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Abstract
Markov chain Monte Carlo (MCMC) methods are sampling methods that have become a
commonly used tool in statistics, for example to perform Monte Carlo integration. As a
consequence of the increase in computational power, many variations of MCMC methods
exist for generating samples from arbitrary, possibly complex, target distributions. The per-
formance of an MCMCmethod, in particular that of a Metropolis–Hastings MCMCmethod,
is predominately governed by the choice of the so-called proposal distribution used. In this
paper, we introduce a new type of proposal distribution for the use in Metropolis–Hastings
MCMCmethods that operates component-wise and with multiple trials per iteration. Specifi-
cally, the novel class of proposal distributions, called Plateau distributions, does not overlap,
thus ensuring that the multiple trials are drawn from different regions of the state space.
Furthermore, the Plateau proposal distributions allow for a bespoke adaptation procedure
that lends itself to a Markov chain with efficient problem dependent state space exploration
and favourable burn-in properties. Simulation studies show that our novel MCMC algorithm
outperforms competitors when sampling from distributions with a complex shape, highly
correlated components or multiple modes.

Keywords Component-wise Metropolis–Hastings · Multiple-try Metropolis · Adaptive
Markov chain Monte Carlo · Plateau proposal distribution

1 Introduction

Markov chain Monte Carlo (MCMC) methods are essentially used to perform Monte Carlo
integration, which has become a standard statistical tool. Specifically, MCMC methods pro-
duce samples from a target distribution π by constructing an ergodic Markov chain whose
stationary distribution is π . Typically, MCMCmethods are used when it is difficult to sample
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from the target distribution directly, e.g. when the normalisation constant is unknown. There
are many ways to construct this Markov chain, which have led to many variations of MCMC
methods; see, e.g., [2].

The classic MCMC method is the Metropolis-Hastings algorithm [21]. At each iteration,
the Metropolis-Hastings algorithm is designed to update the entire current state (i.e., all
components of the random vector generated at the previous iteration) at once. However,
updating individual components, or subsets of components, is possible. Indeed, this type of
component-wise updating was initially proposed in [21], but did not receive much attention
at first. Recently, component-wise updates inMCMCmethods have been more established in
the literature; see, e.g., [14] where the convergence rates of such methods are studied. In this
paper, we focus on updating individual components. Using individual component updates
is a way of sampling from the (lower dimensional) conditional distributions of the target,
provided the conditional distributions are known. However, the conditional distributions are
unknown in practise. Modelling the conditional distributions using parametric models leads
to an inflexible approximation, whereas non-parametric models do not scale well with the
number of dimensions. For these reasons, we focus our attention on independent component-
wise updates.

Another variant of MCMC sampling, separate from component-wise updating, is the
multiple-try method [15], where several proposals or trials are suggested at each iteration.
The motivation behind the multiple-try method is that more of the space is explored at
the expense of an increased computational cost (i.e., proposal generation and evaluation
of acceptance criterion). Several variations of multiple-try MCMC algorithms exist in the
literature; see [20].

Recently, in [27] the authors introduce a component-wise, multiple-try MCMC method
with Gaussian proposals for each trial, where each univariate proposal has the same mean
but different variances. In this work, we introduce a new class of proposal distributions
for use in a component-wise, multiple-try MCMC method. These proposals, called Plateau
distributions, do not overlap to exploit the multiple-try nature of the method. Indeed, by using
proposals that do not overlap for each trial, the Markov chain is forced to explore different
parts of the state space. Conversely, using proposals that overlap, such as Gaussians with the
same mean and different variances, can lead to an inefficient algorithm, as the trials tend to
be from a similar region of the state space.

The idea of Plateau proposals is intuitive, easy to implement and leads to good results,
in the sense of exploring the state space. Moreover, using the Plateau proposals leads to a
reversible Markov chain with the target distribution as its invariant distribution, see, e.g.,
[27].

As is common for most proposals used in MCMC methods, the Plateau distributions
depend on parameters that need to be selected with respect to the target distribution to
obtain an effective algorithm. Adaptation of MCMC methods typically entails tuning the
parameter(s) of a class of proposal distributions, e.g., the variance parameter in a Normal
distribution, in order to improve the convergence properties of theMarkov chain. For instance,
in [11], a Gaussian proposal distribution is used whose variance (or covariance) is adapted
using the previously generated states of the Markov chain.

In this work, we propose an adaptation procedure that is designed for use with the non-
overlapping Plateau proposals. The Plateau proposals together with the associated adaptation
procedure are illustrated in Fig. 1. Suppose theMCMCalgorithm is initiatedwithmultiple-try
proposals whose distributions are presented by the different coloured lines in Fig. 1a. These
proposals operate independently on each (univariate) component in the target space. As the
Markov chain evolves, the number of times each Plateau’s proposed candidate state is selected
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Fig. 1 Illustration of 4 Plateau proposal distributions (probability density functions) represented by the differ-
ent colours and the adaptation procedure. The initial Plateau distributions are presented in (a); If the outermost
(blue) proposals are selected frequently, the proposals are adapted to (b); If the innermost (black) proposals
are selected frequently, the proposals are adapted to (c) (colour figure online)

is recorded. If the innermost or outermost Plateaus are overly selected, then the set of Plateau
proposals are re-organised as depicted in Figs. 1b and 1c. More precisely, if the innermost
(black) proposal is overly selected, then one halves the width of each plateau and shifts
the set of proposals to remove the gaps. A similar procedure is performed if the outermost
(blue) proposals is overly selected by doubling the width of the plateaus. This procedure
appropriately scales the set of Plateau proposals to the components of the target distribution.
This intuitive adaptation procedure makes explicit use of the non-overlapping feature of the
Plateau proposals. Specifically, if a sample is selected from a particular Plateau distribution,
then that sample could not have been obtained by sampling fromany other Plateau distribution
since their supports do not overlap. The advantages of using non-overlapping proposals, as
opposed to overlapping proposals, is explored in Sects. 5 and 7. The mathematical definition
of the Plateau proposals and the pseudocode for the adaptation procedure are presented in
Sects. 3 and 4 respectively.

The works in [9] and [5] share a similar objective with our proposed work, namely:
draw samples that are far apart from each other to facilitate an effective exploration of
the state space. For example, in [9] the authors introduce an independent (i.e., component-
wise), yet single-try, Metropolis–Hastings method using a Normal mixture distribution as
proposal. The mixture distribution is adapted using a k-means clustering approach in order
to explore the space more efficiently. In [5] an improved state space exploration is achieved
by combining variance reduction techniques with multiple trials. Specifically, it involves
drawing multiple trails from a single, well-chosen proposal distribution that is based on, e.g.,
Latin Hypercube sampling. The performance of the approaches in [9] and [5] depends on
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a well-chosen transformation. Conversely, the approach introduced in this work does not
require such a transformation, as the Plateau proposals reside in the state space. Further, our
adaptation procedure tunes the Plateau proposals parameters as the MCMC runs and does
not require additional clustering (i.e., optimisation) algorithms to be performed.

To summarise, the setting of this work is to propose a newMCMC algorithm alongwith an
adaptation procedure, which is simple to implement, intuitive and can be used without using
explicit derivative information (e.g., Hamiltonian Monte Carlo [22]) or conditional distribu-
tions (e.g., Gibbs sampling [4]) of the target. Therefore, a general-purposeMCMC algorithm
is required. To this end, we introduce Plateau proposals as a general class of proposal dis-
tributions for use in a component-wise multiple-try MCMC methods. The combination of
the non-overlapping characteristic of Plateau proposals with the multiple-try approach and
a bespoke adaptation procedure leads to good results for a variety of target distributions.
Examples of target distributions that will benefit from an adaptive multiple-try MCMC based
on Plateau proposals include, in particular, multimodal distributions, such as mixture distri-
butions, and, more generally, target distributions with complex shapes, such as those with
highly correlated components or Bayesian posteriors.

