚ }2˚ ´ }Φ8

#}2# “ Opα5 logpα´1qq, (31)

which is reabsorbed in the error term Opα4 logpα´1qq.

2 Interaction model: atom and wall

We are now ready to define the interaction Hamiltonian, which shares, except for the presence of the
Coulomb potential with the wall, the same structure with the free Hamiltonian, but in the vector potential
it is clear how the presence of the wall influences the energy. Without loss of generality we can consider the
wall to be parallel to the plane Σ0 “ tp0, x2, x3q |x2, x3 P Ru, translated in the x1 direction by a distance
y ą 0 in the positive semi-line, so that the conductor wall is described by Σy “ tpy, x2, x3q |x2, x3 P Ru.

The space for the particle is set to be

L2pR3
y ; dxq where, R

3
y “ tx “ px1, x2, x3q P R

3 |x1 ă yu. (32)

We express the distance as a multiple of the Bohr radius, given by the inverse of the fine structure constant
α to make it homogeneous with the physical quantities we are going to introduce in the following, so that

y “ Lα´1, L ą 1. (33)

6



Figure 1: Interaction described by the image charge method.

0

x

y
2y0

x̃y

Therefore, L plays the role of the pure distance. By an abuse of notation, we denote by y both the length
(33) and the vector

y “ pLα´1, 0, 0q, (34)

the choice of which being clear from the context.
The Coulomb interaction with the wall is equivalent, thanks to the well known image charge method,

to the interaction with a mirror atom with inverted charges:

Vypxq “ 1

2

ˆ
´ 1

2|y| ` 1

|x̃y | ` 1

|x ´ 2y| ´ 1

|x̃y ´ x|

˙
, x̃y :“ p2y ´ x1, x2, x3q.

By [2, Lemma 2.2] we know that Vy ď 0. For future purposes, we make the following split of the potential

V ą
y :“ ´ 1

2|x̃y ´ x| , V ă
y :“ Vy ´ V ą

y , (35)

and observe that, in R3
y, the following bounds hold: there exists a C ą 0 such that

|V ă
y pxq| ď C

y
, for any x P R

3
y, (36)

ż

R3
y

dx pV ą
y pxqq2|upxq|2 ď C

ż

R3
y

dx |Pupxq|2, for any u P H1
0 pR3

yq, (37)

the second one being a Hardy-type inequality proven in [2, Lemma 3.1].
The electromagnetic field is described by the Fock space with photons with positive frequencies in the

direction normal to the wall:

Γsph`q “
8à

n“0

h
bsn
` , h` :“ L2pR` ˆ R

2;C2; dkq, (38)

where the two polarization directions of the photons are taken into account. The full Hilbert space is, in
this case,

Hy “ L2pR3
yq b Γsph`q, (39)

and the Hamiltonian generator of the dynamics is formally given by the expression

HPF
y :“ hα ` H`

f ´ 2α1{2RepPAypxqq ` αA2
ypxq ` αVypxq, (40)

where the free field energy is

H`
f :“

ÿ

γ“1,2

ż

R`ˆR2

dk ωpkqa:
γpkqaγpkq. (41)

Here again we can split Ay in creation and annihilation parts

Aypxq “ A`
y pxq ` A´

y pxq, (42)

where
A`

y pxq “ a:pλypxqq, A´
y pxq “ apλypxqq, (43)

7



the form factor λy P L8pR3
y; h`q this time being

λypxq “

$
’’’&
’’’%
2

χΛpkq?
2π|k|1{2

eipk2x2`k3x3q

¨
˚̊
˚̋

e
p1q
γ pkq cospk1px1 ´ yqq
e

p2q
γ pkq sinpk1px1 ´ yqq

e
p3q
γ pkq sinpk1px1 ´ yqq

˛
‹‹‹‚

,
///.
///-

γ“1,2

. (44)

Here by e
pjq
γ is the j´th component of the γ´th polarization vector.

In Appendix C we give a justification of the definition of this Hamiltonian as the right one to describe
the model of the atom interacting with the wall. Theorem 5.7 in [27] ensures the self-adjointness of the
Hamiltonian, provided that the following conditions are satisfied: following the notation of the mentioned
paper, we choose M “ R` ˆ R2; H “ HPF

y ; ωpkq “ |k|; λ “ λy; V “ ´ α
|x| ` αVypxq. In particular, recalling

that x̃y “ p2y ´ x1, x2, x3q,

∇ ¨ λy,γ “ ep1q
γ pkqBx1

peipk2x2`k3x3 sinpk1px1 ´ yqqq ` ep2q
γ pkqBx2

peipk2x2`k3x3 cospk1px1 ´ yqqq`
` ep3q

γ pkqBx3
peipk2x2`k3x3 cospk1px1 ´ yqqq “

“ k ¨ eγpkq eipk2x2`k3x3 cospk1px1 ´ yqq “ 0, γ “ 1, 2.

Therefore [27, Theorem 5.7] can be applied and HPF
y is self-adjoint on

DpHPF
y q “ Dpp´∆Dq b 1q X Dp1 b dΓp|k|qq, (45)

where ´∆D is the Dirichlet Laplacian. As for the free model, we reduce the action of this Hamiltonian to
the 0 and 1 photons space. By an abuse of notation, we denote again by Π the projector over the 0´th and
1´st Fock sectors of Γsph`q and apply an analogous dipole approximation as (22) for the A˘

y to ΠHPF
y Π:

to obtain
Hy :“ hα ` H`

f ` αVy ´ 2α1{2RePAypxq ` α}λy}2 ` 2αA`
y A

´
y , (46)

where now the argument of the creation and annihilation operators A˘
y has the form

λy :“ λyp0q “

$
’’’&
’’’%
2

χΛpkq?
2π|k|1{2

¨
˚̊
˚̋

e
p1q
γ pkq cospk1yq

´e
p2q
γ pkq sinpk1yq

´e
p3q
γ pkq sinpk1yq

˛
‹‹‹‚

,
///.
///-

γ“1,2

. (47)

Introducing the ground state energy
Ey :“ inf σpHyq, (48)

we estimate it in the next theorem.

Theorem 2.1. There exists α0 ą 0 such that, for any 0 ă α ă α0, we have, for any L ą 1,

Ey “ eα ´ α2

L3
` α}λy}2 ´ }Φ#

y }2# ` O
´α2

L5

¯
` Opα4 logpα´1qq ` O

`
α2Le´L{2

˘
. (49)

The proof consists in giving upper and lower bounds, which is the content of Subsections 2.1 and 2.2,
respectively.

Joining the estimates for the free energy E8 and for the energy of the interaction system Ey from
Theorems 1.1 and 2.1, respectively, and giving the important estimates from Proposition 2.7 in Subsection
2.3, we are able to prove the main theorem of the paper.

Theorem 2.2. There exists α0 ą 0 such that, for any 0 ă α ď α0 and any L ą 1, we have

WQFT
y “ Ey ´ E8 “ ´ℵα,L

α

L4
` Opα4 logpα´1qq ` O

`
α2Le´L{2

˘
` O

´α2

L5

¯
` O

´α3

L2
logpα´1q

¯
, (50)

where

ℵα,L »

$
’’’’’&
’’’’’%

αL, if 1 ă L ď 16

3
,

16

3
αη, if L “ 16

3
α´1`η, η P p0, 1q,

1

6π
}ph1 ´ e1q´1{2xu1}2, if L ě 16

3
α´1.

(51)

The interpretation of the result is going to be studied in Section 3.
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2.1 Upper bound

In this subsection we are going to prove, in the theorem below, an upper bound for Ey providing in this
way the first step of the proof for Theorem 2.1. We use the convention, for f, g P L2pR3

yq and Ψ,Φ P h`,

xf b Ψ | g b Φy “
ÿ

γ“1,2

ż

R3
y

dx

ż

R
3
`

dk fpxqgpxqΨγpkqΦγpkq. (52)

Theorem 2.3. There exists α0 P p0, 1q and a function ϕy P DpHyq such that, for any 0 ă α ď α0 and any

L ą 1,

xϕy |Hy |ϕyy
xϕy |ϕyy ď eα ´ α2

L3
` α}λy}2 ´ }Φ#

y }2# ` 4α3}Φ1
˚}2˚ ` O

´α2

L5

¯
` Opα4 logpα´1qq `Opα2Le´L{2q. (53)

In order to prove the theorem we construct the trial function ϕy in the following way: we define the
vector Φy

# in an analogous way as we did for the relative free version:

Φy
# :“ 2α1{2phα ´ eα ` H`

f q´1Puα b A`
y Ω.

