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Kurzfassung

Die Steuerung der Produktion ist eine der Kernaufgaben eines jeden produ-

zierenden Unternehmens. Sie ist insbesondere wichtig, um auf die Anfor-

derungen des Marktes und damit auf die Wünsche der Kunden reagieren zu

können. Aktuelle Trends im Markt führen dabei zu einer hochindividuali-

sierten Produktion bei gleichzeitiger Erhöhung der produzierten Stückzah-

len. Eine Konsequenz daraus ist, dass Unternehmen über flexiblere und

agilere Produktionssysteme verfügen müssen, um auf die sich ständig än-

dernden Kundenwünsche reagieren zu können. Da starre Fertigungslinien

nicht mehr geeignet sind, werden zunehmend komplexere Strukturen wie

die der Werkstattfertigung oder Matrixproduktion eingesetzt. Hierfür wer-

den geeignete Steuerungsmethoden für die Produktion benötigt. Diese Ar-

beit beschäftigt sich mit eben jenen Steuerungsmethoden, genauer gesagt

Methoden zur Planung von Produktionsaufträgen in diesen neuen Produk-

tionssystemen.

Zur Steuerung eignen sich echtzeitfähige und autonome Entscheidungssy-

steme, mit denen die Steuerung der neuen Organisationsstruktur der Pro-

duktion angepasst ist. Agentenbasierte Systeme bieten genau diese Eigen-

schaften und erlauben es, komplexe Planungsaufgaben in kleinere Teilpro-

bleme zu zerlegen, die schneller und genauer gelöst werden können. Sie er-

fordern die Verfügbarkeit von Daten in Echtzeit und eine schnelle Kommu-

nikation zwischen den Agenten, was heute dank der vierten industriellen

Revolution zur Verfügung steht. Demgegenüber steht der erhöhte Koordi-

nierungsbedarf, der in diesen Systemen beherrscht werden muss. Das Ziel

dieser Arbeit ist es, einen dezentralen Produktionsplanungs-Algorithmus

zu entwickeln, der in einem Multi-Agenten-System implementiert ist. Er

berücksichtigt begrenzte Verfügbarkeit von Pufferplätzen an jedem Arbeits-
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Kurzfassung

platz, ein Thema, das in der Literatur wenig erforscht ist. Der Algorithmus

ist in einer flexiblen Werkstattfertigung anwendbar und zeigt eine große

Zeiteffizienz bei der Einplanung größerer Mengen von Aufträgen.

Um dieses Ziel zu erreichen, wird zunächst der Produktionsplanungs-

Algorithmus ohne das Agentensystem entworfen. Er basiert auf der von

Adams et al. (1988) veröffentlichten Shifting Bottleneck Heuristik. Da vie-

le Änderungen notwendig sind, um die geforderten Eigenschaften berück-

sichtigen zu können, bleibt nur die grundlegende Vorgehensweise gleich,

während alle Schritte der Heuristik von Grund auf neu modelliert werden.

Anschließend wird ein Multi-Agenten-System entworfen, das die genann-

ten Anforderungen abbildet und den Algorithmus zur Planung verwendet.

In diesem System hat jeder Arbeitsplatz einen Arbeitsplatzagenten, der für

die Planung und Steuerung seines zugeordneten Arbeitsplatzes zuständig

ist, sowie einige zusätzliche Agenten für die Kommunikation, die Daten-

speicherung und allgemeine Aufgaben. Der entworfene Algorithmus wird

angepasst und in das Multi-Agenten-System implementiert. Da das System

im praktischen Einsatz immer eine Lösung finden muss, stellen wir mög-

liche Fehlerfälle vor und wie mit ihnen umgegangen wird. Abschließend

findet eine numerische Evaluierung mit zwei realen Produktionssystemen

statt. Da sich diese Systeme in einem wichtigen Merkmal ähneln, werden

weitere zufällig erzeugte Beispiele getestet und ausgewertet.
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Abstract

Production control is one of the core tasks of any manufacturing company.

It is crucial to respond to the market requirements and thus to the demands

of the customers. Current trends in the market lead to highly individual-

ized production with a simultaneous increase in the number of goods pro-

duced. One consequence of this is that companies must have more flex-

ible and agile production systems to respond to constantly changing cus-

tomer requirements. Since rigid production lines are no longer suitable,

more complex structures such as job shops or matrix production increas-

ingly see usage. They require suitable control methods for production. This

thesis deals with those control methods, more precisely with planning pro-

duction orders in these new production systems.