The remainder of this paper is organised as follows. In Sect. 2.1 a generic component-wise
multiple-try algorithm is presented. The novel class of Plateau proposals is introduced and
discussed in Sect. 3. In Sect. 4 we discuss how to adaptively select the parameter of the
Plateau proposals and offer a detailed algorithmic description of the complete method. The
performance of our new method is then compared with other MCMC methods in Sect. 6.
Finally, a commentary on improvements and a summary are provided in Sect. 8.

2 Component-wise update withmultiple trials

Let π be a probability density function, π : X → R
+, where X ⊆ R

d . Our main interest is
to sample from π ; this is the target distribution. We assume that sampling directly from π

is difficult or impossible, for example because π may only be known up to a multiplicative
constant. In order to sample from π we use MCMC methods. In the Metropolis-Hastings
algorithm, one of the simplest MCMCmethods, a candidate Y for the chain’s next state Xn+1

is drawn from the probability density function (PDF) T (x, ·) : X → R
+, based on the current

state Xn = x ∈ X of the Markov chain. The proposal T (x, ·) is typically easier to sample
from than the target distribution. The density T (x, ·) is the conditional density given the
current value x. This density is commonly known as the proposal distribution. For example,
the random-walk proposal [12, 21] uses a multivariate Normal distribution, which we will
write as T (x, ·) = N(x, σ 2 Id) with σ > 0 given and Id being the d × d identity matrix.
Another example is N

(
x + τ∇ ln

(
π(x)

)
, 2τ Id) with τ > 0 fixed, which is the proposal used

in the Metropolis-adjusted Langevin algorithm [25]. The realisation of the Markov chain’s
next state is then selected according to an accept-reject procedure designed such that the
resulting Markov chain’s stationary distribution is π .

Constructing anMCMCmethod that produces good results typically depends on the choice
of proposal distribution. In particular, the choice of the proposal may significantly affect the
properties of the MCMC method, including the speed of convergence to equilibrium and
mixing properties [26]. Typically, the proposal distribution is selected from some family
of distributions, e.g., from the family of Normal distributions. The performance of MCMC
methods depends on appropriately scaling of the proposal distribution, especially for high-
dimensional target distributions [23].
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Instead of proposing a single multivariate candidate from Y ∼ T (x, ·) by updating all
components of the current state Xn = x simultaneously via the (global) proposal distri-
bution T (x, ·), it is also possible to split the state space X into its individual components
(or small groups of components) and propose candidates for each component (or group of
components) independently. This local (or projected) approach is intuitive, computationally
efficient, and reduces the problem of selecting amultidimensional proposal into lower dimen-
sional proposals that are easier to handle. MCMC methods using these types of updates are
called component-wise MCMCmethods, which may use a potentially different proposal dis-
tribution per component of the state [8, Ch. 1]. In this work, we focus on one-dimensional,
component-wise proposals.

Considering independent one-dimensional, component-wise proposals is equivalent to the
proposal distribution T (x, ·) given x = (x1, . . . , xd) ∈ R

d being separable, in the sense that

T (x, y) ≡ T1(x1, y1) × · · · × Td(xd , yd) =
d∏

k=1

Tk(xk, yk) , (1)

for any y = (y1, . . . , yd) ∈ R
d . Here, Tk(x, ·) : R → R

+, k = 1, . . . , d with x ∈ R, denotes
the one-dimensional proposal density given x used to draw the candidate for component k.
That is, the proposed (global) candidate Y = (Y1, . . . , Yd) ∈ R

d is obtained by sampling
each Yk ∼ Tk(xk, ·) mutually independent of any other Y�.

By construction proposing candidates component-wise does not account for correlations
between the components. Consequently, the component-wise proposed candidatesY may not
be good representatives of the target distribution π (i.e., most candidates Y will be rejected,
resulting in a very low acceptance rate), if π has highly correlated components. Therefore,
these candidates with independently sampled components may lead to a poor state space
exploration and thus to a poor performance of the MCMC method. To mitigate this issue,
we will combine component-wise proposals with multiple trials. The multiple-try technique
proposes many candidates from a proposal distribution, amongst which the “best” one is
selected. Each trial may be proposed from a different proposal. Thus, in combination with
component-wise proposals, we generate M independent candidates (or M trials) for each
separate component k = 1, . . . , d . Let Tj,k(x, ·) : R → R

+, j = 1, . . . , M , denote the
proposal PDF of the j th trial for the kth component given xk = x .

2.1 Generic procedure of component-wise multiple-try metropolis

A generic component-wise multiple-try algorithm is now described – the full pseudocode
for generating N samples from the target distribution π is presented in Algorithm 1. Each
iteration within theMCMC algorithm draws multiple trials and then performs an acceptance-
rejection step for each component sequentially.

We now describe the intuition behind the steps of the procedure. Suppose that the state of
the chain at the beginning of the nth iteration is x = (x1, . . . , xd). For the first component (i.e.,
k = 1), M independent trials, z1, . . . , zM ∈ R, are drawn from Tj,1(x1, ·), j = 1, . . . , M .
These trials are then weighted according to

w j,1(z j , x) = π
(
(z j ; x[−1])

)
Tj,1(x1, z j )λ j,1(x1, z j ) ,

where (z; x[−i]) ∈ R
d denotes the vector that is identical to x except for its i th component

which is replaced by z ∈ R, that is (z; x[−i]) = (x1, . . . , xi−1, z, xi+1, . . . , xd).
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Algorithm 1: Generic Component-wise Multiple-Try Metropolis

Input: number of trials M ; number of MCMC realisations N ; starting position x0 ∈ R
d ; target

distribution π (possibly un-normalised); proposal distributions Tj,k
1: Let X0 = x0 = x.
2: for n = 1, . . . , N do
3: for k = 1, . . . , d do
4: Propose M trials: z j ∼ Tj ,k (xk , ·) for j = 1, . . . , M .
5: Compute the trial weights

w j ,k (z j , x) = π
(
(z j ; x[−k])

)
Tj ,k (xk , z j )λ j,k (xk , z j ) , j = 1, . . . , M .

6: Draw y ∈ {z1, . . . , zM } randomly with probability proportional to w1,k , . . . , wM,k .
7: Draw x∗

j ∼ Tj ,k (y, ·) for j = 1, . . . , M − 1 and let x∗
M = xk .

8: Let y = (y; x[−k]) and compute

α = min

{

1,
w1,k (z1, x) + · · · + wM,k (zM , x)

w1,k (x
∗
1 , y) + · · · + wM,k (x

∗
M , y)

}

.

Draw r ∼ Uniform(0, 1).
9: if r < α then
10: Accept Xn = y = (y; x[−k]) and set x = y.
11: else
12: Xn = x.
13: end if
14: end for
15: end for
16: return X1, . . . , XN

The functions λ j,k(x, y)with x, y ∈ R for any k = 1, . . . , d , are non-negative, symmetric
functions in x and y which are selected by the user. It is required that λ j,k(x, y) > 0whenever
Tj,k(x, y) > 0. Each trial z j , j = 1, . . . , M , has an associated weight w j,1(z j , x). A
candidate for the first component of the chain’s next state is then randomly selected amongst
all trials z j ( j = 1, . . . , M) according to these weights. The selected candidate is then
accepted or rejected. The remaining components k = 2, 3, . . . , d of the chain’s state are
updated in order in a similar fashion; Algorithm 1 details the full pseudocode of the MCMC
method.

In step 5 inAlgorithm1, the accepted candidate for the kth component is selected randomly
from M trails z1, . . . , zM with weights proportional to

w j,k(z j , x) = π
(
(z j ; x[−k])

)
Tj,k(xk, z j )λ j,k(xk, z j ), j = 1, . . . , M .

