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Reinforcement Learning-Controlled Mitigation of
Volumetric DDoS Attacks

Hauke Heseding1

Abstract:

This work introduces a novel approach to combine hierarchical heavy hitter algorithms with
reinforcement learning to mitigate evolving volumetric distributed denial of service attacks. The goal
is to alleviate the strain on the network infrastructure through early ingress filtering based on compact
filter rule sets that are evaluated by fast ternary content-addressable memory. The reinforcement
learning agents task is to maintain effectiveness of established filter rules even in dynamic traffic
scenarios while preserving limited memory resources. Preliminary results based on synthesized traffic
scenarios modelling dynamic attack patterns indicate the feasibility of our approach.
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1 Introduction

Distributed denial of service (DDoS) attacks pose a constant and severe threat to communi-
cation infrastructures. Particularly, volumetric DDoS attacks, which congest bottleneck links
near a target system with unsolicited traffic, have become increasingly popular. To mitigate
such attacks, we seek to achieve early attack traffic removal directly in the data plane. For this,
we apply ingress filter rules that can be evaluated by ternary content-addressable memory
(TCAM) in a single clock cycle enabling traffic filtering at line speed. This alleviates the
strain on the network and protects downstream systems (including systems conducting
further mitigation steps). Furthermore, we address the following question: How to handle
dynamic traffic scenarios, where filter rules may become outdated, and how to balance filter
rule effectiveness against TCAM utilization? Intelligent attackers may evade outdated rules
by altering attack traffic composition. Also, unnecessarily fine-granular rules are undesirable
since TCAM capacity is limited by high monetary costs and energy consumption.

To keep filter rules up to date, we monitor the data stream passing the ingress filter with
hierarchical heavy hitter (HHH) algorithms that enable detection of suspicious IP subnets
sending excessive traffic in volumetric DDoS scenarios. Recent advances enable direct
integration of HHH algorithms into the data plane (e. g., [PAM17, Si17, Be20, Zh21]). To
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Fig. 1: Architecture components and workflow

achieve adaptivity to counteract intelligent attacks we leverage reinforcement learning (RL)
to distinguish between highly distributed and densely clustered attack sources. This allows
adjusting filter rule granularity accordingly (via parameterization of HHH algorithms) to
avoid unnecessarily fine-granular rules. In essence, the RL agent serves to maintain the
balance between filter rule effectiveness and TCAM utilization when traffic patterns change.

Threat model This work focuses on dynamic, volumetric DDoS attacks. To address
intelligent attacker behavior, we first consider different volumetric attacks: direct botnet
attacks (generating elephant flows) and amplification attacks (DNS, NTP, or SSDP reflection).
Distribution of attack traffic sources and traffic intensity depend on the chosen attack vector.
While bots typically have more compact distributions, reflectors yield higher per-node attack
traffic volume. Second, attackers have the ability to change attack traffic composition by
employing various attack vectors at different times during an ongoing attack.

Mitigation objectives The overall goal is to achieve fast and early attack traffic removal (by
leveraging TCAM capabilities). We also seek to counteract evolving attacks by keeping filter
rules up to date, preventing intelligent attackers from circumventing defenses. In essence,
filter rules should maintain high precision (to preserve legitimate traffic) and sensitivity (to
capture attack traffic) in dynamic traffic situations. Adaptation to evolving volumetric DDoS
scenarios was recently studied in related work, focusing on programmable data plane (PDP)
technologies [Zh20, Li21] as well as leveraging RL [MK15, SRP20]. In contrast to previous
work, we apply rule-based filtering based on aggregated traffic features immediately at
the ingress, to alleviate the strain on network infrastructure and downstream systems. This
avoids resource-intensive state-keeping of per-flow mitigation, offers more fine-grained
control than per-router throttling and does not require sophisticated PDP technologies.

2 Adaptive Ingress Filtering

Our strategy to keep filter rules up to date is twofold: (a) continuous traffic monitoring
via an HHH algorithm and (b) adjusting filter rule granularity through RL. For this, our
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mitigation system comprises four core components: a TCAM-based ingress filter, an HHH
algorithm instance, a downstream IDS, and an RL agent (see Fig. 1). The agent interacts
with the mitigation environment at discrete time steps to apply chosen parameters when the
HHH algorithm is queried for filter rules (query time).