Real-time and autonomous decision systems are suitable for the control of

the new organizational structure of production. Agent-based systems of-

fer precisely these characteristics and break down complex planning tasks

into smaller sub-problems that can be solved faster and more accurately.

They require real-time data availability and fast communication between

agents, which is available today thanks to the fourth industrial revolution. It

contrasts with the increased coordination requirements that these systems

must master. The goal of this work is to develop a decentralized production

scheduling algorithm implemented in a multi-agent system. It considers

the limited availability of buffer space at each workstation, a topic that is

not well studied in the literature. The algorithm is applicable in a flexible

job shop environment and shows excellent time efficiency in scheduling

large quantities of jobs.

The production scheduling algorithm is first designed without the agent

system to achieve this goal. It bases on the Shifting Bottleneck heuristic
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published by Adams et al. (1988). Since many changes are necessary to ac-

commodate the required characteristics, only the basic procedure remains

the same, while all steps of the heuristic are modeled from scratch. Then, a

multi-agent system is designed to represent the above requirements using

the algorithm for scheduling. In this system, each workplace has a work-

place agent responsible for scheduling and controlling its assigned work-

place and additional agents doing the communication, data storage, and

general tasks. The designed algorithm is adapted and implemented in the

multi-agent system. Since the system always has to find a solution dur-

ing practical use, we present possible failure cases and how to deal with

them. Finally, a numerical evaluation with two real-world production sys-

tems takes place. Since these systems are similar in one crucial feature,

further randomly generated examples are tested and evaluated.
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1 Introduction

Requirements for production systems have always depended on the market

and therefore on the needs of the customers. Companies need to react to

the latest trends in society to stay competitive. Change in the market also

offers opportunities for the companies, for example, to influence the trends

or to open new business segments. In the last decades, a general trend went

from requiring pure mass production towards a more individualized pro-

duction while simultaneously increasing the number of goods produced.

Furthermore, globalization added the need to offer various product varia-

tions for different regions of the world. Figure 1.1 shows a time-line of these

trends in the production area of the last 150 years.

Other trends, which require adaptation of production systems, are shorter

innovation and product life cycles, more competition on global markets,

and higher customer quality demands. These trends lead to a need for more

flexibility and agility in production systems (Leitão 2009). To achieve the

desired flexibility, new design methods and tools for production are neces-

sary. "In the future, long-established paradigms of production will still have

to continue to change in order to meet the demand for even more individu-

ality, customer-specific product variants and shortest delivery times within

the meaning of the term production on demand" (Matt et al. 2015). One of

these paradigms can be the organizational structure of the production. It

is no longer suitable to build inflexible production lines because installing

new lines or changing existing ones requires a high amount of work, know-

how, and money. A new and more modular organization of the production

is required to handle the current trends, based on a job shop or matrix pro-

duction. They allow producing various products and product families in the
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1 Introduction

same production system. However, this only works with a suitable control

and planning system for a much more complex production.

Figure 1.1: Overview of trends in production systems (Koren 2010, p.34)

Currently, we are in the fourth industrial revolution, also called Industry

4.0. Real-time and autonomous control of manufacturing processes be-

comes more and more relevant (Grundstein et al. 2017). It is character-

ized by "connected and communicating systems through the newest in-

ternet technology" (Roth 2016, p. 5). These features enable us to com-

bine the required modular organizational structure of a production system

with a decentralized and modular software structure controlling it. Agent-

based systems are a possible solution for the previously mentioned more

complex planning requirements, enabling decentralized, autonomous real-

time planning decisions. Multi-agent systems allow to break down highly

complex problems into smaller subproblems, making them much more

manageable. The system agents coordinate with each other their local de-

cisions and solve the original global problem together. This approach is

known to offer much more flexibility than traditional hierarchical systems

2



with central planning units (J. Zhang et al. (2019)). Advantages of decen-

tralized planning include faster computing of results, better flexibility to

dynamic surroundings, robust result quality under changing external cir-

cumstances, and better security if parts of the system fail. On the other

hand, it needs extra measures to make sure the system is working continu-

ously. These include ensuring that the data is consistent between the ele-

ments and that the agents can exchange it in real-time with a reliable com-

munication structure between the different parts of the production system.

