KIT | KIT-Bibliothek | Impressum | Datenschutz

Velocity Prediction Based on Map Data for Optimal Control of Electrified Vehicles Using Recurrent Neural Networks (LSTM)

Deufel, Felix 1; Jhaveri, Purav 1; Harter, Marius 1; Gießler, Martin ORCID iD icon 1; Gauterin, Frank ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

In order to improve the efficiency of electrified vehicle drives, various predictive energy management strategies (driving strategies) have been developed. This article presents the extension of a generic prediction approach already proposed in a previous paper, which allows a robust forecasting of all traction torque-relevant variables for such strategies. The extension primarily includes the proper utilization of map data in the case of an a priori known route. Approaches from Artificial Intelligence (AI) have proven to be effective for such proposals. With regard to this, Recurrent Neural Networks (RNN) are to be preferred over Feed-Forward Neural Networks (FNN). First, preprocessing is described in detail including a wide overview of both calculating the relevant quantities from global navigation satellite system (GNSS) data in several steps and matching these with data from the chosen map provider. Next, an RNN including Long Short-Term Memory (LSTM) cells in an Encoder–Decoder configuration and a regular FNN are trained and applied. The models are used to forecast real driving profiles over different time horizons, both including and excluding map data in the model. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000150752
Veröffentlicht am 19.09.2022
Originalveröffentlichung
DOI: 10.3390/vehicles4030045
Scopus
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2624-8921
KITopen-ID: 1000150752
Erschienen in Vehicles
Verlag Multidisciplinary Digital Publishing Institute (MDPI AG)
Band 4
Heft 3
Seiten 808–824
Bemerkung zur Veröffentlichung Special Issue "Driver-Vehicle Automation Collaboration"
Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 11.08.2022
Schlagwörter artificial intelligence; recurrent neural networks; long short-term memory (LSTM); electrified powertrains; model predictive control; global navigation satellite system (GNSS); real driving cycles
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page