We then introduce the trial function

ϕy :“ uα b pΩ ` 2α3{2Φ̃1
˚q ` Φy

#,

where the vector Φ̃1
˚ :“

?
2Φ1

˚|kPR` is the restriction of Φ1
˚ to the positive k1 frequencies. We calculate the

norm of the trial function.

Lemma 2.4. The trial function ϕy has the following norm

}ϕy}2 “ 1 ` Opα3 logpα´1qq. (54)

Proof. Since the vacuum vector and the last addend composing the trial function live in two different Fock
sectors, since uαKΦy

# and uα b Ω has norm 1, we can write

}ϕy}2 “ 1 ` 4α3}Φ̃1
˚}2 ` }Φy

#}2,
we can conclude by applying Lemma A.1 to the last term.

In the following we are going to make use of the lemma which states the exponential decay of the ground
state of the hydrogen atom reformulated for our setting. Here χy P C8

0 pR3q is a smooth, radial characteristic
function, with

χypxq “
#
1, for |x| ď 1

4
y,

0, for |x| ě 1
3
y,

(55)

which localizes the electron in a neighborhood of the origin strictly smaller than the distance from the wall.

Lemma 2.5. There exists C ą 0 such that the following holds, for any L ą 1,

}uαp1 ´ χyq}2 ď CL2e´L. (56)

The proof is a straightforward direct calculation of the norm. Localizing in a neighborhood of zero we
can consider the Taylor expansion of the potential αVy:

Vypxq “ ´ px ¨ ŷq2 ` |x|2
8y3

` foddpxq
8y4

` O
´ |x|4

y5

¯
, for any x P BRp0q, R ą 0, (57)

where fodd is an odd function in x such that |foddpxq| ď C|x|3. A direct consequence is that, for the Coulomb
potential of interaction with the wall we have the estimate, recalling that y “ Lα´1,

xuα |αVy |uαy “ xuα |χyαVy |uαy ` xuα | p1 ´ χyqαVy |uαy

ď ´α2

L3
` O

´α2

L5

¯
` α}p1 ´ χyquα}

´
}V ą

y uα} ` C

y

¯

“ ´α2

L3
` O

´α2

L5

¯
` O

`
α2Le´L{2

˘
, (58)

where for the localized part we used (57), while for the complementary part we used Lemma 2.5, (36) and
(37), the last one giving

}V ą
y uα} ď C}Puα} ď Cα. (59)

We are now ready to prove Theorem 2.3.
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Proof of Theorem 2.3. Let us calculate the quadratic form of the Hamiltonian on the function ϕy

xHyyϕy
“xHyyuαbΩ ` xHyyuαb2α3{2Φ̃1

˚
` xHyyΦy

#
` 2Rexuα b Ω |Hyuα b 2α3{2Φ̃1

˚y

` 2Rexuα b Ω |HyΦ
y
#y ` 2Rexuα b 2α3{2Φ̃1

˚ |HyΦ
y
#y. (60)

For the reader’s convenience, we recall the Hamiltonian expression

Hy “ hα ` H`
f ` αVy ´ 2α1{2RePAypxq ` α}λy}2 ` 2αA`

y A
´
y . (61)

Recalling the definitions for the scalar products in (27) , we define similar ones in the interaction case
and denote them in the same way by an abuse of notation:

x¨ | ¨y# :“ x¨ | phα ´ eα ` H`
f q | ¨y, x¨ | ¨y˚ :“ x¨ |H`

f | ¨y. (62)

Let us calculate each term separately. For the quadratic form in uα b Ω we have, using (58),

xHyyuαbΩ “eα ` α}λy}2 ` xαV yuα

“eα ` α}λy}2 ´ α2

L3
` O

´α2

L5

¯
` O

`
α2Le´L{2

˘
. (63)

Let us consider the quadratic form in uα b 2α3{2Φ̃1
˚:

xHyyuαb2α3{2Φ1
˚

“ 4α3
´
eα ` α}λy}2 ` }pH`

f q1{2Φ̃1
˚}2 ` 2α}A´

y Φ̃
1
˚}2

¯

“ 4α3}Φ̃1
˚}2˚ ` Opα4q “ 4α3}Φ1

˚}2˚ ` Opα4q, (64)

where in the last step we used the definition of Φ̃1
˚ and that }Φ̃1

˚}2˚ is an integral over the half plane of an
even function. For the quadratic form in Φy

# we have

xHyyΦy

#
“ }Φy

#}2# ` peα ` α}λy}2q}Φy
#}2 ` αxVyyΦy

#
` 2α}A´

y Φ
y
#}2

ď }Φy
#}2# ` Opα4 logpα´1qq, (65)

where we used (135) and we bounded from above Vy ď 0.
For the cross terms

2Rexuα b Ω |Hyuα b 2α3{2Φ1
˚y “ ´4α2RexPuα b A`

y Ω |uαΦ
1
˚y “ 0, (66)

where the other terms vanished due to the product between objects in two different Fock sectors and the
last one remaining is zero because it is a scalar product between an odd and an even function in position
variable. The same happens for

2Rexuα b Ω |HyΦ
y
#y “ ´8αxPuαA

`
y Ω |hα ´ eα ` H`

f |PuαA
`
y Ωy

“ ´2}Φy
#}2#. (67)

For the last term it holds
2Rexuα b 2α3{2Φ̃1

˚ |HyΦ
y
#y “ Opα4q, (68)

where we used that

2α5{2RexuαΦ̃
1
˚ | p}λy}2 ` A`

y A
´
y qΦy

#y “ 0,

8α2RexuαΦ̃
1
˚ |PuαA

`
y Ωy “ 0

because uα is orthogonal in L2 to Puα and Φy
# and that, by (57),

4α5{2|RexuαΦ̃
1
˚ |VyΦ

y
#y| ď Cα5{2}Φ̃1

˚}}Vyuα}}Φy
#} “ Opα4q, (69)

where we also used Lemma A.1 and the combination of (36) and (37).
Plugging now (63), (64), (65), (66), (67) and (68) in (60) gives the desired lower bound already. Since,

thanks to Lemma 2.4 the contribution of the norm of the trial function is

}ϕy}´2 » 1 ` Opα3 logpα´1qq, (70)

we see that it leaves invariant the upper bound on (60) because Opα3 logpα´1qq multiplied with the leading
term gives a Opα4q contribution, proving the lemma.
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2.2 Lower bound

In this subsection we give the second and final step for the proof of Theorem 2.1, giving a lower bound of
Ey , content of the Theorem below.

Theorem 2.6. There exists α0 ą 0 such that, for any 0 ă α ă α0, we have, for any L ą 1,

Ey ě eα ´ α2

L3
` α}λy}2 ´ }Φ#

y }2# ` 4α3}Φ1
˚}2˚ ` O

´α2

L5

¯
` Opα4 logpα´1qq ` O

`
α2Le´L{2

˘
. (71)

Proof. Let Ψy denote the normalized ground state of Hy so that

Ey “ xΨy |Hy |Ψyy. (72)

We decompose Ψy in the following way:

Ψy “ uα b Φy ` Ry, (73)

where

• Φy :“ xuα |ΨyyL2pR3
yq and we further decompose

Φy “ Φp0q
y ` 2ηα3{2Φ̃1

˚ ` R˚, (74)

where Φ
p0q
y is the component of Φy in the zero-th Fock sector and the conditions

R
p0q
˚ “ 0, xΦ̃1

˚ |Rp1q
˚ y˚ “ 0, (75)

define R˚ and η.

• κ P C and R#
y are defined by

Ry “ κΦy
# ` R#

y , (76)

and the conditions xR#
y |Φy

#y# “ 0 and R
#p0q
y “ 0.