Furthermore, it needs to include additional rules if a communication is not

successful or data is missing.

Parente et al. (2020) write that current decentralized multi-agent systems

are limited to selfish decisions and local optima and that the challenge is

to gather available data to approach globally optimal decisions. This thesis

tries to improve upon that point by introducing a new multi-agent system

for scheduling, in which the agents consider the other agents in their lo-

cal decisions to obtain a better global solution. This work aims to develop a

decentralized scheduling algorithm, which incorporates limited available

buffer space at each workplace. It schedules a flexible job shop production

and scales to large production systems without losing much efficiency. The

solution is based on a multi-agent system and can react to any change of

the production system it represents at the latest at the start of the following

scheduling. The idea behind this thesis originated with an existing modu-

lar production system in mind. The goal was to create a suitable planning

algorithm to schedule it. The usual approach in practice is to use an algo-

rithm for scheduling and then decide how much buffer space is required

in the production afterward, making limited buffers in production systems

not often researched in the literature. In our case, since the factory for the

application of this algorithm already existed, there were already clearly de-

fined maximum buffer slots available. Therefore, the algorithm presented

in this works needs to be able to handle this restriction. Nevertheless, we

designed the presented algorithm to be applicable in any given discrete

production system with the same features. It was a requirement that the al-

gorithm should be as deterministic as possible, meaning that the rules and

3
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decisions taken by it based on the current situation are comprehensible to

a human, and nothing happens seemingly by chance. This requirement

excluded several meta-heuristics, like, for example, a genetic algorithm or

artificial intelligence methods from the start. Therefore, this work’s algo-

rithm is based on the Shifting Bottleneck heuristic by Adams et al. (1988)

since previous publications have proven that it gives good results, and its

structure makes it perfectly adaptable to a decentralized system.

Structure of the Thesis

The thesis starts by giving an overview of the two topics combined in this

work. First, scheduling is introduced in chapter 2, followed by introduc-

ing multi-agent systems in chapter 3. Both chapters include a short in-

troduction to their topic and an overview of the later chapters’ methods.

They also contain a literature review of the relevant publications. These

include extensions of the method used for scheduling and existing appli-

ances of multi-agent systems for production planning. Chapter 4 contin-

ues by giving a presentation of the scheduling problem underlying this the-

sis. It combines the problem and the literature overview of the previous

chapters, identifies the research gap, and develops the research questions

concerning the problem.

The following two chapters are the central part of the thesis. Chapter 5

presents an algorithm to solve the scheduling problem based on the Shift-

ing Bottleneck heuristic presented in chapter 2. Since not much more than

the basic idea is kept from the original method, it presents all the algorithm

steps in detail. The new algorithm is an iterative procedure consisting of

four steps. First, it describes the general procedure, and afterward, all of

the steps in detail. Chapter 6 applies the developed algorithm in a multi-

agent system. It starts with describing the multi-agent system structure and

a description of all elements present in it. Furthermore, it describes the

necessary changes and additions to make the developed algorithm work

in a decentralized system. Since termination is an essential topic in a de-

centralized system, we finish by describing the features and safety func-
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Chapter 2 Chapter 3

Chapter 5

Chapter 4

Chapter 6

Chapter 7

Chapter 8

Figure 1.2: Organization of the thesis

tions present in the agent system to guarantee always finding a solution

to a scheduling call.

Afterward, chapter 7 presents a numerical evaluation of the algorithm com-

pared to a FIFO (First-In-First-Out) solution. After describing the experi-

ments’ setup, we apply the algorithm in the production system of two com-

panies. Since these real-world examples have a common characteristic, we

did further tests on randomized systems without that limitation. Finally,

the chapter 8 concludes this thesis. It presents the achieved results and an-

swers to the research questions and presents an overview of how the work

can continue in the future.
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2 Basics of Scheduling

As mentioned in the introduction, the thesis combines two research fields,

scheduling, and multi-agent systems, into one production planning sys-

tem. In this chapter, we start presenting the first area, the scheduling of

production systems. After giving a short general introduction to schedul-

ing, including basic notations and definitions, it presents the Shifting Bot-

tleneck heuristic used in this thesis’s model in detail. Finally, a presentation

and discussion of the extensions and appliances of the literature method

conclude this chapter.