The weight depends on the function λ j,k , for which there are a number of choices in the
multiple-try literature [15], such as

(
Tj,k(x, y) + Tj,k(y, x)

2

)−1

,
{
Tj,k(x, y)Tj,k(y, x)

}−β and 1.

In work [27] the authors suggest using

λ j,k(x, y) = Tj,k(x, y) ‖y − x‖α , (2)

where α = 2.9 based upon a simulation study focusing on largemoves in the state spaces. For
our proposal algorithm we use (2) with λ j,k . In simulations, not reported here, we found that
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α = 2.5 performed best in terms of themean squared error for a variety of target distributions.
Consequently, we use λ j,k in (2) with α = 2.5 for the remainder of the paper unless stated
otherwise. We note that it is beyond the scope of this paper to propose a particular form for
the class of functions λ j,k due to the problem dependent nature of this choice. Instead, we
advocate that users perform a trial run with a variety of λ j,k to determine which is best suit
for their application and performance metric.

3 Non-overlapping proposal distributions

In principle, any family of proposals Tj,k can be used in Algorithm 1. However, a careful
choice of the proposals can lead to a more efficient algorithm.

Recall that Tj,k is the j th trial proposal distribution for the kth component. Themotivation
of usingmultiple trials is to explore a larger region of the state space than is achieved by using
a single proposal. Therefore, it would not be beneficial to sample trials (from T1,k, . . . , TM,k)
that are similar. To illustrate this point, suppose that for a fixed component k we use the
proposal distributions Tj,k(x, ·) = N(x, ( jσ)2) for j = 1, . . . , M = 5 with known σ > 0
and take x = 0without loss of generality. The probability density functions of these proposals
with σ = 1 are presented in Fig. 2.

As illustrated in Fig. 2, these proposals are very similar. Indeed, 99% of T1,k’s density
mass lies within the interval

J = (−σ	−1(0.995), σ	−1(0.995)
)

,

where	−1 is the inverse of the cumulative distribution function of a standard Normal so that
	−1(0.995) ≈ 2.6. For a candidate from the second proposal distribution Y2,k ∼ T2,k(0, ·),
we then have P(Y2,k ∈ J) ≈ 0.8 for any σ > 0. That is, draws from T1,k and T2,k will
be located in the same region with high probability. Similar arguments hold for the wider
Gaussian proposals. Thus, draws from these Gaussian proposals will tend to be similar, thus
leading to an inefficient use of the multiple-try technique. To avoid proposing candidates
from similar regions, we seek densities which do not overlap (or overlap to a small degree).

Specifically, we advocate using proposals of the type illustrated in Fig. 3b. That is, each
trial for each component-wise proposal distribution combines uniform distributions with
exponentially decaying tails. The amount of overlap between different proposals is controlled
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Fig. 2 Probability density function of 5 Normal distributions with zero mean and standard deviations jσ for
σ = 1, j = 1, . . . , 5
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Fig. 3 PDF of Plateau proposal distributions with M = 5. The five different proposals each have a different
colour

through how fast the tails decay. Further, note that there is no gap between two contiguous
distributions, i.e., no interval where neither distribution is likely to be sampled from.

The family of Plateau proposals are now defined. We begin by introducing the PDF (see
Fig. 3a)

f (y;μ, δ, σ1, σ2) = 1

C

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp

{
− 1

2σ 2
1
[y − (μ − δ)]2

}
for y < μ − δ

1 for μ − δ ≤ y ≤ μ + δ

exp

{
− 1

2σ 2
2
[y − (μ + δ)]2

}
for y > μ + δ

(3)

where

C =
√
2πσ 2

1

2
+

√
2πσ 2

2

2
+ 2δ

denotes the normalisation constant. For each component k with given value xk = x , we then
set the PDF of each trial proposal as

Tj,k (x, y) =

⎧
⎪⎨

⎪⎩

f (y; x, δ1, σ, σ ) j = 1
1
2 f (y; x − 2( j − 1)δ1 − δ, δ, σ, σ ) + 1

2 f (y; x + 2( j − 1)δ1 + δ, δ, σ, σ ) j = 2, . . . , M − 1,
1
2 f (y; x − 2(M − 1)δ1 − δ, δ, σ0, σ ) + 1

2 f (y; x + 2(M − 1)δ1 + δ, δ, σ, σ1) j = M

for some values of δ1, δ, σ, σ0, σ1 > 0. The M = 5 trial proposals shown in Fig. 3b cor-
respond to δ1 = δ = 1, σ = 0.05 and σ0 = σ1 = 0.5. We shall refer to the proposals of
this type as Plateau proposals, given the shape of their PDFs. The δ1 parameter controls the
width of the central Plateau centred at the current state x . The δ parameter is the width of the
other Plateaus. The σ value controls the decay of the tails either side of the inner Plateaus.
The outer tails for the M th proposal are described by σ0 and σ1.

To compare with the earlier calculations for coverage probabilities for the Gaussian pro-
posals; 99% of the density of T1,k with x = 0, δ = 1, and σ = 0.5 lies in the interval
J = (−2.11, 2.11). Suppose that Y2,k ∼ T2,k(0, ·), then P(Y2,k ∈ J) ≈ 0.43, which is
reduced by almost a factor of two compared to the overlapping Gaussian proposal. Further,
if σ = 0.25 then P(Y2,k ∈ J) ≈ 0.31 and if σ = 0.05 then P(Y2,k ∈ J) ≈ 0.06. Thus,
the Plateau proposals overlap less than the Gaussian proposals and further, the extent of the
overlapping of the proposals is controlled by the values of σ , σ1, and σ2.

Note that each Plateau proposal distribution has a support on R. This is to ensure that the
support of the target distribution is includedwithin the support of the proposals. In theory, this
allows the Markov chain to explore the entire support of the target distribution. In a practical
setting, however, by selecting the value of σ appropriately, the tails of the distribution decay
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to zero very quickly, making the inner proposals effectively uniform distributions in view of
numerical simulations.Therefore, in practice, one could elect to sample directly fromUniform
distributions to increase computational speed. However, in all the experiments performed in
this paper, we sample from the exact Plateau proposal distributions defined above.

A diverse set of proposal shapes and sizes are possible through the selection of parameter
values δ, δ1, σ , σ0 and σ1. In the remainder of the paper, we set σ0 = σ1 = ς for some value of
ς , so that the decayof the tails of the outermost proposal,TM,k , are the same.Further,wefix the
half-width of the proposals to be the same, i.e., δ = δ1 = ϒ . Fixing these parameters means
that the Plateau proposals are defined by 3 parameters: ϒ(= δ = δ1), σ , and ς(= σ0 = σ1).
The values for these parameters will determine the movement of the Markov chain and thus
its performance with respect to a particular target distribution. In principle, one could set
the parameter values in an ad-hoc manner, e.g., a manual search over the parameter space
until a certain acceptance rate is achieved. A practical approach is to automatically tune the
parameters as the algorithm runs. Section 4 introduces an adaptation procedure that tunes the
proposal parameter, ϒ(= δ = δ1). The remaining σ and ς(= σ0 = σ1) parameters need to
be selected by the user. In simulations, we use σ = 0.05 and ς = 3 so that there is minimal
overlap of the Plateau proposals and to ensure the outermost proposal has heavy tails. Results
using σ = 0.05 and ς = 3 led to a good performance for a variety of target distributions.

In summary, Plateau proposals is a set of distributions that do not overlap (or overlap very
little) and have no gaps between contiguous distributions. Using non-overlapping proposals
within multiple-try MCMC methods means that the multiple tries explore different regions
efficiently. In addition, no gaps ensure that areas between trial distributions are likely to be
explored. The notion of overlapping and gaps of the Plateau proposals are explored in detail
in Sect. 7.