TCAM-based ingress filter The ingress filter is placed on a switch with TCAM resources,
positioned upstream at an ingress point of a larger network (e. g., a backbone network). It
applies a set of filter rules R obtained from the HHH algorithm. Each rule specifies an IP
subnet. Any packet whose IP source address matches a subnet contained in R is removed
from the ingress data stream. Due to TCAM technology, evaluating the entire set R requires
only a single clock cycle. The second task of the ingress filter is to keep track of the number
of removed packets for subsequent estimation of filter rule effectiveness.

HHH algorithm Packets passing the ingress filter are subsequently monitored by an
HHH algorithm (executed on a server in proximity to the IDS) The HHH algorithm
tracks the hierarchical distribution of source IP addresses to identify IP subnets sending
excessive amounts of traffic. At query time a frequency threshold 𝜙 is applied during HHH
computation indicating the minimum number of packets necessary to classify an IP subnet as
potentially malicious. To avoid excessive hierarchical aggregation during HHH computation
we restrict the maximum size of IP subnets accepted as filter rules since HHHs become less
expressive with increasing aggregation. Indiscriminately adopting large subnets would lead
to unwarranted removal of significant portions of the ingress traffic. To prevent this, we
introduce a hierarchy threshold 𝐻max limiting filtered subnet size to no more than 2𝐻max .
Together, the frequency and hierarchy thresholds 𝜙 and 𝐻max govern filter rule granularity
and can be adjusted to match evolving attack traffic patterns.

Reinforcement learning agent We employ deep reinforcement learning to learn the
complex, non-linear relationship between HHH parameters, traffic characteristics, generated
filter rules and rule effectiveness in a model-free fashion. For this, we train a Deep Q-
Network (DQN) on simulated dynamic traffic scenarios to select effective thresholds 𝜙 and
𝐻max. DQNs use deep neural networks to approximate an optimal action-value function
Q∗ [Mn15], i. e., to learn a policy that maximizes cumulative reward. In our case, the
agents objective is to achieve high precision and recall, while minimizing false positive
ratio (FPR) and the number of generated filter rules. At query time 𝑡, the agent acts by
selecting values for 𝜙 and 𝐻max from its (discrete) action space. The choice is based on
the observed mitigation environment state 𝑠 (𝑡) , which comprises indicators for TCAM
utilization, filter rule distribution and granularity, as well as filter rule effectiveness. Tab. 1
provides an overview of the (most important) elements of the state and action spaces. The
mitigation objectives are conveyed by a reward function 𝔯 = 𝔯p · 𝔯s · 𝔯f · 𝔯r, where each
partial function 𝔯p, 𝔯s, 𝔯f, 𝔯r constitutes a weighted mapping of precision, sensitivity, FPR,

Reinforcement Learning-Controlled Mitigation of Volumetric DDoS Attacks 239



4 H. Heseding

State 𝑠 (𝑡 ) Meaning Action space 𝜙, 𝐻max-values

𝑠
(𝑡 )
l ∈ N32 Number of HHHs detected at

different hierarchy levels 𝐴 =
⋃
1≤𝑖≤25,16≤ 𝑗≤24 (𝜙𝑖 , 𝐻

max
𝑗

) 𝜙 = 𝑖 · 0.01, 𝐻max
𝑗

= 𝑗

𝑠
(𝑡 )
d ∈ [0, 1] Indicator for distribution and

size of filtered IP regions Partial reward function Weighting

𝑠
(𝑡 )
p ∈ [0, 1] Estimated filter precision 𝔯p (𝑥) : [0, 1] → [0, 1] 𝑥 ↦→ 𝑥1

𝑠
(𝑡 )
s ∈ [0, 1] Estimated filter sensitivity 𝔯s (𝑥) : [0, 1] → [0, 1] 𝑥 ↦→ 𝑥1.5

𝑠
(𝑡 )
f ∈ [0, 1] Estimated FPR 𝔯f (𝑥) : [0, 1] → [0, 1] 𝑥 ↦→ (1 − 𝑥)2.0

𝑠
(𝑡 )
r ∈ N Number of generated filter rules 𝔯r (𝑥) : N→ R 𝑥 ↦→ 1−0.04 · log2 (𝑥)0.2

Tab. 1: Excerpt of state, action space, and reward function parameters

and number of generated filter rules (resp.) to scalar values within comparable ranges. By
tuning the partial reward functions (see Tab. 1), the agent can learn to realize different
trade-offs (e. g., emphasize high precision over small filter rule sets or vice versa).