2.1 Introduction to Scheduling

According to Graves (1981), scheduling is the allocation of available pro-

duction resources over time to best satisfy some set of optimization crite-

ria. In the classical application of production scheduling, these resources

are automated machines or manual workplaces used to produce jobs. Jobs

are generally composed of operations, which the given workplaces process,

needing a specific processing time to do so. A schedule then is an allocation

of operations and time slots in which suitable workplaces do the process-

ing. So-called Gantt-Charts can depict schedules, which makes them easy

to read and understand. Figure 2.1 shows an exemplary schedule, once job-

based and once machine-based. Both show a schedule, including four jobs

and three workplaces.
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Figure 2.1: Gantt-Chart of a schedule, once machine-based (a), once job-based (b) (Brucker
2007, p. 2)

2.1.1 Notation

The number of jobs and workplaces has to be finite in every scheduling

problem (Pinedo 2012, p. 13). A job is denoted by n and a workplace by m.

N and M stand for the set of all jobs and workplaces. Subscripts are given

as j for jobs and i for workplaces. A pair (i , j ) describes the processing of

job j on workplace i and is also called an operation o. Operations of a job

number from 1 to k. When the last operation of a job finishes, the job itself

is considered finished. In the basic case, the numbering means that opera-

tions process in that order, and the sequence is fixed. From these basic defi-

nitions, some more definitions regarding jobs are possible. The operation o

always has a processing time tp , representing the time needed to complete

the processing of job j on workplace i . A job may have a release date r j if it

is not available at time 0. The release time represents the earliest time the

job can start processing its first operation. Jobs may have a due date d j . It

stands for an externally given date when the job has to be completed, not to

be late. Both due dates and release dates as defined here are for the whole

8



2.1 Introduction to Scheduling

production system. They also exist locally at a workplace using the same

notation, where they mean the earliest time an operation can start or has to

finish at that workplace in order to comply with the global value.

2.1.2 Optimization Criteria

The optimization criterion defines the goal of the scheduling process that

the scheduling algorithm tries to achieve. It has the form of an objective

function, which is always formulated so that it is to be minimized in sched-

uling problems. A due date does not exist for every scheduling problem. In

case jobs have due dates, the objective function bases on these. If schedul-

ing is done without due dates, other criteria, for example, the completion

time of jobs, are chosen. Many optimization criteria can apply to a sched-

uling problem. Here, we present only a few of the more common ones in

the following table. Definitions of the criteria stem from Pinedo (2012, p.

18-19).

Name Variable Description

Makespan Cmax Optimizes the completion time
of the last job in the schedule.

Maximum lateness Lmax Optimizes the worst violation of a
due date for all scheduled jobs.

Total completion time
∑

C j Optimizes the sum of all comple-
tion times, possibly weighted.

Total tardiness
∑

T j Optimizes the sum of all due date
violations, possibly weighted.

Number of tardy jobs
∑

U j Optimizes the number of jobs
which violate their due date,
possibly weighted.

Table 2.1: List of relevant optimization criteria (taken from Pinedo (2012))

There are also more complex objective functions, which combine several

of the above goals or extend them. For this thesis, however, the above-

mentioned objective functions are sufficient as we will only use them.

9



2 Basics of Scheduling

2.1.3 Shop Models

From the given notation, fundamental scheduling problems, also called

shop models, can be derived. Here we will present the three standard mod-

els, called flow shop, job shop, and open shop, and some of the extensions

made to them in the literature. The way the operations within a job are se-

quenced defines the three models. All of them assume that precisely one

workplace can process a given operation. For a more detailed description

of each of the three basic shop models, we refer the reader to Blazewicz et

al. (2019), who explain the models in detail.

Flow Shop

The flow shop is the most simple of the three models. Here the flow of ma-

terial is always the same. The flow direction is the same for every job that

needs to be scheduled and is known beforehand. The only possible excep-

tion is the skipping of a workplace; going backward in the flow is not al-

lowed, as shown in figure 2.2 showing an exemplary flow shop.

Machine 1 Machine 2 Machine 3

Machine 4Machine 5Machine 6

S1

S2

S3

E1

E2

E3

E4

Si/Ei Start / end of job i

S4

Figure 2.2: Exemplary flow shop
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2.1 Introduction to Scheduling

Job Shop

The assumptions in a job shop are less restrictive than in the flow shop.