4 Adaptation of plateau proposals

As is typically the case when working with MCMC methods, the parameters of the proposal
distributions need to be appropriately tuned for the algorithm to be effective. Instead of
manually tuning the parameters, an automated method can be used to adapt the proposals as
theMCMCprocedure runs. These adaptivemethods use the information revealed at each step
in the MCMC algorithm to tune the parameters of the proposals. For instance, [11] proposes
updating the covariance of a multivariate Normal proposal using an empirical estimate of
the covariance of the target. In the following, we discuss an adaptation mechanism for use
with the Plateau proposals introduced in Sect. 3. The adaptation mechanism is designed to
maintain the non-overlapping and gap features of the Plateau proposals. In fact, combining
themultiple-try paradigmwith the localised shape of the proposals offers a natural adaptation
criterion by monitoring preferred (component-wise) proposals, which will allow sampling
from the state space in a more structured way.

In the innermost for-loop in Algorithm 1 (steps 4 to 8) with Plateau proposals Tj,k , only
one trial is selected (step 6). The selected trial is generated from a specific non-overlapping
Plateau. Over theMarkov chain’s iterations, countingwhich Plateau distributions are selected
may offer additional insight into the state space exploration. We advocate a procedure to
update the Plateau proposals to avoid two undesirable scenarios: (i) when the innermost
proposal is selected too often; and (ii) when the outermost proposal is selected too often.
Scenario (i) suggests that the proposal distributions are too wide, such that trials are regularly
being suggested near the previous state of the chain, i.e., the majority of the suggested moves
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Algorithm 2: Adaptation of MCMC
Input: thresholds η1, η2 > 0; proposal parameter ϒ = δ = δ1; iteration number n; adaptation interval

length L
1: if n = 1 then
2: Set cn1,k = cnM,k = 0 for all k = 1, . . . , d
3: end if
4: Draw r ∼ Uniform(0, 1)

5: if
[
r < Pn := max(0.99n−1, 1/

√
n)

]
and [(n mod L) = 0] then

6: if cn1,k > Lη1 then
7: Update: ϒ ← 0.5ϒ
8: end if
9: if cnM,k > Lη2 then
10: Update: ϒ ← 2ϒ
11: end if
12: Reset cn1,k = cnM,k = 0.
13: end if

are occurring in the interval (x − δ, x + δ), when the current state’s component is xk = x .
Conversely, scenario (ii) suggests that the proposal distributions are too narrow, such that the
trials are regularly being suggested in the “tails”, far away from the current position x .

We introduce the following adaptation of the Plateau proposals Tj,k to counteract these
scenarios. Asmentioned in Sect. 3, this adaptation procedure will change the half-width of all
the Plateau proposals; namely, the ϒ = δ = δ1 parameter will be updated. First, adaptation
can take place at regular, predefined iteration intervals of length L . Within these intervals,
each proposal is selected a number of times. Let cnj,k denote the number of times Tj,k was
selected by the nth MCMC iteration.

For scenario (i), if cn1,k > Lη1 for some η1 ∈ (0, 1), then the width of all the Plateaus is
halved and the proposals are shifted toward x to leave no gaps between contiguous distribu-
tions, i.e., the Plateau proposal parameters are updated as: ϒ ← 0.5ϒ .

For scenario (ii), if cnM,k > Lη2 for some η2 ∈ (0, 1), then the Plateaus widths are
doubled and the proposals are shifted away from xk = x to leave no gaps between contiguous
distributions, i.e., the Plateau proposal parameters are updated as: ϒ ← 2ϒ .

The proposed adaptation, summarised in Algorithm 2, can be inserted between steps
2 and 3 of the MCMC Algorithm 1. Note that the adaptation operation is performed
every L iterations. At iteration n, the adaptation is performed with probability Pn =
max

{
0.99n−1, 1/

√
n
}
. This ensures that the amount of adaptation reduces the longer the

algorithm runs and thus satisfies the diminishing adaptation condition; see, e.g., [24]. Sat-
isfying the diminishing adaptation condition ensures convergence of the algorithm – see
Appendix 1.

In summary, we advocate the use of the adaptation procedure, outlined in Algorithm 2,
for our Plateau proposal MCMC. The adaptation procedure updates the δ = δ1 parameter of
the proposals. In simulations, we initialise these parameters at δ = δ1 = 1. As mentioned in
Sect. 3, the other proposal parameters are set (and fixed) at σ = 0.05 and ς = 3.

5 Investigation of adaptation of MCMCmethods

Before assessing the long-term performance of the adaptive Plateau proposal MCMC in
simulations, we first provide further insight into the effects of the adaptation procedure. To
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Fig. 4 Outermost proposal density ( j = M = 5) for the AP method (solid) and the AG2 method (dashed)
upon initialisation of the MCMC algorithms

illustrate how the novel Plateau proposals adapt to a given target distribution, we investigate
properties of the resultingMarkov chain during the initial iterations. For this investigation, two
complementary scenarios are considered. First, we will study the resulting chain’s coverage
probability of a given target distribution’s confidence region. Second, we will assess the first
hitting time distribution for a chain to enter a high-probability region of the target distribution
when initiated from a low-probability region.

We will compare the adaptive Plateau proposal algorithm with the adaptive Gaussian
MCMC algorithm [27] using multivariate Normal target distributions. As the target distri-
bution is Normal, performance should favour the adaptive Gaussian MCMC method due to
similarity between the target and proposal distribution shape.We stress that a particular adap-
tation strategy is proposal-dependent, that is, here we compare the combined performance
of the proposal and the adaptation procedure. We shall denote the adaptive Plateau proposal
MCMC method as AP and the adaptive Gaussian proposal MCMC method proposed in [27]
as AG2 (a variant of AG2, denoted as AG1, will be introduced later in Sect. 6). Following
[27], the Gaussian proposal distributions in AG2 are adapted as follows: If the proposal with
the largest standard deviation is under(over)-selected, then it is halved (doubled). Conversely,
if the proposal with the smallest standard deviation is under(over)-selected, then it is doubled
(halved). After either of these two updates, the other standard deviations are adjusted to be
equidistant on a log-scale (base 2). For further algorithmic details on this adaptation scheme;
see [27]. The adaptation interval for both methods was set to L = 50 and Pn = −1 (in
Step 4, Algorithm 2) to trigger adaptations every 50 iterations. These settings were selected
to make a fair comparison between the two MCMC methods. No burn-in was used in these
simulations, as we are investigating the performance of the MCMC algorithms during the
initial iterations.

The MCMC algorithms in these simulations were run with M = 5 trials. The proposals’
standard deviations in the AG2 method are initialised with 2 j−2 for proposal j = 1, . . . , M .
We reiterate that the adaptively chosen Plateau parameters are initialised with δ = δ1 = 1,
while σ and ς are fixed at 0.05 and 3 respectively. Moreover, we use the thresholds η1 =
η2 = 0.4 for the AP method. The outermost proposal for both the AP and AG2 methods of
this particular initialisation are illustrated in Fig. 4. Notice that the Gaussian proposal has
slightly heavier tails that may give the AG2 an advantage by allowing larger moves compared
to the AP method.
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5.1 Scaling of the proposals and coverage probability

As mentioned above, we first consider the MCMCmethods’ coverage probabilities by moni-
toring how frequently a high-probability region is visited.We begin with a target distribution,
�1, given by a 5-dimensional Normal distribution with mean zero and covariance matrix
� = diag(0.001, 0.1, 1, 10, 100). Note that the different magnitudes of the variances of the
target should be captured directly by both MCMC methods. This is because the component-
wise updates of the algorithms are along the same components of the target distribution;
namely, on x1, x2, . . . , x5. The number of independent repetitions of the MCMC simula-
tions was set to R = 5, 000 and the number of MCMC iterations performed for each run
was N = 10, 000. For each MCMC method, denote the chain for the r th repetition as

X(r)
0 , X (r)