We observe that, by construction, for all the following vectors holds

Ψy, uα b Φy,Φ
y
#, R

#
y P DpHyq Ď H1

0 pR3
yq b DpdΓp|k|qq. (77)

We calculate now the quadratic form of Hy on Ψy.

xΨy |Hy |Ψyy “ xHyyuαbΦy
` xHyyRy

` 2Rexuα b Φy |Ryy. (78)

We analyze each term separately. Let us start from the quadratic form in uα b Φy:

xHyyuαbΦy
“xHyy

uαbΦ
p0q
y

` xHyyuαb2α3{2ηΦ1
˚

` xHyyuαbR˚

` 2Rexuα b Φp0q
y |Hyuα b p2α3{2ηΦ1

˚qy ` 2Rexuα b Φp0q
y |Hyuα b R˚y

` 2Rexuα b R˚ |Hyp2α3{2ηΦ1
˚qy, (79)

where,

xHyy
uαbΦ

p0q
y

“
´
eα ` α}λy}2 ´ α2

L3
` O

´α2

L5

¯
` O

`
α2Le´L{2

˘¯
|Φp0q

y |2, (80)

thanks to (58), and

xHyyuαb2α3{2ηΦ1
˚

“ 4α3|η|2}Φ̃1
˚}2˚ ` Opα4q “ 4α3|η|2}Φ1

˚}2˚ ` Opα4q, (81)

due to (36), (37) and by symmetries in the ˚´norm. The quadratic term for R˚ gives

xHyyuαbR˚ “ peα ` α}λy}2q}R˚}2 ` }R˚}2˚ ` αxVyyuα
}R˚}2 ` α}A´

y R˚}2

ě }R˚}2˚ ` C1α}R˚}2, (82)

where we bounded from below }A´
y R˚}2 by zero, used (36), (37) with (59) and chose C1 ď }λy}2 `α´1eα ´

α
L

´ CαLe´L{2, which gives C1 ą 0 for α0 small enough.
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For the cross terms we have

2Rexuα b Φp0q
y |Hypuα b 2α3{2ηΦ̃1

˚qy “ 0, (83)

because PuαKuα and by mismatch of Fock sectors, and

2Rexuα b Φp0q
y |Hypuα b R˚qy “ 0, (84)

because R
p0q
˚ “ 0. We use again this last property together with (75) in

2Rexuα b R˚ |Hypuα b 2α3{2ηΦ̃1
˚qy

“4peα ` α}λy}2 ` αxVyyuα
qRe

`
ηxR˚ |α3{2Φ̃1

˚y
˘

` 2αRexA´
y R˚ |A´

y 2ηα
3{2Φ̃1

˚y. (85)

We now apply a Cauchy-Schwarz inequality, for both the scalar products, weighted with a parameter ε1 ą 0
to be chosen later and the standard Fock estimate, for any Ψ P Γsph`q,

}A´
y Ψ} ď }λy}L8pR3

y ;h`q}Ψ}, (86)

to obtain

(85) ě ´ Cαpα´1eα ` α}λy}2 ` α2Le´L{2qε1}R˚}2 ´ Cα4ε´1
1 |η|2}Φ̃1

˚}2

ě ´ C2αε1}R˚}2 ` Opα4q, (87)

where we used also (36), (37) and chose C2 ď Cp}λy}2 `α´1eα `CαLe´L{2q, which is positive for α0 small
enough.

This implies that, using (80), (81), (82), (83), (84) and (87) in (79), we get

xHyyuαbΦy
ě

´
eα ` α}λy}2 ´ α2

L3

¯
|Φp0q

y |2 ` 4α3|η|2}Φ1
˚}2˚ ` }R˚}2˚

` αpC1 ´ C2ε1q}R˚}2 ` O
´α2

L5

¯
` O

`
α2Le´L{2

˘
` Opα4q. (88)

For the quadratic form of the remainder,

xHyyRy
“ xHyyκΦy

#
` xHyy

R
#
y

` 2RexκΦy
# |HyR

#
y y, (89)

we have

xHyyκΦy

#
“|κ|2

`
}Φy

#}2# ` peα ` α}λy}2q}Φy
#}2 ` α}A´

y Φ
y
#}2 ` αxVyyΦy

#

˘

“|κ|2}Φy
#}2# ` Opα4 logpα´1qq, (90)

where we used (134), (135) and (137). For the quadratic form in R#
y we have

xHyy
R

#
y

“}R#
y }2# ` peα ` α}λy}2q}R#

y }2 ` α}A´
y R

#
y }2 ` αxVyy

R
#
y
. (91)

We estimate }A´
y R

#
y }2 by zero for a lower bound, and we observe that

}R#
y }2# “ }PR#

y }2 ´
A α

|x|
E

R
#
y

´ eα}R#
y }2 ` }R#

y }2˚

ě p1 ´ ε´1
2 αq}PR#

y }2 ´ pε2α ` eαq}R#
y }2 ` }R#

y }2˚, (92)

where we used a Hardy-type inequality for the Coulomb potential, a Cauchy-Schwarz weigthed with a
parameter ε2 ą 0, and

xαVyy
R

#
y

ě ´ C
α2

L
}R#

y }2 ` xαV ą
y y

R
#
y

ě ´
´
C
α2

L
` ε3α

¯
}R#

y }2 ´ ε´1
3 α}PR#

y }2, (93)

thanks again to a weighted Cauchy-Schwarz inequality, this time weighted with ε3 ą 0, and used (37). We
conclude that

xHyy
R

#
y

ě p1 ´ pε´1
2 ` ε´1

3 qαq}PR#
y }2 ` pC3 ´ ε2 ´ ε3qα}R#

y }2 ` }R#
y }2˚, (94)
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where we chose C3 ď }λy}2 ` α´1eα ´ C α
L
, which is positive for α0 small enough.

For the cross term, using the orthogonality of R#
y and Φy

# in the #´scalar product,

2RexκΦy
# |HyR

#
y y “ peα ` α}λy}2q 2RexκΦy

# |R#
y y ` 2αRexA´

y κΦ
y
# |A´

y R
#
y y ` 2αRexκΦy

# |VyR
#
y y, (95)

and we observe that, thanks to a Cauchy-Schwarz inequality weighted with a parameter ε4 ą 0,

2αRexA´
y κΦ

y
# |A´

y R
#
y y ě ´ Cαε4}A´

y R
#
y }2 ´ Cε´1

4 α|κ|2}A´
y Φ

y
#}2,

ě ´ Cαε4}R#
y }2 ` Opα4q, (96)

where we used Lemma A.1 and (86). By a Cauchy-Schwarz inequality, (36), (37) and Lemma A.1 we have

2αRexκΦy
# |VyR

#
y y ě ´ Cαε´1

5 |κ|2}VyΦ
y
#}2 ´ Cαε5}R#

y }2

ě Opα4q ´ Cαε5}R#
y }2. (97)

Again by Lemma A.1 and by a Cauchy-Schwarz weighted with a parameter ε6 ą 0, we have, since α´1eα `
}λy}2 is positive for α0 small enough,

peα ` α}λy}2q 2RexκΦy
# |R#

y y ě ´Cε6α}R#
y }2 ´ Cε´1

6 α|κ|2}Φy
#}2

“ ´Cε6α}R#
y }2 ` Opα4 logpα´1qq. (98)

Collecting (96), (97), (98) and plugging them into (95) we get

2RexκΦy
# |HyRyy ě ´Cpε4 ` ε5 ` ε6qα}R#

y }2 ` Opα4 logpα´1qq, (99)

and using this last estimate, (90) and (94) we get

xHyyRy
ě|κ|2}Φy

#}2# ` }R#
y }2˚ ` α

´
C3 ´ C

6ÿ

j“2

εj

¯
}R#

y }2

` p1 ´ Cαq}PR#
y }2 ` Opα4 logpα´1qq. (100)

Now we analyze the last term in (78)

2Rexuα b Φy |HyRyy “2Rexuα b Φp0q
y |HyRyy ` 2Rexuα b 2α3{2ηΦ1

˚ |HyRyy
` 2Rexuα b R˚ |HyRyy. (101)

Since Φ
p0q
y is in the zero-th Fock sector we have, reconstructing the vector Φy

#,

2Rexuα b Φp0q
y |HyRyy “ 4α1{2RepΦp0q

y xPuα b A`
y Ω |Ryyq “ ´2RepΦp0q

y κq}Φy
#}2#, (102)

where we used Lemma A.1 and that 2α1{2xuα b Ω |PA´
y R

#
y y “ xΦy

# |R#
y y# “ 0. For the remaining term

2Rexuα b 2α3{2ηΦ1
˚ |HyRyy “ 2Rexuα b 2α3{2ηΦ̃1

˚ |αVyΦ
y
#y ` 2Rexuα b 2α3{2ηΦ̃1

˚ |αVyR
#
y y, (103)

because uαKR#
y . For the first addend we use a Cauchy-Schwarz, (36), (37) and Lemma A.1 to get