Here, an external source still gives the sequence of operations in a job, but

various jobs can have different sequences. Thus, the order of workplace

visits is still known before scheduling. However, material flow through the

system differs because every job has its own route. Figure 2.3 shows an

exemplary job shop.

E3

Machine 1 Machine 2 Machine 3

Machine 4Machine 5Machine 6

S4

S1

E2

S2

E1

E4

S3

Si/Ei Start / end of job i

Figure 2.3: Exemplary job shop

Open Shop

Different from the other two models, the open shop relaxes the property

that the sequence of operations is predetermined. In an open shop opera-

tions can instead be completed in any order. Since there are no precedence

relations between a job’s operations, workplace visits of two jobs from vari-

ous products differ, like in the job shop. In contrast, the order of workplace

visits also differs between identical jobs. The open shop allows the process-

ing of all operations of the job in any order. Figure 2.4 shows an example

where one job is processed in five different ways.
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Machine 1 Machine 2 Machine 3

Machine 4Machine 5Machine 6

S1

S1‘

E1‘

S1‘‘

E1‘‘ S1‘‘‘‘E1‘‘‘

S1‘‘‘ E1‘‘‘‘

E1

Si/Ei Start / end of job i

Figure 2.4: Exemplary open shop

More Advanced Shop Models

Numerous possible extensions to the three presented basic models are pos-

sible. Since the basic models are very restrictive, many additional features

were developed to make the models better applicable in practice. In this

section, we present some of them relevant to the model developed in this

thesis. The presented models do not have a unique name in most cases.

However, when authors mention more advanced shop models, they are

sometimes named by their new features or complex or practical job shops.

Table 2.2 gives an overview with a detailed description following afterward.

Name Description

Flexible shop Multiple machines offer the same process
Partial shop Mix between a job shop and open shop
Transport Includes transportation times
Setup Includes setup times
Buffers Slots for waiting jobs are limited
Stochasticity Times in the model are stochastic

Table 2.2: List of advanced shop models
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2.1 Introduction to Scheduling

The first extension is the so-called flexible shop (for reference see Pinedo

(2012, p. 15)). It is possible to make in any of the three basic models. In

the three basic models, every workplace is unique and only available once.

In the flexible shop, there may be more than one workplace processing a

given operation. This situation leads to the problem that the scheduler

does not know before scheduling which workplace will process which op-

eration of a job. The flexible shop allows identical parallel workplaces in its

easiest form, which have the same processing time for each operation. A

more complex version allows non-identical processing times for the same

operation at different workplaces. An even more complex variation is al-

lowing one workplace to process more than one type of operation. As a

practical example, we could have a system where workplace one is a saw-

ing machine, but machine two can saw and drill. The scheduling problem

is now more complicated than before because all parallel workplaces share

the same subset of operations from a given set of jobs in the flexible shop.

With the multi-purpose workplace extension (see Brucker (2007, p. 293ff.)),

workplaces only share some of the operations, or they share them with dif-

ferent subsets of workplaces. In the case of these features, the scheduling

problem splits into two parts. Then the first step only determines which

workplace processes which operation. Then in a second step, the regular

scheduling would take place. It is also possible to do both steps together

which will most likely lead to better results as it offers an algorithm more

optimization potential.

If some of the operations in a job have a fixed sequence but others do not,

the resulting model is a mix between a job shop and an open shop (see

Brucker (2007, p. 226)). This shop type has different names in the literature;

we will refer to it as a partial shop, as for example in Amin-Naseri and Af-

shari (2012). Another feature regarding the sequence of operations in a job

is to include recirculation or re-entrance of jobs. Then, one job can visit a

workplace or do an operation more than once during its process sequence.

The only time given in the basic models is the processing time of a job.

There can be additional steps in the processing of a job that require time

usage. They could, for example, be transport times between workplaces or

13
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setup times on a given workplace. Setups are mostly modeled sequence-

dependent, meaning that the specific time needed for setup depends on

the current and the next job to be processed. Furthermore, setup can be

done parallel to processing or only in between the processing of two jobs.

Both setup and transport could also be resource-limited so that only a fixed

number of transport vehicles or a given number of tools is available.