Downstream IDS In order to provide the DQN agent with feedback on achieved filter
precision, sensitivity and FPR (see state 𝑠 (𝑡) in Tab. 1), we currently apply an oracle IDS
that serves to reflect capabilities of a traditional IDS (distinguishing attack and legitimate
traffic). Precision, sensitivity, and FPR are estimated from ingress filter statistics (number
of removed packets), traffic passing the ingress filter as well as sampled traffic.

Sampled traffic Since early traffic removal prevents downstream systems from monitoring
discarded traffic, it hinders their ability to determine traffic distribution and filter rule
effectiveness. To address this issue, the ingress filter excludes a fraction of the ingress traffic
from filter rule application through sampling. This allows downstream systems to estimate
traffic distribution (HHH algorithm) and filter rule effectiveness (IDS) based on sampled
traffic. Furthermore, it prevents oscillation of filter rules, since the HHH algorithm would
otherwise exclude traffic filtered at the ingress from its estimation of the traffic distribution.

3 Preliminary Results

We evaluate the ability of the RL agent to learn effective HHH parameters based on
synthetic, dynamic traffic scenarios. Each scenario constitutes a training episode that
models and randomizes the activity of legitimate and attack traffic sources represented by
IPv4 addresses over 300 discrete time indices. The activity of legitimate traffic sources is
uniformly distributed over time and normally distributed over an address space of size 216.
Attack traffic sources use more dynamic patterns. An episode is divided into four (partially
overlapping) phases, each selecting active attack traffic sources from different subnets to
distinguish activity of densely clustered sources (e. g., a high number of bots located in an
IPv4 subnet) and sparse but widely distributed sources (such as reflectors). Phase one and
three use densely clustered normally distributed traffic sources, phase two changes the traffic
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Fig. 2: Snapshot of traffic source activity and gen-
erated filter rule coverage during a traffic scenario.

Fig. 3: Parameters (𝜙, 𝐻max), precision, sensitiv-
ity, FPR, and filter rule count (last 250 episodes).

pattern to few high-intensity sources uniformly distributed over the entire address space,
while phase four combines densely clustered sources with sparsely distributed high-intensity
sources. During a training episode, an RL agent adapts frequency and hierarchy thresholds (𝜙,
𝐻max) every five time indices, while the entire training process consists of 80000 adaptation
steps. Fig. 2 provides an example snapshot of a synthesized scenario and corresponding
filter rule coverage from the end of RL training. The distribution of choices for frequency
and hierarchy thresholds, number of generated filter rules, precision, sensitivity, and FPR
during the last 250 randomized training episodes is outlined in Fig. 3 (min-max, 10%-90%,
25%-75%, 40%-60% quantiles, and median depicted with increasing shading).

In phase one, attack traffic sources are clustered in a small region in the lower IP address
range. Consequently, the agent adapts thresholds 𝜙 and 𝐻max to generate fewer coarse-
grained rules that are sufficient to cover the corresponding address range (see Fig. 2 and
Fig. 3). After transitioning to fewer, widely distributed high-intensity attack traffic sources
(phase two), the agent emphasizes fine-grained rules to account for the sparse distribution.
It reduces frequency threshold 𝜙 and increases hierarchy threshold 𝐻max to maintain high
precision and sensitivity as well as low FPR (time index 100-150). Hence, the agent manages
to distinguish between distributions and adjusts filter rules to match attack traffic patterns.

During phase three, 𝜙 and 𝐻max are again chosen to emphasize fewer rules that are sufficient
to capture the two coherent regions with active attack traffic sources (time index 190-225).
Finally, the agent chooses low 𝜙 and high 𝐻max in phase four to apply fine-grained filter
rules to the sparsely distributed attack traffic sources (lower half of the address space) as
well as the densely clustered sources (upper address space). By emphasizing fine-granular
rules in this hybrid phase, the agent maintains low FPR at the cost of more rules. The
same applies when transitioning between different phases. Accepting more filter rules in
these cases is in-line with the distribution of attack traffic sources and the mitigation goals
conveyed by the reward function, since coarse-grained filter rules would necessarily have a
strong negative impact on FPR during these periods and, thus, yield lower overall reward.
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