1 , . . . , . . . , X (r)
N where X (r)

j =
(
X (r)

j,1, . . . , X
(r)
j,5

)T
for r = 0, . . . , R. Further,

denote the component-wise variances of the target�1 as σ 2
1 , . . . , σ 2

5 . Each repetition r of the

chain was started at the origin X (r)
0 = X0 = (0, 0, 0, 0, 0)T for both methods. For each repe-

tition r , we report summaries of the running (n = 1, . . . , N ) empirical coverage probabilities
of the component-wise (k = 1, . . . , 5) confidence regions

C (r)
n (k) := 1

n

n∑

j=0

I

(
(X (r)

j,k)
2

σ 2
k

> z1

)

,

where z1 is such that P(Z1 > z1) = 0.99 and Z1 ∼ χ2
1 as well as the running empirical

coverage probability of the joint 99% confidence region defined as

D(r)
n := 1

n

n∑

j=0

I

(
(X (r)

j )T�−1X(r)
j > z2

)
,

where z2 is such that P(Z2 > z2) = 0.99 and Z2 ∼ χ2
5 . Figure 5 presents the average as

well as the 2.5% and 97.5% empirical quantiles of {C (r)
n (k); r = 1, . . . , R} for k = 1, . . . , 5

and of {D(r)
n ; r = 1, . . . , R}. Note that the vertical axes is on the log-scale to improve

visibility of the results. In each reported summary, a point-wise interval is created by the
2.5% and 97.5% quantiles. The resulting empirical confidence intervals for the AP method
are, for the majority of iterations, narrower than those for the AG2 method. This indicates
that the AP method performs better than the AG2 method in terms of the coverage of the
99% marginal distributions of the target as well as the entire joint distribution. We reiterate
that the AG2 method uses Gaussian component-wise proposals share exactly the same shape
as the marginals of the target distribution. Despite this advantage, the AP method produces
better results in terms of coverage.

Next, we explore the performance of the adaptive MCMC algorithms for a target distri-
bution, �2, with correlation across the components. The target distribution for this second
example is taken to be a bivariate Normal distribution with mean zero and covariance matrix

� =
(

0.25 1.875
1.875 25

)
.

In this simulation, the component-wise MCMC proposal updates, for both the AP and AG2
methods, are not aligned with the principal components of the target distribution. Therefore,
this target distribution should pose a greater difficulty to sample from in comparison to the
previous target, �1. The results from this simulation study are presented in Fig. 6, where we
report the analogous summaries of the running empirical coverage probabilities, as for the
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(e) Component (f) Joint

Fig. 5 Uncorrelated 5-dimensional Gaussian Target,�1: a–e presents the average and 95% empirical quantiles

of {C(r)
n (k); r = 1, . . . , R} for k = 1, . . . , 5 respectively. f present the average and 95% empirical quantiles

of {D(r)
n ; r = 1, . . . , R}. Averages are represented by dotted lines and quantiles by solid lines. All results are

presented on the log-scale. Black represents the AP method and red represents the AG2 method

previous example. Recall that both MCMC methods adapt independently per component.
Therefore, the correlation between the targets’ components is ignored in the proposals of
the MCMC methods and their adaptations. Despite ignoring the correlation, both MCMC
methods perform well in terms of coverage probabilities. As shown in Fig. 6, the AP method
consistently outperforms the AG2 method, in terms of the width of the empirical confidence
intervals.
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(b) Component k = 2

0 2000 4000 6000 8000 10000

−6
−5

−4
−3

−2

Iteration, n

Lo
gg

ed
 p

ro
po

rti
on

 o
f s

am
pl

es
 o

ut
si

de
 9

9%
 e

lli
ps

e

(c) Joint

Fig. 6 Correlated 2-dimensional Gaussian Target, �2: a and b presents the average and 95% empirical

quantiles of {C(r)
n (k); r = 1, . . . , R} for k = 1, 2 respectively. c presents the average and 95% empirical

quantiles of {D(r)
n ; r = 1, . . . , R}. Averages are represented by dotted lines and quantiles by solid lines. All

results are presented on the log-scale. Black represents the AP method and red represents the AG2 method

5.2 Moving to a high density region of target

We now investigate the adaptive MCMC methods’ abilities to move toward areas of high
target density, when initially started in a state outside that region. For this study, the target
distribution is again taken as the correlated bivariate Normal distribution, �2. The number
of independent repetitions of the MCMC runs was again set to R = 5, 000 and the number
of MCMC iterations performed each run was N = 1, 000. Each run was initialised at the
location very far away from the mean, X0 = (50, 50)T .

For each repetition r of the MCMC method, the first time the Markov chain entered the
(joint) 95% ellipse of the target is recorded as

J (r) := min
(
j ∈ {0, . . . , N }; (X (r)

j )T�−1X (r)
j < z0

)
,

where z0 is such that P(Z0 > z0) = 0.95 and Z0 ∼ χ2
2 . The empirical distribution of the

first hitting times {J (1), . . . , J (R)} is summarised in the violin plots presented in Fig. 7 for
AP and AG2 methods. Violin plots [13] are boxplots with kernel density estimates attached
to the sides. We use violin plots as opposed to just boxplots to give a better illustration of the
shape of the distributions. In the violin plots, the median is represented by a vertical line.

From Fig. 7 we observe that the AP method consistently moves into the 95% ellipse
earlier than the AG2 method. Although the AG2 method does enter the ellipse earlier in
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Fig. 7 Correlated 2-dimensional Gaussian Target, �2: Violin plot of first hitting time of the Markov chain
into 95% ellipse. AP results represented in red and AG2 results in green (colour figure online)

some iterations, the AP method always (5, 000 out of 5, 000 iterations) entered the high-
density region in less than 381 iterations. In comparison, in 517 out of 5, 000 iterations, the
AG2 took more than 381 iterations to enter the ellipse.

In summary, the AP proposals adapt well to the scale of the target components during
the initial steps of the algorithm. This was demonstrated in Sect. 5.1 using independent and
correlated target components. Moreover, in Sect. 5.2 we showed that the APmethod is able to
effectively move into high-probability regions when initiated from low probability regions.

6 Results

In this section, we compare the long-term performance of the proposed adaptive component-
wise, multiple-try MCMC method with other MCMC methods in simulations. The adaptive
PlateauMCMC (AP) is compared to aMetropolis-Hastings algorithmwith Gaussian propos-
als (MH) and two versions of an adaptive Gaussian MCMC (AG1 and AG2) as introduced
in [27]. The difference between AG1 and AG2 is that AG1 uses (2) with α = 2.5 (i.e., as
in AP), while AG2 uses α = 2.9 as is suggested in [27]. The proposal distributions in both
AG1 and AG2 are adapted in the fashion outlined in Sect. 5.

For all simulations and methods with multiple trials, we fix the number of trials M = 5.
Investigation of the method’s performance for differing values of M is beyond the scope of
this paper, which we leave for future work. However, interesting discussions in that direction
already exist, see [19] for example.

The proposal standard deviation in the AG1 and AG2 methods are initialised at 2 j−2 for
j = 1, . . . , M . The Plateau parameters values are initialised at δ = δ1 = 1, σ = 0.05 and
ς = 3 with η1 = η2 = 0.4 for the AP method.

The proposal distributions used in the MH method depend on the particular target distri-
bution and the choices used are summarised in Table 2. The various target distributions are
now introduced.
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6.1 Target distributions

In order to compare the aforementionedmethods, we investigate their performances by apply-
ing them to sample from a variety of target distributions.

Mixture of Gaussians

Consider a mixture of two 4-dimensional Gaussians

1

2
N(μ1, �1) + 1

2
N(μ2, �2),

where
μ1 = (5, 5, 0, 0)T , μ2 = (15, 15, 0, 0)T

and
�1 = diag(6.25, 6.25, 6.25, 0.01), �2 = diag(6.25, 6.25, 0.25, 0.01).

We refer to this target distribution as π1.