Another important point is the inclusion of waiting areas at or between the

workplaces. The basic models assume that there is an infinite amount of

space for waiting available at every workplace. If the modeled system has

limited buffer space, every job has to be at a waiting spot or in transport

at any given time between the processing of two operations. A general as-

sumption is that a job uses input buffer slots before processing an opera-

tion on a workplace starts and output buffer slots after processing. A buffer

slot may also be used for both, depending on the model. A buffer slot may

only be used by the workplace which it is allocated to and not by any other

workplace. There can also be buffer slots allocated to no workplace, which

are usable by every workplace. Limited waiting space can lead to blocking

(see Pinedo (2012, p. 17) where a job cannot leave the current workplace

since the next workplace in the process step has no space in its buffer to

accommodate the job. The current workplace is then blocked if it cannot

continue processing because all buffer slots are full. Limited waiting space

can also lead to deadlocks where two workplaces want to transport two jobs

between each other, but both cannot start because all buffer slots are full.

What a deadlock exactly is will be described in chapter 3.

As the last extension, every aspect of a scheduling model is either deter-

ministic or stochastic (see Pinedo (2012, p. 245ff.)). In deterministic mod-

els, every event or time is known beforehand, while in stochastic models,

events or times occur according to a probability distribution. That includes

any time used in the model, which can be either faster or slower than the

planned average, and workplaces’ downtime in which they are not avail-

able for processing.

Later in this work, in chapter 4, these extensions will be used again. There,

the scheduling model underlying this thesis will be defined.

14



2.2 The Shifting Bottleneck Procedure

2.2 The Shifting Bottleneck Procedure

The algorithm presented in this work bases upon the Shifting Bottleneck

procedure (SB) published by Adams et al. (1988). A numerical example of

the procedure can be found in Pinedo (2012, p. 196ff.). The procedure

applies in the standard job shop scheduling model. It follows an iterative

heuristic approach, which is why we also call it SB heuristic, where the main

idea is to identify a bottleneck in each iteration. In the following iteration,

all other machines then take into account the local schedule of the bottle-

neck. This section describes the procedure as Adams et al. (1988) released

initially. Table 2.3 summarises all variables used in the description of the

procedure.

Variable Description

N Set of all jobs to be scheduled
M Set of all machines in the job shop
O All operations of jobs N
pi Deterministic processing time of operation i
ti Start time of operation i
ri Earliest time operation i can be started
fi Latest time operation i should be finished to not increase

the objective function value

Table 2.3: List of variables used in the Shifting Bottleneck procedure

A set of N = {0,1, ...,n} jobs needs to be scheduled on M machines. The jobs

are described by a number of process steps. Each process step is assigned to

a machine and the order in which the process steps of a job have to be com-

pleted is known. The set On contains all process steps of job n, also known

as operations, and the set O contains all operations to be planned. Om con-

tains all operations which are completed on machine m. Each machine

can only process one operation at a time. The time needed for process-

ing pi is known and fixed and cannot be interrupted. In the optimization

problem, ti represents the start time of operation oi . The goal is to create

a schedule that minimizes the makespan given by the objective function
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which minimizes the latest start time of any operation. The formalization

of this problem looks as follows:

min maxi∈O ti

s.t. t j − ti ≥ pi , j > i ,∀(i , j ) ∈On ,n ∈ N

ti ≥ 0, ∀i ∈O

t j − ti ≥ pi ∨ ti − t j ≥ p j , ∀(i , j ) ∈Om ,m ∈ M

(2.1)

The three constraints in this problem ensure a job shop. The first states

that the difference in start times of two operations of the same job must be

larger or equal to the earlier operation’s processing time. The second states

that start times can only be in the future, while the last one forbids that two

operations can be processed simultaneously on a machine. A solution is

achieved by deploying the following iterative approach, where M0 contains

all machines that are already sequenced (M0 is empty at the start):

Step 1: Update the release times ri and the due dates fi of every op-

eration.

Step 2: Create a sequence on all machines M\M0 and identify a bot-

tleneck machine m among them. Set M0 = M0 +m.

Step 3: Re-optimize the sequence of each critical machine M0 while

keeping the other sequences fixed. Then, if M = M0 stop, otherwise

go to step one again.

In the following, each of the three steps is described in detail.