2Rexuα b 2α3{2ηΦ̃1
˚ |αVyΦ

y
#y ě ´C|η|2α4}Φ̃1

˚}2 ´ Cα|κ|2}VyΦ
y
#}2 “ Opα4q. (104)

For the second addend we use a Cauchy-Schwarz weighted with a parameter ε7 ą 0, (36), (37) to get

2Rexuα b 2α3{2ηΦ̃1
˚ |αVyR

#
y y ě ´ C|η|2α4ε´1

7 }Φ̃1
˚}2 ´ Cαε7

´α

L
}R#

y }2 ` }PR#
y }2

¯

ě Opα4q ´ Cε7α}R#
y }2 ´ Cαε7}PR#

y }2. (105)

We now turn the attention to

2Rexuα b R˚ |HyRyy “2αRexuα b R˚ |VyRyy
“2αRexuα b R˚ |VyΦ

y
#y ` 2αRexuα b R˚ |VyR

#
y y, (106)
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where we used that uαKRy. For the first addend we use a Cauchy-Schwarz inequality weighted with a
parameter ε8 ą 0 and Lemma A.1 to get

2αRexuα b R˚ |VyΦ
y
#y ě ´Cαε8}R˚}2 ´ Cαε´1

8 |κ|2}VyΦ
y
#}2 “ ´Cαε8}R˚}2 ` Opα4q. (107)

For the second addend we apply a Cauchy-Schwarz inequality and use (59) and (36) to get

2αRexuα b R˚ |VyR
#
y y ě ´ α}Vyuα}}R˚}}R#

y }
ě ´ Cα2}R˚}2 ´ Cα2}R#

y }2. (108)

Collecting then (102), (104), (105), (107) and (108) and plugging them into (101) we get

2Rexuα b Φy |HyRyy “ ´ 2RepΦp0q
y κq}Φy

#}2# ´ Cαpε7 ` αq}R#
y }2

´ Cαpε8 ` αq}R˚}2 ´ Cαε7}PR#
y }2 ` Opα4q. (109)

We finally collect the inequalities (88), (100) and (109) and plug them into (78) to obtain the following
lower bound for the quadratic form of the Hamiltonian

xΨy |Hy |Ψyy ě
´
eα ` α}λy}2 ´ α2

L3

¯
|Φp0q

y |2 `
`
|κ|2 ´ 2RepΦp0q

y κq
˘
}Φy

#}2# ` 4α3|η|2}Φ1
˚}2˚

` }R˚}2˚ ` αpC1 ´ C2ε1 ´ Cε8 ´ Cαq}R˚}2 ` α
´
C3 ´ α ´

7ÿ

j“2

εj

¯
}R#

y }2

` p1 ´ Cα ´ Cαε7q}PR#
y }2 ` O

´α2

L5

¯
` O

`
α2Le´L{2

˘
` Opα4 logpα´1qq.

Choosing α0 small enough and the εj , j “ 1, ..., 8 such that

C1 ´ C2ε1 ´ Cε8 ´ Cα ą 0, C3 ´ α ´
7ÿ

j“2

εj ą 0, 1 ´ Cα ´ Cαε7 ą 0.

we can bound from below the positive terms involving }R˚}2, }R#
y }2, }PR#

y }2 and }R˚}2˚. Using that

|Φp0q
y | ď 1, we complete the square and bound

|κ|2 ´ 2RepΦp0q
y κq “ |κ ´ Φp0q

y |2 ´ |Φp0q
y |2 ě ´1, (110)

finally making us obtain

xΨy |Hy |Ψyy ě
´
eα ` α}λy}2 ´ α2

L3

¯
|Φp0q

y |2 ´ }Φy
#}2# ` 4α3|η|2}Φ1

˚}2˚

` O
´α2

L5

¯
` O

`
α2Le´L{2

˘
` Opα4 logpα´1qq.

Comparing the result with the upper bound obtained in Theorem 2.3 let us bound |Φp0q
y |2 and |η|2 by 1

plus terms which, multiplied with the rest, can be reabsorbed in the error terms, concluding the proof of
the desired lower bound.

2.3 Evaluation of the norms

Joining together the upper and lower bounds for Ey obtained in Theorem 2.3 and Theorem 2.6 and sub-
tracting E8, of which we have an estimate by Theorem 1.1, we get

WQFT
y “ Ey ´ E8 “ ´ α2

L3
` αp}λy}2 ´ }λ8}2q ` }Φ8

#}2# ´ }Φy
#}2# (111)

` O
´α2

L5

¯
` O

`
α2Le´L{2

˘
` Opα4 logpα´1qq. (112)

Introducing the quantity
E :“ αp}λy}2 ´ }λ8}2q ` }Φ8

#}2# ´ }Φy
#}2#, (113)

our goal in this section is to estimate it by proving the following proposition.
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Proposition 2.7. There exists α0 P p0, 1q such that, for any 0 ă α ď α0 and any L ą 1,

E “ α2

L3
´ α

L4
ℵα ` O

´α3

L2
logpα´1q

¯
` Opα4 logpα´1qq. (114)

Proof. We split the proof in three parts: we evaluate the norms involving the λ terms, then the ones
involving the Φ terms and finally we sum the results and give the estimate above by studying some path
integrals.

Let us recall the definitions (23) and (47) of λy and λ8, respectively, for reader’s convenience. Then,

}λy}2 “ 2

π2

ż

R
3
`

dk
χ2
Λpkq
|k|

ÿ

γ“1,2

!
ep1q 2
γ pkq cos2pk1yq ` pep2q 2

γ pkq ` ep3q 2
γ pkqq sin2pk1yq

)
,

where we denoted by R3
` :“ R` ˆ R2. We now use that tk̂, e1pkq, e2pkqu is an orthonormal basis for a.e.

k P R3 to have ÿ

γ“1,2

epjq2
γ “ 1 ´ k̂2j , j “ 1, 2, 3, (115)

and plug in the previous expression, using some goniometric formulas, to get

}λy}2 “ 1

2π2

ż

R
3
`

dk
χ2
Λpkq
|k|

!
p1 ´ k̂21qp2 ` 2 cosp2k1yqq ` p2 ´ k̂22 ´ k̂23qp2 ´ 2 cosp2k1yqq

)
,

since we have only even integrands in the k1 variable, we can turn the integration on the whole R3 getting
a factor 1{2, and we separate also the integer from the oscillatory parts:

“ 1

2π2

ż

R3

dk
χ2
Λpkq
|k| p3 ´ k̂21 ´ k̂22 ´ k̂23q ` 1

2π2

ż

R3

dk
χ2
Λpkq
|k| p´1 ´ k̂21 ` k̂22 ` k̂23q cosp2k1yq.

Using that 3 ´ k̂21 ´ k̂22 ´ k̂23 “ 3 ´ |k̂|2 “ 2, we recognize the first term to be the expression of the norm for
λ8 and therefore we obtain

αp}λy}2 ´ }λ8}2q “ α

ż

R3

dk fypkq, (116)

where we denoted by

fypkq :“ 1

2π2

χ2
Λpkq
|k| p´1 ´ k̂21 ` k̂22 ` k̂23q cosp2k1yq. (117)

We turn now the attention to the Φ terms. Let us calculate

}Φy
#}2# “ 4α}phα ´ eα ` H`

f q´1{2Puα b A`
y Ω}2 “ 4α

ż

R
3
`ˆR3

dk dx

ˇ̌
ˇ̌ Puα

phα ´ eα ` |k|q1{2
λypkq

ˇ̌
ˇ̌
2

.

Expanding the square, we obtain, by similar calculations to the λ terms,

}Φy
#}2# “ 8α

ż

R
3
`ˆR3

dkdx

ˇ̌
ˇ̌ Puα

phα ´ eα ` |k|q1{2
λ8pkq

ˇ̌
ˇ̌
2

`

` 8α

2π2

ż

R
3
`ˆR3

dkdx Re

˜ˇ̌
ˇ̌ Puα

phα ´ eα ` |k|q1{2

ˇ̌
ˇ̌
2
χ2
Λpkq
|k| p´1 ´ k̂21 ` k̂22 ` k̂23q cosp2k1yq

¸
.