Banana distribution

Consider the 8-dimensional “banana-shaped” distribution [10], which is defined as follows.
Let f be the density of the 8D Normal distribution N(0, �3) with covariance given by
�3 = diag(100, 1, . . . , 1). The density function of the banana distribution with non-linearity
parameter b > 0 is given by fb = f ◦ φb where the function φb is

φb(x) = (x1, x2 + bx21 − 100b, x3, . . . , x8) for x ∈ R
8.

The value of b determines the amount of non-linearity of φb. Here, we consider the target
distribution π2 = f0.03, which leads to the unusual banana-shape of the first two components
as shown in Fig. 8a.

Distributions perturbed by oscillations

Another target we consider is the perturbed 2-dimensional Gaussian, whose probability den-
sity function is given by

π3(x) ∝ exp
[
−xT Ax − cos

( x1
0.1

)
− 0.5 cos

( x2
0.1

)]
=: π̃3(x) for x ∈ R

2

where

A =
(
1 1
1 3/2

)
.

Figure 8c displays the un-normalised function π̃3(x). Lastly, we also consider the following
perturbed version of the 1D bi-stable distribution x �→ Z−1e−x2+5x2 , whose PDF is given
by

π4(x) ∝ exp
[
−x4 + 5x2 − cos

( x

0.02

)]
for x ∈ R.

Figure 8d displays the PDF of π4(x) where the normalising constant is approximated by
numerical integration.
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Bayesian posterior distribution

A more complex target is given by the Bayesian posterior distribution originating from a
localisation problem using multiple noisy sensor measurements in a wireless sensor network
[18]. The problem involves using multiple observations from NS sensor locations to estimate
a target location z ∈ R

2. Following [18], the true target location is z∗ = (2.5, 2.5)T and
the NS = 6 sensor locations are h1 = (3,−8)T , h2 = (8, 10)T , h3 = (−4,−6)T , h4 =
(−8, 1)T , h5 = (10, 0)T , and h6 = (0, 10)T . The NO = 10 observations at each sensor
location are modelled as

Yk,l ∼ N
(
20 log (‖z − hl‖2) , ζ 2

l

)
, k = 1, . . . , NO ; l = 1, . . . , NS . (4)

The observations Yk,l are assumed to be all independent of each other, and are drawn using
the true location z = z∗ and standard deviations ζ ∗ = (1, 2, 1, 0.5, 3, 0.2)T ∈ R

6.
The objective is to estimate the target location z and the unknown sensor noise standard

deviations ζ = (ζ1, . . . , ζNS ) from the given observations Y = (Yk,l)k=1,...NO
l=1,...NS

. This is

achieved using a Bayesian approach to compute the posterior distribution of z and ζ given
the observations Y . The prior for the target location, z ∈ R

2, is uniform onRz = (−30, 30)2

and similarly the prior for the standard deviations ζ is uniform on Rζ = (0, 20)NS . The
MCMC target distribution is the posterior distribution of x := (z, ζ )T ∈ R

2+NS given the
observations Y ,

π5(x) := π(z, ζ |Y = y) ∝
NO∏

k=1

NS∏

l=1

1
√
2πζ 2

l

exp

(

− 1

2ζ 2
l

(
yk,l − 20 log (‖z − hl‖2)

)2
)

× I(z ∈ Rz)I(ζ ∈ Rζ ),

where I(·) denotes the indicator function.

(a)

(c)

(b)

(d)

Fig. 8 Selected marginal density plots of simulation target distributions
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6.2 Run parameters

Each simulation run of the MCMCmethods was independently repeated R = 200 times and
for each run a burn-in period of 50% of the MCMC iterations was used. During the burn-in
period, the AP, AG1 and AG2 were allowed to adapt their proposals. For each repetition, all
methods started at the same random initial position x0. The number of MCMC iterations, N ,
used for each method is presented in Table 1, which was determined by a trial run. In order to
make fair comparisons, the number of MCMC iterations performed by Metropolis-Hastings
algorithm is d × M times larger than the multiple-try versions. This is because multiple-try
methods cycle over all d components and evaluate the target for M trials each iteration.
This will ensure that the number of times the target distribution is evaluated by each MCMC
method is the same and that the computational effort is approximately the same.

The proposal distribution in the MH method for each target is presented in Table 2. Note
that these proposals are based on the target distribution, whichwould be typically be unknown
in practice. The MH method should have an unfair advantage as its proposal is tuned to the
target distribution. The particular scaling of 2.4/

√
d follows from [6]. The exception is the

proposal distribution used for π5, where we use the same proposal as used in [18].

6.3 Simulation results

For each target distribution, we compare the performance of the MCMCmethods using mea-
sures based on the autocorrelations and jumping distances of the chain. We now define these
measures mathematically. Denote the Markov chain produced by one of the MCMC meth-
ods for the r th independent repetition as X(r)

0 , . . . , X (r)
N where X (r)

i = (X (r)
i,1, . . . , X

(r)
i,d)

T for

r = 1, . . . , R. Denote the component-wise variances of the target as σ 2
1 , . . . , σ 2

d .

Table 1 Number of MCMC
iterations used in simulations for
each target distribution

Target Dimensions (d) Adaptive MH

π1 4 4,000 80,000

π2 8 10,000 400,000

π3 2 3,000 30,000

π4 1 3,000 15,000

π5 8 10,000 400,000

Table 2 Proposal distributions
used in the Metropolis-Hastings
algorithm

Target Proposal Distribution

π1
2.4√
4
[0.5N(0, �1) + 0.5N(0, �2)]

π2
2.4√
8
N(0, �3)

π3
2.4√
2
N(0, A−1)

π4 2.4N(0, 1)

π5 N(0, I8)
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Wewill use the integrated autocorrelation time (ACT) of theMCMCmethods as ameasure
of performance. The ACT for the chain’s kth component is given by

ACTk = 1 + 2

σ 2
k

N∑

i=1

cov(X0,k, Xi,k) ,

provided that the chain is stationary so that X0 ∼ π . For every repetition r = 1, . . . , R of
the MCMCmethod, the integrated autocorrelation times are estimated based on the observed
Markov chain X(r)

0 , . . . , X (r)
N component-wise using the initial sequence estimator introduced

in [7]. With slight abuse of notation, we will denote the resulting chain-based autocorrelation
times by ACT(r)

k . Smaller autocorrelation times indicate that consecutive samples have lower
correlation. Autocorrelation times are inversely proportional to the effective sample size [16,
17], which is another commonly used measure of performance. In fact, the effective sample
size is often interpreted as the number of samples that would need to be (directly) drawn
from the target in order to achieve the same variance as that from an estimator of interest
using independent samples. Higher effective sample sizes and therefore lower autocorrelation
times are desirable.

Another way of interpreting the ACTs is through the accuracy of a chain-based Monte
Carlo integration. Moreover, the mean squared error of a Monte Carlo estimator can be
expressed as a sum of the component-wise ACTs weighted by the component-wise variance.
Consequently, a method that produces a chain with low ACTs is preferable. Further, the
ACTs of an MCMC characterise the asymptotic variance (so-called time-averaged variance
constant in this context) of a Monte Carlo estimator in the central limit theorem for Markov
chains [1]. In fact, lower ACTs will lead to smaller time-averaged variance constants.

In practice, the target distribution is intractable and therefore the variances of the compo-
nents are unknown. However, these variances are estimated by the initial sequence estimator
method.

Another measure of performance is the chain’s average squared jump distance (ASJD),
which, for the kth component and repetition r , we define as

ASJD(r)
k = 1

N

N∑

i=1

|X (r)
i,k − X (r)

i−1,k |2.

The average squared jump distance measures the movement of the chain and also is linked
with the acceptance rate of the MCMC method. Higher values of average squared jump
distances are desired as it indicates larger moves and therefore more exploration of the space.
We use the ASJD as a measure of the ability of an MCMC method to move around the state
space.