Updating the Release Times and Due Dates

At the start of the procedure, the initial makespan is equal to the longest

job’s total processing time in N . In the iterative solution procedure, each

operation i is assigned a release time ri , which describes the time it can be

processed the earliest. This time calculates by summing up the process-

ing times of all previous operations. If any previous operation is already

scheduled, ri calculates by taking the start time of the closest predecessor

already scheduled and summing the processing times from there. The due
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2.2 The Shifting Bottleneck Procedure

date fi is the latest time the operation has to finish not to increase the com-

plete schedule’s makespan, which can be calculated similarly to the release

time by taking the current makespan and subtracting the preceding pro-

cessing times.

Identifying the Bottleneck

Before identifying the bottleneck machine in step 2, the local scheduling

problem is solved for every machine using the algorithm of Carlier (1982),

which will be explained subsequently. At every point during the creation

of the local schedule, a priority dispatching rule is applied. The rule takes

all operations available to be scheduled at time t (all operations with ri ≤ t )

and chooses the one with the earliest due date fi . In case of a tie, it takes the

one with the longest processing time on the current machine. If there is no

operation available at time t , but there are still operations to be scheduled,

t is set to the minimum r of all operations to be scheduled. In the following

formalized form of this algorithm, U is the set of operations already sched-

uled and U the set of all unscheduled operations:

Step 1: Set t = mini∈I ri ; U =;.

Step 2: At time t , from amongst the ready operations i (ri ≤ t ) of U ,

schedule the operation j with the smallest fi .

Step 3: Set U = U ∪ { j }, t = max(t +d j ,mini∈U ri ),U = U \{ j }. If U is

empty, the algorithm is finished. Otherwise, go to step two.

After scheduling all machines with this algorithm, the bottleneck has to be

identified. For this, the makespan of each machine is calculated. Since aim-

ing for the shortest makespan is equal to minimizing the maximum lateness

of any job on the given machine regarding fi , each operation’s end time in

the schedule is compared to its due date fi . The maximum on a given ma-

chine equals the makespan delay of that machine. The bottleneck then is

the machine with the highest makespan delay of all machines. In case of a

tie, one can choose any of the machines at random.
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Re-optimizing the Sequences

At the end of each iteration, the local re-optimization uses the same algo-

rithm as the local sequencing. The local sequencing repeats for every ma-

chine that has already been the bottleneck of an iteration. If there was an

improvement, the old schedule is replaced. Otherwise, no action is taken.

The re-optimization cycle finishes once every bottleneck machine has been

rescheduled. If there was an improvement during the current cycle, another

one starts. Adams et al. (1988) however arbitrarily limit the number of cy-

cles to three up to the point where M0 contains all machines. Then, in the

last iteration, the cycle only stops if there was no improvement for an en-

tire cycle. During the re-optimization step, machines are rescheduled in

order of their makespan value, starting with the highest—their order up-

dates after each cycle.

Adams et al. (1988) propose an additional measure before starting the next

iteration, which is only mentioned here for the sake of completeness of the

method since the algorithm presented in this work does not use it. They

found it helpful to repeat the procedure after removing some non-critical

machines with a maximum of
p|M0| machines removed. They define a ma-

chine as non-critical if none of the operations done on this machine is on

the schedule’s critical path. If there are more non-critical machines than the

maximum allowed number, those with the lowest makespan are removed.

After the re-optimization cycle, the machines are added one by one until

M0 contains all machines again. Then the next iteration starts.

2.3 Extensions of the Shifting Bottleneck

Procedure

Since Adams et al. (1988) published the Shifting Bottleneck heuristic more

than 30 years ago, numerous extensions to it have been made. Here, we

want to give a short overview of the most relevant ones. The advanced

scheduling models presented in chapter 2.1.3 are the basis for most exten-
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sions. The extensions to the Shifting Bottleneck procedure divide into two

groups. The first group extends or changes only the local workplace sched-

uling subproblem, while the second changes the procedure itself. The fol-

lowing two sub-chapters are not supposed to give the reader a complete

overview of all the publications related to the Shifting Bottleneck proce-

dure. Instead, we focus on those most relevant to our work. The publica-

tions not mentioned are applications of the procedure without adding new

features or replacing large parts of the procedure with different algorithms,

whereas we are only interested in publications that remain somewhat close

to the original procedure. The results from this section will be discussed

later in chapter 4.