For the first integral we observe that it can be extended to the whole R3 dropping a factor 2 thanks to the
even integrand, recovering the expression for }Φ8

#}2#. We can therefore write, recalling the expression of
fypkq in (117),

}Φ8
#}2# ´ }Φy

#}2# “ ´4α

ż

R3

dk

››››
Puα

phα ´ eα ` |k|q1{2

››››
2

L2

fypkq. (118)

We use the relation Puα “ iphα ´ eαqxuα to write

}Φ8
#}2# ´ }Φy

#}2# “ ´4α

ż

R3

dk

››››
phα ´ eαqxuα

phα ´ eα ` |k|q1{2

››››
2

L2

fypkq. (119)
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Calling

Gpkq :“
››››

phα ´ eαqxuα

phα ´ eα ` |k|q1{2

››››
2

L2

, (120)

we can finally write

}Φ8
#}2# ´ }Φy

#}2# “ ´4α

ż

R3

dk Gpkq fypkq. (121)

Let us calculate now the difference between the norms of the λ and Φ terms. In order to do so, we
observe that, by explicit calculations,

xxuα | phα ´ eαq |xuαy “ 3. (122)

Therefore, by (122), (116) and (121),

E “ α

ż

R3

dk fypkq p1 ´ 4Gpkqq “

“ α

ż

R3

dk fypkq
B
xuα

ˇ̌
ˇ̌ phα ´ eαq

3
´ 4

phα ´ eαq2
phα ´ eα ` |k|q

ˇ̌
ˇ̌xuα

F
“

“ α

ż

R3

dk fypkq
ˆB

xuα

ˇ̌
ˇ̌ phα ´ eαq|k|
3phα ´ eα ` |k|q

ˇ̌
ˇ̌xuα

F
´

B
xuα

ˇ̌
ˇ̌ 11phα ´ eαq2
3phα ´ eα ` |k|q

ˇ̌
ˇ̌xuα

F˙
,

where we used the second resolvent formula to reduce to a common denominator and perform the calculation
above.

The estimate of the oscillatory integrals are proven in Appendix B. We show in Lemma B.1 how the

second term in the expression above produces an error of order Opα3

L2 q, while in Proposition B.2 we show
how the first integral is responsible for the cancellation of the van der Waals term coming from the Coulomb
interaction and produces the new leading term. This concludes the proof of Proposition 2.7.

This concludes the proof of the main Theorem 2.2: by Theorem 2.3, Theorem 2.6 and Proposition 2.7
we get

W
QFT
L “ E ´ α2

L3
` O

´α2

L5

¯
` Opα4 logpα´1qq ` O

`
α2Le´L{2

˘
“

“ ´α2

L4
ℵα,L ` O

´α2

L5

¯
` O

´α3

L2
logpα´1q

¯
` Opα4 logpα´1qq ` O

`
α2Le´L{2

˘
,

with ℵα,L defined in (51).

3 Discussion of the result

In this section we analyze the result of Theorem 2.2 to get information about the leading term of the
interaction energy in the different regimes in which the distance can be considered.

Let us recall the expression of ℵα,L obtained in the calculations for the proof of Proposition B.2

ℵα,L “ 1

6π

B
αL arctan

ˆ
1

αLph1 ´ e1q

˙F

xu1

, (123)

and the expression of the interaction energy W
QFT
L obtained in Theorem 2.2 for the reader’s convenience

W
QFT
L “ Ey ´ E8 “ ´ℵα,L

α

L4
` Opα4 logpα´1qq ` O

`
α2Le´L{2

˘
` O

´α2

L5

¯
` O

´α3

L2
logpα´1q

¯
. (124)

We want to study this expression and compare the first term with the behavior of the error terms.
The spectral gap value for the spectrum of the hydrogen atom Hamiltonian h1 is

3
16
, so that ph1´e1q´1 ď

16
3
.
Let us consider the regime L ě 16

3
α´1: in this case, the argument of the arctan in ℵα,L is smaller than

1 and by a Taylor expansion and functional calculus it can be approximated by

ℵα,L “ 1

6π
}ph1 ´ e1q´1{2xu1}2 ` O

´ 1

α2L2

¯
, (125)
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which, plugged in (124), it gives that the first two order terms are, since L ě 16
3
α´1,

W
QFT
L » ´ α

6πL4
}ph1 ´ e1q´1{2xu1}2 ` Opα4 logpα´1qq, (126)

where the second term is dominant and expresses an error bigger than the first term.
For the regime 16

3
ă L ă 16

3
α´1, we introduce the parameter η ą 0 such that the interval can be

described as

L “ 16

3
α´1`η, η P p0, 1q. (127)

For these distances, by a Taylor expansion and recalling that }xu1}2 “ 12, we have

ℵα,L “ 8αη

9π

A
arctan

ˆ
3α´η

16ph1 ´ e1q

˙ E

xu1

“ 16

3
αη ` Opα2ηq, (128)

which, plugged in (124), gives that the relevant terms in the interaction energy are

W
QFT
L » ´16

3

α1`η

L4
` O

´α1`2η

L4

¯
` Opα4 logpα´1qq ` Opα5´2ηq. (129)

The first term is the leading term for η P
`
1
3
, 1

˘
, otherwise the leading term is of order Opα4 logpα´1qq.

For the remaining regime, 1 ă L ď 16
3
, we recover the expression of the van der Waals term, because,

again by a Taylor expansion, we have

ℵα,L “ αL

12
}xu1}2 ` Opα2Lq “ αL ` Opα2Lq, (130)

and then the leading term reads

W
QFT
L » ´α2

L3
. (131)

Finally, we can collect here below the expressions of the leading terms of the energy and the associated
values of ℵα,L depending on the distance:

ℵα,L »

$
’’’’’&
’’’’’%

αL if 1 ă L ď 16

3
,

16

3
αη if L “ 16

3
α´1`η, η P p0, 1q,

1

6π
}ph1 ´ e1q´1{2xu1}2 if L ě 16

3
α´1,

and

W
QFT
L »

$
’’’’’’&
’’’’’’%

´α2

L3
if 1 ă L ď 16

3
,

´16

3

α1`η

L4
if L “ 16

3
α´1`η, η P

´1

3
, 1

¯
,

Opα4 logpα´1qq if L ě 16

3
α´1` 1

3 .

As a remark, we underline the fact that the expression of the leading term we would have liked to obtain
for WQFT

L in the regime L ą 16
3
α´1 is

W
QFT
L » ´ α

6πL4
}ph1 ´ e1q´1{2xu1}2, (132)

but the precision used in the calculation does not allow to produce an error small enough to make the term
above to appear as leading term. Furthermore, it is really intrinsic in the method used that some terms of
the error obtained are uniform in L. Therefore, whatever the degree of precision of the error in α, one can
always find a distance large enough such that (132) is no longer the leading term.

In the right units, α´1 corresponds to the value of a Bohr radius, and expressing the distance y “ Lα´1,
L represents the number of Bohr radii. In conclusion, plugging the numerical values of the parameters

16

3
» 5.3,

16

3
α´1` 1

3 » 165, (133)

we see that our result proves the Casimir-Polder effect for all the distances up to approximately 165 Bohr
radii.
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A Technical inequalities

Lemma A.1. The following estimates hold for the vector Φy
#

}Φy
#}2 “ Opα3 logpα´1qq, (134)

}A´
y Φ

y
#}2 “ Opα3q, (135)

}PΦy
#}2 “ Opα5 logpα´1qq, (136)

xαVyyΦy

#
“ Opα5 logpα´1qq, (137)

}VyΦ
y
#}2 “ Opα5 logpα´1qq. (138)

Proof. Let us start by proving (134):

}Φy
#}2 “4α}phα ´ eα ` H`

f q´1Puα b A`
y Ω}2

ďCα
ÿ

γ“1,2

ż

R3
y

ż

R
3
`

dx dk
χ2
Λpkq
|k|

ˇ̌
ˇ̌ Puα

phα ´ eα ` |k|q

ˇ̌
ˇ̌
2

ˆ
`
ep1q2
γ cos2pk1yq ` pep2q2

γ ` ep3q2
γ q sin2pk1yq

˘

ďCα3

ż

R3

dk
χ2
Λpkq

|k|p|k| ` 3
16
α2q2 “ Opα3 logpα´1qq,

where we used that the integrand is an even function of k1 to extend the integral to the whole space and
that the spectral gap of the hydrogen atom is 3

16
α2.