In summary, in the following results, we present the ACTs and the ASJD per component.
The distribution of the ACTs and ASJDs over the repetitions, i.e., {ACT(r)

k : r = 1, . . . , R}
and {ASJD(r)

k : r = 1, . . . , R}, will be presented using violin plots.

6.3.1 Mixture of Gaussians

The results for the 4-dimensional mixture of two Gaussians target, π1, are presented in Fig. 9.
Fig. 9a indicates that the AP method achieves lower ACTs than the other methods for all
components (including the MH method, which is not included in this figure due to very high
ACTs). Further, the range of ACT values suggest that the AP method consistently produces
MCMC chains with lower ACTs.
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Fig. 9 Mixture of Gaussians, π1: Distribution of the ACTs and ASJDs of MCMC methods for target π1. Red
is AP, blue is AG1, green is AG2 and pink is MH (colour figure online)

In terms of the movement of the MCMC chains, the AP method outperforms the other
methods for this target distribution. In fact, the ASJDs presented in Fig. 9b show that the AP
method moving around the state space in larger jumps than the other methods. Since the AP
andAG1methods use the sameweight function as discussed in Sect. 2.1 this advantage is due
to using the Plateau proposals in contrast to Gaussian proposals. These results suggest that
the AP method is able to move between the two Gaussians in the target density efficiently.

6.3.2 Banana distribution

The target, π2, is a difficult distribution to sample from due to the wide-ranging variances
across the components and the unusual banana-shape of the first two components. The ACTs
for the methods, presented in Fig. 10a, show similar results across the AP, AG1 and AG2
for the first two components. However, for the remaining components, the AP is achieving
notably smallerACTs.TheACT results for theMHare substantially larger for all components,
and thus are not included in this figure. As an indication, the median ACTs for components
1 to 8 respectively are: 1131.74, 2066.35, 54.24, 54.37, 54.34, 54.03, 54.74, 54.47 for the
MH method to 2 decimal places.

The ASJDs for the methods presented in Fig. 10b. The AP method again outperforms
the other methods by achieving higher ASJDs for all components. Note that for the first
component, the wide range of jumping distance produced when using the Plateau proposals.
This suggests that the AP method is able to navigate the banana-shape in the first component
easily.

6.3.3 2D perturbed distribution

For the perturbed 2-dimensional distribution, π3, the perturbations represent local modes
where MCMC methods may potentially get stuck. Again, the AP method’s ability to move
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Fig. 10 Banana Distribution, π2: Distribution of the ACTs and ASJDs of MCMC methods for target π2. Red
is AP, blue is AG1, green is AG2 and pink is MH (colour figure online)

slightly larger distances, as shown in Fig. 11b, gives it a slight advantage over the other
methods. This ability to jump further may explain the lower ACTs for the AP method as
depicted in Fig. 11a.

6.3.4 1D perturbed distribution

Similar to π3, the oscillations in π4 are areas where an MCMCmay get stuck. The ACTs for
the AP, AG1 and AG2 method are presented in Fig. 12a. The AP achieves the lowest ACTs;
however, there are a few outliers which may indicate a few runs where the sampler got stuck
in the local modes. This may also be the case for the AG1 method. For the MH method, the
ACTs (not presented in the figure) are extremely large in comparison to the other methods –
with a median of 178.54 and a range of 111.62 to 457.56 to 2 decimal places.

The ASJDs for the AP method, is on average jumping also twice the distance of the AG1
and AG2 methods – see Fig. 12b. Again, there are some outlying ASJDs for the AP method,
which may indicate some repetitions where the MCMC got stuck in local modes.

6.3.5 Posterior distribution

The posterior distribution, π5, poses a difficult distribution to sample from due to the non-
linearity of the parameters. The ACTs for the MCMCmethods (except MH) are presented in
Fig. 13a. The AP method consistently achieves a lower ACT than the AG1 and AG2 method,
especially for the variance parameters (components 3 to 8). In terms of ASJDs, all methods
give similar performance – see Fig. 13b, with a slight advantage to using the AP method
which achieves higher ASJD albeit infrequently. The ACT and ASJD results for the MH
method are not presented in Fig. 13a. The median ACT for components 1 to 8 range from
19730 to 37430. Further, the median ASJDs range from 2.9 × 10−8 to 4.4 × 10−6 over
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Fig. 11 2D Perturbed Distribution, π3: Distribution of the ACTs and ASJDs of MCMC methods for target
π3. Red is AP, blue is AG1, green is AG2 and pink is MH (colour figure online)
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Fig. 12 1D Perturbed Distribution, π4: Distribution of the ACTs and ASJDs of MCMC methods for target
π4. Red is AP, blue is AG1, green is AG2 and pink is MH (colour figure online)
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Fig. 13 Posterior Distribution, π5: Distribution of the ACTs and ASJDs of MCMC methods for target π5.
Red is AP, blue is AG1, green is AG2

all 8 components. Both the high ACTs and very low ASJDs indicate that the MH method
performed poorly.

6.4 Comparing computational speed

In this section, we compare the computational effort of the AP and AG methods. For this
comparison, we use the 8-dimensional banana target distribution, π2 and investigate the
time to run the MCMC methods with a different number of trials M and MCMC steps N .
Specially, we run a single simulation with a unique combination of M ∈ {1, 4, 5, 10} and
N ∈ {5000, 10000, 50000, 100000}. Each simulation is repeated 1, 000 times. We compare
the AP and AG methods with α = 2.9 both without and with the adaptation. The methods
are written in C++.

The results presented in Tables 3 and 4 reports the average effort to run each MCMC
methods over 1, 000 iterations. The reported effort is relative to the effort to generate the
MCMC samples from the AG method.

Table 3 shows that the AP and AGmethods, with and without adapting, are all comparable
in terms of effort for all values of N . Table 4 suggests that keeping N fixed and increasing the
number of trial M does not lead to any one method being more efficient than the others. We

Table 3 Computational effort of
MCMC algorithms using M = 5
trials divided by the effort using
the AG method

N = 5, 000 10,000 50,000 100,000

AP 1.0092 1.0208 1.0118 1.0064

AP (no adapt) 1.0079 1.0168 1.0069 1.0051

AG 1.0000 1.0000 1.0000 1.0000

AG (no adapt) 0.9975 1.0043 1.0038 1.0048
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Table 4 Computational effort of
MCMC algorithms using
N = 1000 MCMC steps divided
by the effort using the AG
method

M = 1 3 5 10

AP 1.1197 1.0320 1.0208 0.9939

AP (no adapt) 1.1228 1.0343 1.0168 0.9909

AG 1.0000 1.0000 1.0000 1.0000

AG (no adapt) 1.0421 0.9990 1.0043 1.0005

conclude that both the AP and AG methods are comparable in terms of computation time, as
there are negligible differences between the two methods.

7 Generalisation of plateau proposals

In this section we explain why the family of Plateau proposals are suitable within multiple-try
MCMC methods. As mentioned in Sect. 3, the Plateau proposals are designed to be non-
overlapping and simultaneously have no (or small) gaps between the individual proposals.
The non-overlapping feature ensures that trial samples are drawn from separate areasmeaning
that the chain explores the area efficiently. The feature of having no gaps ensures that there are
no regions between proposals that will not be explored – meaning that the entire combined
support of the proposals is being explored with a non-negligible probability.

We now introduce measures of overlap and gap between two trial distributions. In this
section, we simplify the setting to two contiguous trial distributions rather than using M
distributions, to make clear the overlap and gap measures. The intuition carries over to the
full case with M trial distributions. The overlap and gap between distributions is illustrated
in (i) the Gaussian case and (ii) the Plateau case which are now defined. Let A and B two
independent random variables. In the Gaussian case let A ∼ N(0, s2) and B ∼ N(�, s2)
for some � > 0. In the Plateau case let A ∼ f (·, μ = 0, δ = �/2, σ1 = σ, σ2 = σ) and
B ∼ f (·, μ = �, δ = �/2, σ1 = σ, σ2 = σ) where the PDF f is defined by Eq. (3). Recall
that in the PDF f , the parameter μ is the location of the centre of a single plateau and σ1 (σ2)
determines the rate of exponential decay to the left (right) side of the plateau. As suggested
earlier, and used in all numerical simulation conducted in this paper, we set σ1 = σ2 = σ .
The Gaussian and Plateau cases are illustrated in Fig.14.