For inequality (135), we find, by similar calculations and use of symmetries, that

}A´
y Φ

y
#} ďCα

ż

R3
y

dx
´ ż

R
3
`

dk
χ2
Λpkq
|k|

Puα

phα ´ eα ` |k|q

ˆ
ÿ

γ“1,2

`
ep1q2
γ cos2pk1yq ` pep2q2

γ ` ep3q2
γ q sin2pk1yq

˘¯2

ďCα

ż

R3

dxpphα ´ eαqxuαpxqq2
´ ż

R3

dk
χΛpkq2

|k|2
¯2

“ Opα3q.

In order to prove (136) we observe that Puα is odd and on the subspace of antisymmetric functions, for
some γ0 ą 0, one has ´p1 ´ γ0q∆ ´ α

|x| ě eα, which gives P 2 ă γ´1
0 phα ´ eαq. We apply this to

}PΦy
#}2 ďγ´1

0 Cα

ż

R3

dk

ˇ̌
ˇ̌
ż

R3

dx
χ2
Λpkqphα ´ eαq1{2Puα

|k|phα ´ eα ` |k|q2
ˇ̌
ˇ̌
2

ďγ´1
0 Cα5

ż

R3

dk

ˇ̌
ˇ̌
ż

R3

dx
χ2
Λpkqph1 ´ e1q1{2Pu1

|k|p 3
16
α2 ` |k|q2

ˇ̌
ˇ̌
2

“ Opα5 logpα´1qq,

where we used similar calculations as in the proof of (134).
We prove now (137): by (36), (37), (134) and (136) we have

|αxVyyΦy

#
| ďC

α

y
}Φy

#}2 ` xαV ą
y yΦy

#

ďC
α5

L
logpα´1q ` α}Φy

#}}PΦy
#} “ Opα5 logpα´1qq. (139)

For inequality (138) we use again (36), (37), (134) and (136):

}VyΦ
2
#}2 ď C

α4

L2
logpα´1q ` C}PΦy

#}2 “ Opα5 logpα´1qq. (140)
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B Estimates of oscillatory integrals

In this technical Appendix we collected the lemmas which prove the estimates of the oscillatory integrals
needed to evaluate the quantity E in Subsection 2.3.

Lemma B.1. There exists α0 P p0, 1q such that for any 0 ă α ď α0 and L ą 1,

α

ż

R3

dk fypkq
B
xuα

ˇ̌
ˇ̌ 11phα ´ eαq2
3phα ´ eα ` |k|q

ˇ̌
ˇ̌xuα

F
“ O

ˆ
α3

L2

˙
. (141)

Proof. Let us first bound the quantity

J :“
ż

R3

dk
fypkq

α2 ` |k| , (142)

where we recall the expression

fypkq “ 1

2π2

χ2
Λpkq
|k| p´1 ´ k̂21 ` k̂22 ` k̂23q cosp2k1yq. (143)

Let us change to spherical coordinates pρ, ϕ, θq P p0,`8q ˆ p0, 2πq ˆ p0, πq so that ρ “ |k|, k1 “ ρ cospθq and

p´1 ´ k̂21 ` k̂22 ` k̂23q “ ´2 cos2 θ and then

J “ ´ 1

π2

ż `8

0

dρ

ż 2π

0

dϕ

ż π

0

dθ ρ sin θ χ2
Λpρq 1

pα2 ` ρq pcos θq2 cosp2ρy cos θq “

“ ´ 2

π

ż `8

0

dρχ2
Λpρq ρ

pα2 ` ρq

ż π

0

dθ sin θ pcos θq2 cosp2ρy cos θq.

A further change of variables τ “ cos θ gives

´ 2

π

ż `8

0

dρχ2
Λpρq ρ

pα2 ` ρq

ż 1

´1

dτ τ2 cosp2ρyτq “

“ ´ 2

π

ż `8

0

dρχ2
Λpρq ρ

pα2 ` ρq

" ´4 sinp2ρyq ` 2p2ρyq2 sinp2ρyq ` 8yρ cosp2ρyq
p2ρyq3

*
.

Changing again variables σ “ ρy we have, recalling that y “ Lα´1,

J “ ´ 2

πy

ż `8

0

dρχ2
Λ

ˆ
σ

y

˙
σ

pyα2 ` σq

ˆ
2 sinp2σq ` cosp2σq

σ
´ sinp2σq

2σ2

˙
“ O

´α

L

¯
.

From this, using that

B
xuα

ˇ̌
ˇ̌ 11phα ´ eαq2
3phα ´ eα ` |k|q

ˇ̌
ˇ̌xuα

F
“ α2

B
xu1

ˇ̌
ˇ̌ 11ph1 ´ e1q2
3pα2ph1 ´ e1q ` |k|q

ˇ̌
ˇ̌xu1

F
, (144)

and the spectral theorem we conclude the proof.

In the next lemma we show by complex line integration techniques, inspired by the original work of
Casimir and Polder [14], the main integral term gives the fundamental cancellation of the van der Waals
term and produces the new leading term.

Proposition B.2. There exists α0 P p0, 1q such that for any 0 ă α ď α0 and L ą 1,

α

ż

R3

dk fypkq
B
xuα

ˇ̌
ˇ̌ phα ´ eαq|k|
3phα ´ eα ` |k|q

ˇ̌
ˇ̌xuα

F
“ α2

L3
´ ℵα,L

α

L4
` O

´α3

L2
logpα´1q

¯
, (145)

where ℵα,L is defined in (152).

19



Proof. We write explicitly the expression of the integral and denote it by I,

I :“ α

2π2

ż

R3

dk
χ2
Λpkq
|k| p´1 ´ k̂21 ` k̂22 ` k̂23q cosp2k1yq

B
xuα

ˇ̌
ˇ̌ phα ´ eαq|k|
3phα ´ eα ` |k|q

ˇ̌
ˇ̌xuα

F
.

Let us pass to spherical coordinates pρ, ϕ, θq P p0,`8q ˆ p0, 2πq ˆ p0, πq so that ρ “ |k|, k1 “ ρ cospθq and

p´1 ´ k̂21 ` k̂22 ` k̂23q “ ´2 cos2 θ,

I “ ´ α

π2

ż `8

0

ż 2π

0

ż π

0

dρ dϕdθ ρ2 sin θ χ2
Λpρq cos2 θ cosp2ρy cos θq

B
xuα

ˇ̌
ˇ̌ phα ´ eαq
3phα ´ eα ` ρq

ˇ̌
ˇ̌xuα

F
.

By an explicit calculation, the integration in ϕ gives only a 2π factor and the one in the θ variable:

ż π

0

dθ sin θ cos2 θ cosp2ρy cos θq “ sinp2ρyq
ρy

` cosp2ρyq
ρ2y2

´ sinp2ρyq
2ρ3y3

“

“
ˆ ´i

2ρy
` 1

2ρ2y2
` i

4ρ3y3

˙
e2iρy ` h.c.

where in the last line we used Euler formulas for sine and cosine. Plugging in the original calculation and
making explicit the dependence on α we have

I “ α

6π

ż `8

0

dρ ρ2 χ2
Λpρq

››››
ph1 ´ e1q1{2

pα2ph1 ´ e1q ` ρq1{2
xu1

››››
2 "ˆ

i

ρy
´ 1

ρ2y2
´ i

2ρ3y3

˙
e2iρy ` h.c.

*
.

Let us define the class of integrals below, for a, b P R:

Ia,b :“
ż b

a

dz gpzq,

gpzq :“ α

6π
z2 χ2

Λpzq
››››

ph1 ´ e1q1{2

pα2ph1 ´ e1q ` zq1{2
xu1

››››
2 ˆ

i

zy
´ 1

z2y2
´ i

2z3y3

˙
e2izy.

Thanks to this notation, we can rewrite the integral over the half-line as a limit introducing a parameter
ε P p0, 1q:

I “ lim
εÑ0

pIε,ε´1 ` Iε,ε´1q. (146)

For both the integrals, their integrands are analytic in C r Bεp0q. Then, integrating over any closed
path in that domain gives zero as result. Let us interpret the interval pε, ε´1q as part of two closed paths:

γ`
ε,ε´1 :“ ´γ`

int Y pε, ε´1q Y γ`
ext Y ipε´1, εq

γ´
ε,ε´1 :“ γ´

int Y pε, ε´1q Y ´γ´
ext Y ´ipε´1, εq

where

γ˘
int “

"
z “ εeiθ

ˇ̌
ˇ̌ θ P ¯

´
0,˘π

2

¯*
, γ˘

ext “
"
z “ ε´1eiθ

ˇ̌
ˇ̌ θ P ¯

´
0,˘π

2

¯*
(147)

From the picture we see that

Iε,ε´1 “
ż

pε,ε´1q

dz gpzq “ ´
«ż

´γ`
int

`
ż

ipε´1,εq

`
ż

γ`
ext

ff
dz gpzq,

Iε,ε´1 “
ż

pε,ε´1q

dz gpzq “ ´
«ż

γ´
int

`
ż

´ipε´1,εq

`
ż

´γ´
ext

ff
dz gpzq.

We can immediately observe that the ext terms disappear in the limit of ε Ñ 0. Indeed

max
zPγ˘

ext

|gpzqe´2izy| “

“ max
θPp0,˘ π

2
q

ˇ̌
ˇ̌
ˇε

´2e2iθχΛpε´1q2
››››

ph1 ´ e1qxu1

α2ph1 ´ e1q ` ε´1

››››
2 ˆ

i

ε´1eiθy
´ 1

ε´2e2iθy2
´ i

2ε´3e3iθy3

˙ˇ̌
ˇ̌
ˇ ď

ď Cε3
εÑ0ÝÝÝÑ 0,
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Figure 2: Line integral paths

J`
ε

J´
ε

γ`
int

γ´
int

iJ`
ε

iJ´
ε

γ`
ext

γ´
ext

ş
γ`

ε,ε´1

dz gpzq “ 0

ş
γ´

ε,ε´1

dz gpzq “ 0

J`
ε “ pε, ε´1q

J´
ε “ pε´1, εq

and then, by Jordan’s Lemma,

lim
εÑ0

ż

γ
˘
ext

dz gpzq# “ 0, (148)

with g# covering both the cases g and ḡ.
So it remains to analyze the int and imaginary terms. Changing variables to z “ εeiθ in the integral

over γ`
int, we have

ż

γ`
int

dz gpzq “

“ α

6π

ż π
2

0

iεeiθdθ ε2e2iθ χ2
Λpεq

››››
ph1 ´ e1q1{2

pα2ph1 ´ e1q ` εeiθq1{2
xu1

››››
2 ˆ

i

εeiθy
´ 1

ε2e2iθy2
´ i

2ε3e3iθy3

˙
e2iεe

iθy.

By the bounded convergence theorem we can switch the limit with the integral and obtain, having in mind
that }xu1}2 “ 12 and recalling that y “ Lα´1,

´ lim
εÑ0

ż

´γ
`
int

dz gpzq “ α´1

6π

ż π
2

0

e3iθdθ }xu1}2 1

2e3iθy3
“ α´1

6π

π

2

12

2y3
“ α2

2L3
.

A totally analogous calculation yields the same result for γ´
int, so that

´ lim
εÑ0

#ż

´γ`
int

dz gpzq `
ż

γ´
int

dz gpzq
+

“ α2

L3
. (149)

We show how the term of order α
L4 comes from the integration on the imaginary axis. For the path in

ipε, ε´1q we change variable setting u “ ´iz:

ż

ipε´1,εq

dz gpzq “ α

6π

ż ε´1

ε

idu u2 χ2
Λpuq

››››
ph1 ´ e1q1{2

pα2ph1 ´ e1q ` iuq1{2
xu1

››››
2 ˆ

1

uy
` 1

u2y2
` 1

2u3y3

˙
e´2uy “

“ α

6π

ż ε´1

ε

du u2 χ2
Λpuq

B
xu1

ˇ̌
ˇ̌ ph1 ´ e1q

p´iα2ph1 ´ e1q ` uq

ˇ̌
ˇ̌xu1

F ˆ
1

uy
` 1

u2y2
` 1

2u3y3

˙
e´2uy,

while for the path ipε, ε´1q we change variable setting u “ iz, obtaining

ż

´ipε´1,εq

dz gpzq “ α

6π

ż ε´1

ε

du u2 χ2
Λpuq

B
xu1

ˇ̌
ˇ̌ ph1 ´ e1q

piα2ph1 ´ e1q ` uq

ˇ̌
ˇ̌xu1

F ˆ
1

uy
` 1

u2y2
` 1

2u3y3

˙
e´2uy.
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Using that

B
xu1

ˇ̌
ˇ̌ ph1 ´ e1q

p´iα2ph1 ´ e1q ` uq ` ph1 ´ e1q
piα2ph1 ´ e1q ` uq

ˇ̌
ˇ̌xu1

F
“

B
xu1

ˇ̌
ˇ̌ 2uph1 ´ e1q

pα4ph1 ´ e1q2 ` u2q

ˇ̌
ˇ̌xu1

F
(150)

we sum the two contributions to finally obtain

´
ż

ipε´1,εq

dz gpzq ´
ż

´ipε´1,εq

dz gpzq “

“ ´ α

6πy3

ż ε´1

ε

du χ2
Λpuq

››››
ph1 ´ e1q1{2xu1

pα4ph1 ´ e1q2 ` u2q1{2

››››
2 `

2u2y2 ` 2uy ` 1
˘
e´2uy.

By a further change of variable v “ uy “ uLα´1,

´
ż

ipε´1,εq

dz gpzq ´
ż

´ipε´1,εq

dz gpzq “

“ ´ α5

6πL4

ż yε´1

yε

dv χ2
Λ

´αv

L

¯ ››››
ph1 ´ e1q1{2xu1

pα4ph1 ´ e1q2 ` L´2α2v2q1{2

››››
2 `

2v2 ` 2v ` 1
˘
e´2v ÝÝÝÑ

εÑ0

ÝÝÝÑ
εÑ0

´ α3

6πL4

ż `8

0

dv χ2
Λ

´αv

L

¯ ›››››
ph1 ´ e1q1{2xu1

pα2ph1 ´ e1q2 ` v2

L2 q1{2

›››››

2 `
2v2 ` 2v ` 1

˘
e´2v

Let us split the region of integration in two parts in order to estimate the last integral: p0, 1q Y p1,`8q.

• v P p1,`8q: the following estimates holds

α3

6πL4

ˇ̌
ˇ̌
ˇ̌
ż `8

1

dv χ2
Λ

´αv

L

¯ ›››››
ph1 ´ e1q1{2xu1

pα2ph1 ´ e1q2 ` v2

L2 q1{2

›››››

2 `
2v2 ` 2v ` 1

˘
e´2v

ˇ̌
ˇ̌
ˇ̌

ď α3

L2

›››ph1 ´ e1q1{2xu1

›››
2

ż `8

1

dv e´2v “ O

ˆ
α3

L2

˙
.

• v P p0, 1q: the approximation of χ2
Λp2v2 ` 2v ` 1qe´2v by 1 thanks to a Taylor expansion produces the

following error ˇ̌
ˇχ2

Λ

`αv
L

˘
p2v2 ` 2v ` 1qe´2v ´ 1

ˇ̌
ˇ ď C

´α

L
}∇χΛ}8 ` 1

¯
|v|, (151)

which, by the functional calculus, implies

α3

6πL4

ż 1

0

dv

›››››
ph1 ´ e1q1{2xu1

pα2ph1 ´ e1q2 ` v2

L2 q1{2

›››››

2 ˇ̌
ˇχ2

Λ

´αv

L

¯ `
2v2 ` 2v ` 1

˘
e´2v ´ 1

ˇ̌
ˇ “ O

´α3

L2
logpα´1q

¯
.

Therefore we pass to estimate the integral below, where, again by the functional calculus, we can write

´ α3

6πL4

ż 1

0

dv

›››››
ph1 ´ e1q1{2xu1

pα2ph1 ´ e1q2 ` v2

L2 q1{2

›››››

2

“ ´ α

6πL4

B
αL arctan

ˆ
1

αLph1 ´ e1q

˙F

xu1

.