We measure the overlap between the distributions of A and B as

poverlap := P(B < mp) + P(A > mp),

0 mp Δ

(a)
0 mp Δ

(b)

Fig. 14 PDF illustrations for random variables A (black) and B (red) for a the Gaussian case and b the Plateau
case. Shaded grey area represents the overlap measure, poverlap (colour figure online)
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wheremp = 0.5(μ1+μ2), whereμ1 andμ2 denote themean values of A and B, respectively.
The overlap measure is illustrated in Fig.14 by the shaded grey areas for both the Gaussian
and Plateau case. Low values of poverlap are ideal.

Next, we define the gap between the distributions A and B as follows: Define the interval
G = (mp − ψ,mp + ψ) for some ψ > 0 that satisfies

P ({A /∈ G} ∩ {B /∈ G}) = 0.9. (5)

We define the gap distance as ψ – the half-width of the interval G. Equation (5) can be
read as: the probability of neither A or B being sampled from (mp − ψ,mp + ψ) is high.
Therefore, it is ideal to haveψ > 0 as small as possible, so that there is a very narrow interval
between the distributions A and B where neither is likely to be sampled from. Note that the
probability value of 0.9 in Eq. (5) is ad-hoc. Other high values could be used, however, the
intuitive results of this section remain the same.

The Plateau distributions are initialised with parameters δ = 1 and σ = 0.05. Using these
parameters gives the values poverlap = 0.028 and ψ = 0.059. To compare with these values,
the gap distances and overlap measures are computed in the Gaussian case for� ∈ (0, 5) and
s ∈ (0, 2.5). The overlap measures and gap distances are presented as heatmaps in Fig.15.
Contour lines representing poverlap and ψ for the initialised Plateau proposals are included
on the heatmaps for comparison.

It is possible to select � and s in the Gaussian case to simultaneously obtain the same
overlap and gap measures achieved in the initial Plateau case. The values of � and s that
satisfies poverlap = 0.028 andψ = 0.059 are:� = 0.286 and s = 0.0757. Figure 16 presents
the Gaussian case with � = 0.286 and s = 0.0757 and the Plateau case with δ = 1 and
σ = 0.05which achieve the same overlap and gapmeasure. Themid-point of the distributions
means has been centred at zero. From Fig. 16 it is clear that sampling region of the Plateau is
far broader than the narrow Gaussians. As a crude numerical illustration, consider the range
of the union of the symmetric 95% density regions of A and B. In the Gaussian case this
range (−0.292, 0.292) in comparison to the Plateau case (−2.010, 2.010). This indicates
that the Plateaus have a far greater coverage, and thus offer the capability to explore a larger
region than using Gaussians. In order to achieve the same sampling coverage area as the two
Plateaus, more Gaussians would need to be used. Increasing the number of distributions, M ,
comes at a computational cost as more proposals need to drawn and trial weights calculated
which requires computation of the target – see steps 4 and 5 in Algorithm 1.

Fig. 15 Heatmaps of a the overlap measure and b gap distance in the Gaussian case. The black contour lines
indicate the a poverlap = 0.028 and b ψ = 0.059, obtained in the Plateau case with δ = 1 and σ = 0.05
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Fig. 16 PDFs of a the Gaussian case with � = 0.286 and s = 0.0757 and b the Plateau case with δ = 1
and σ = 0.05. The mid-point of the distribution means is set equal to zero. Both cases achieve overlap
poverlap = 0.028 and ψ = 0.059

In summary, using Plateau shaped proposals in multiple-try MCMC methods, efficiently
explore the space by not overlapping and by not having large gaps between contiguous trial
distributions. Further, the combinedwide support of Plateausmeans that few trial distributions
(M) are required to sample a large region.

The overlap measure and gap distance used in this section were constructed specifically
to compare the Gaussian and Plateau proposal shapes. Comparing the Plateau distributions
against non-Gaussian distributions may require an extension to our definitions or creation of
new ones. A more in-depth study as to how the overlap and gap properties of proposals effect
MCMC results is outside the scope of this paper and is left to future work.

8 Conclusion

In this paper, we have introduced Plateau distributions as a novel-class of proposal distri-
butions for the use with component-wise, multiple-try Metropolis MCMC. These proposal
distributions are a combination of uniform distributions, leading to a family of distributions
with non-overlapping supports. The notion of using non-overlapping proposals in multiple-
try MCMCmethods is intuitive and, in fact, motivated as means to counter the disadvantages
(e.g., inefficient proposing of trials) of severely overlapping proposal distributions such as
Gaussians. Moreover, the class of Plateau distributions are simple to implement for use as
proposals inMCMCmethods and are straightforwardly combined with the simple, yet highly
effective, adaptation procedure presented in Sect. 4. As mentioned in the introduction, the
novelty of this work lies in both the Plateau proposals and the bespoke adaptation method.
The designed adaptation method takes advantage of the non-overlapping proposals to better
explore the space and “scale” the proposals to the target distribution. The advantages of our
proposed algorithm over Gaussian proposals with a similar adaptation method was presented
in simulations in Sect. 5. Further, in Sect. 6.4 we showed that the computational effort of
using Plateau proposals is comparable to using Gaussians.

We have demonstrated that using the Plateau proposal distributions with the suggested
adaptation leads to MCMCmethods that perform well for a variety of target distributions. In
fact, the results indicate that using our method produces MCMC chains that explore the state
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space better with lower autocorrelation times, when compared to other adaptive multiple-try
methods with greatly overlapping Gaussian proposals. Furthermore, the simulation results
suggest that the Plateau proposals are able to efficiently sample from target distributions with
distance modes, complex shapes, and many nearby modes.

The results and the simplicity of their design make the Plateau proposals appealing for
general use in component-wise, multiple-try MCMC algorithms. As a matter of fact, the
introduced class of Plateau distributions is one type of non-overlapping proposals. Further
research may investigate other types of non-overlapping proposals, which may have multiple
interacting trials (e.g., see [3]) andmaybe asymmetric. Further theoretical research is required
to determine the mixing properties of the MCMC chain produced by these Plateau proposals
and adaptation procedure.

In the simulations results presented in Sect. 6, using M = 5 trials worked well in all
examples. Further work is required to investigate theMCMCperformance as both the number
of trials and the target dimension changes. This investigation goes beyond studying only
Plateau proposals, and therefore is left to future work. Some theoretical results for multiple-
try methods concerning the limiting behaviour M → ∞, are available in [15].
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A A note of convergence of adaptive component-wise multiple-try
algorithms

The convergence (in total variation distance) of algorithms of the form of Algorithm 1
described in Sect. 4 has been proven in [27]. The proof of convergence is ensured by the algo-
rithm, both the MCMC algorithm and the adaptation procedure, satisfying two conditions:
diminishing adaptation and containment. As mentioned earlier, diminishing adaptation is
satisfied by adapting with probability Pn = max

{
0.99n−1, 1/

√
n
}
. For containment to hold

two technical, but not practical, modifications are required – these follow directly from [27]
and are presented as quotations below with altered notation. The first modification is to

“... choose a very large nonempty compact set K ⊂ X and force Xn ∈ K for all n.
Specifically, we reject all proposals Y /∈ K (but if Y ∈ K , then we still accept/reject
Y by the usual rule)...”

The second modification which is altered for our proposed Plateau distributions is

“... choose a very large constant � and a very small constant ε > 0 and force the
proposal width δ to always be in [ε,�]...”

The proof then follows Sect. 3.5 in [27].
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