Introducing the quantity

ℵα,L :“ 1

6π

B
αL arctan

ˆ
1

αLph1 ´ e1q

˙F

xu1

, (152)

we can finally state that

lim
εÑ0

#
´

ż

ipε´1,εq

dz gpzq ´
ż

´ipε´1,εq

dz gpzq
+

“ ´ α

L4
ℵα,L ` O

´α3

L2
logpα´1q

¯
. (153)

Collecting the estimates (148), (149) and (153), we conclude the proof of Proposition B.2.
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C Derivation of the model: quantization on half space

For simplicity we consider the half space

R
3
` :“ tx “ px1, x2, x3q P R

3 |x1 ą 0u

with the surface of the conductor being Σ0 “ tp0, x2, x3q P R3u and we obtain the general result by translation
and reflection. We denote by Epx, tq “ pEpjqpx, tqq3j“1, and Bpx, tq “ pBpx, tqpjqq3j“1, x P R3

` the components

of classical electric and magnetic fields E ,B P R3, respectively.
The standard boundary conditions for pE ,Bq in the presence of a grounded, perfect conductor wall which

can be found, for example, in formula (13.105) from [34]:

n̂pxq ˆ Epxq “ 0, n̂pxq ¨ Bpxq “ 0, for any x P Σ0, (154)

where n̂ denotes the outward normal versor to the surface of the wall, in our case n̂pxq “ p1, 0, 0q. This
implies that the conditions can be rewritten as

E
p2qp0, x2, x3q “ 0 “ E

p3qp0, x2, x3q, B
p1qp0, x2, x3q “ 0, px2, x3q P R

2. (155)

We start from observing that, in the classical setting, the electric field function has to be a solution of the
wave equation in the half space with constraints given by the aforementioned boundary conditions for the
conductor surface #

B2
t E

pjqpx, tq “ ´∆xE
pjqpx, tq, x1 ą 0,

Epjqp0, x2, x3, tq “ 0 j “ 2, 3.
(156)

We introduce a new electric field on the full space by an odd reflection

rEpjqpx, tq :“
#
Epjqpx, tq, if x1 ě 0,

´Epjqp´x1, x2, x3, tq, if x1 ă 0.
(157)

The field is assumed to be real and its expansion in Fourier modes as solution of the wave equation has the
standard expression

rEpjqpx, tq “ 1

p2πq3{2

ż

R3

dk pβpjq
` pkqeipkx´ωtq ` β

pjq
´ pkqe´ipkx´ωtqq, (158)

β
pjq
` pkq :“ F r rEpjqp¨, 0qspkq, β

pjq
´ pkq “ β

pjq
` pkq, (159)

where we denoted by F the Fourier transform in R3. Since rEpjq is odd in x1, its Fourier transform is odd
in k1 and this implies the following relations for the coefficients

β
pjq
˘ p´k1, k2, k3q “ ´β

pjq
˘ pkq, (160)

which gives back, using an odd reflection, an expansion for the electric field (158) in terms of sines in the
x1 direction: for j “ 2, 3,

rEpjqpx, tq “ 2

p2πq3{2

ż

R
3
`

dk sinpk1x1qpiβpjq
` pkqeipk2x2`k3x3´ωtq ´ iβ

pjq
´ pkqe´ipk2x2`k3x3´ωtqq “

“ 2

p2πq3{2

ÿ

γ“1,2

ż

R
3
`

dk sinpk1x1qepjq
γ pkqpiβpjq

`,γpkqeipk2x2`k3x3´ωtq ´ iβ
pjq
´,γpkqe´ipk2x2`k3x3´ωtqq,

where we projected the Fourier coefficients on the j´th component of the polarization vectors teγpkquγ“1,2

and assumed to work in Coulomb gauge.
Recalling the Maxwell equations in the vacuum

∇ ¨ rE “ 0, ∇ ˆ rB “ Bt rE ,
∇ ¨ rB “ 0, ∇ ˆ rE “ ´Bt rB,

we can recover the expressions of the components of rB and of rEp1q.
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We introduce the classical vector potential A on R
3
` and its extension rA on R

3, even for the first

component and odd for the remaining ones. By the equation rB “ ∇ ˆ rA we recover the expression of rA as
well. Collecting the previous formulas for the expansions we finally obtain, for all the fields,

rEpx, tq “ 2

p2πq3{2

ÿ

γ“1,2

ż

R
3
`

dk

¨
˚̊
˚̋

cospk1x1qep1q
γ pkq

sinpk1x1qep2q
γ pkq

sinpk1x1qep3q
γ pkq

˛
‹‹‹‚piβpjq

`,γpkqeipk2x2`k3x3´ωtq ` h.c.q, (161)

rBpx, tq “ 2

p2πq3{2

ÿ

γ“1,2

ż

R
3
`

dk k ˆ

¨
˚̊
˚̋

cospk1x1qep1q
γ pkq

sinpk1x1qep2q
γ pkq

sinpk1x1qep3q
γ pkq

˛
‹‹‹‚piβpjq

`,γpkqeipk2x2`k3x3´ωtq ` h.c.q, (162)

rApx, tq “ 2

p2πq3{2

ÿ

γ“1,2

ż

R
3
`

dk ω´1pkq

¨
˚̊
˚̋

cospk1x1qep1q
γ pkq

sinpk1x1qep2q
γ pkq

sinpk1x1qep3q
γ pkq

˛
‹‹‹‚pβpjq

`,γpkqeipk2x2`k3x3´ωtq ` h.c.q. (163)

We introduce the rescaled Fourier coefficients tα˘,γuγ“1,2 by

β
pjq
˘,γpkq “ p2πq3{2ω

1{2pkq
2

?
π

α
pjq
˘,γpkq. (164)

These inherit the properties from the β1s

α
p1q
˘,γp´k1, k2, k3q “ α

p1q
˘,γpkq; α

pjq
˘,γp´k1, k2, k3q “ ´α

pjq
˘,γpkq, j “ 2, 3. (165)

We further introduce a cut-off χΛ P C8
0 pR3q for the momenta (see the construction of the Abraham model

[34, Chapter 2.4]) and we derive the expansion expression for the original fields pE ,B,Aq for x P R3
`,

Epx, tq “ rEpx, tq|x1ą0, Bpx, tq “ rBpx, tq|x1ą0, Apx, tq “ rApx, tq|x1ą0, (166)

where

rApx, tq “ 2

p2πq3{2

ÿ

γ“1,2

ż

R
3
`

dk
χΛpkq?
2π|k|1{2

¨
˚̊
˚̋

cospk1x1qep1q
γ pkq

sinpk1x1qep2q
γ pkq

sinpk1x1qep3q
γ pkq

˛
‹‹‹‚pαpjq

`,γpkqeipk2x2`k3x3´ωtq ` h.c.q. (167)

We want to derive the Fourier modes expansion for the electromagnetic energy too. By the usual definition,
this time adapted to the half space,

hf :“ 1

8π

ż

R
3
`

dx p|Epx, tq|2 ` |Bpx, tq|2q “ 1

8π

3ÿ

j“1

ż

R
3
`

dx p|Epjqpx, tq|2 ` |Bpjqpx, tq|2q. (168)

Comparing the integral with the odd extensions for j “ 2, 3 and with the even extension for j “ 1, we can
write

hf “ 1

16π

3ÿ

j“1

ż

R3

dx p| rEpjqpx, tq|2 ` | rBpjqpx, tq|2q “

“ 1

2

ÿ

γ“1,2

ż

R3

dk |k|α´,γpkqα`,γpkq “
ÿ

γ“1,2

ż

R
3
`

dk |k|α´,γpkqα`,γpkq,

where for the second equality we used the usual expression for the electromagnetic energy in the full space
and in the third equality we used the symmetry properties (165) to change the domain of integration.

By Wick quantization techniques for polynomial symbols (see [1] for details) we can define pE,B,Aq
being the associated quantum field versions of the electromagnetic operators pE ,B,Aq, respectively. The
theory results into the intuitive quantization rules

α`,γpkq Ñ a:
γpkq, α´,γpkq Ñ aγpkq, (169)
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substitution that for a polynomial symbol ppα`, α´q we denote as pppα`, α´qqWick. In this way we can
write

Apxq :“ pApx, 0qqWick, H`
f :“ phf qWick, x P R

3
` (170)

which gives the same expression for the operators Aypxq, Hf given in Section 2 by a translation and a
reflection in the x1 variable for Apxq.
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