2.3.1 Changes to the Single Workplace Subproblem

Changes to the local sequencing are as common as changes to the pro-

cedure itself. They are because many of the advanced shop models pre-

sented in chapter 2.1.3 can be implemented into the SB without changes to

the procedure itself and only require more advanced local sequencing al-

gorithms. An overview of all publications presented in this section can be

found in table 2.4 and 2.5. Both tables list the same publications but sep-

arate after specific characteristics. The columns of the tables stand for the

type of change or additional characteristics added in the publication.

The goal of the original Shifting Bottleneck procedure is the minimization

of the makespan. Since jobs in a real-world production system often have

delivery or due dates, much research has been done to incorporate a differ-

ent optimization function within the same procedure. Pinedo and Singer

(1999) change the objective function to minimize the Total Weighted Tar-

diness of the jobs. Mason et al. (2002) present a solution with the goal of

total weighted tardiness minimization as well. They use the heuristic in

their complex job shop application, which extends the job shop model with

batch workplaces, setup times, parallel workplaces, and re-entrant process

flows. In Mason and Oey (2003) the published heuristic is slightly changed
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Ovacik and Uzsoy (1992) X X X

Dauzère-Pérès and Lasserre (1993) X

Balas et al. (1995) X

Dauzère-Pérès (1995) X

Uzsoy (1995) X

Holtsclaw and Uzsoy (1996) X

Ivens and Lambrecht (1996) X X

Ramudhin and Marier (1996)

Yoo and Martin-Vega (1997) X

Schutten (1998) X X X

Sun and Noble (1999) X X X

Mason et al. (2002) X X

Wenqi and Aihua (2004) X

Sourirajan and Uzsoy (2007) X X

Balas et al. (2008) X X X

Topaloglu and Kilincli (2009) X

Bilyk and Mönch (2012) X X

Braune et al. (2012) X X

Scholz-Reiter et al. (2013) X X

Braune and Zäpfel (2016) X X

Cayo and Onal (2020) X X X

Table 2.4: Overview of the changes to the single workplace sub problem and their contents
(part 1)
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Ovacik and Uzsoy (1992)

Dauzère-Pérès and Lasserre (1993)

Balas et al. (1995)

Dauzère-Pérès (1995)

Uzsoy (1995) X

Holtsclaw and Uzsoy (1996)

Ivens and Lambrecht (1996) X X X

Ramudhin and Marier (1996) X

Yoo and Martin-Vega (1997)

Schutten (1998) X X X

Sun and Noble (1999) X

Mason et al. (2002) X X X

Wenqi and Aihua (2004)

Sourirajan and Uzsoy (2007) X X

Balas et al. (2008) X

Topaloglu and Kilincli (2009) X

Bilyk and Mönch (2012)

Braune et al. (2012) X

Scholz-Reiter et al. (2013)

Braune and Zäpfel (2016)

Cayo and Onal (2020) X X

Table 2.5: Overview of the changes to the single workplace sub problem and their contents
(part 2)
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since batch processing and delayed precedence constraints sometimes lead

to an infeasible schedule.

Dauzère-Pérès and Lasserre (1993) update the local sequencing with a new

heuristic method which updates the release times of all unplanned opera-

tions each time an operation is planned during the local sequencing. The

update is done because there may be dependent jobs at the same work-

place, which could lead to the situation that the delay of one operation in-

fluences another operation’s release time at the same workplace. This is,

for example, the case if the same job visits a workplace more than once.

Balas et al. (1995) solve the same problem as Dauzère-Pérès and Lasserre

(1993), but instead of a heuristic, they choose an exact approach for the

problem with a branch-and-bound method, which Dauzère-Pérès (1995)

also uses. Braune and Zäpfel (2016) propose new heuristics for the Total

Weighted Tardiness criterion with the specific aim of solving larger problem

instances. Before, in Braune et al. (2012), they proposed an exact algorithm

for the single workplace subproblem solution with the same objective. Yoo

and Martin-Vega (1997) used a new subproblem procedure for the number

of tardy jobs objective function.

Ivens and Lambrecht (1996) extend the procedure with many characteris-

tics that apply in real-world scheduling problems. These include transport

times between workplaces, setup times, parallel workplaces, and planning

not only in empty but also in production systems with work-in-process.

They also include batch processing and the assembly and split of jobs dur-

ing production. Schutten (1998) follows a similar approach and extends the

procedure with more practical features. He takes setup times, parallel work-

places, transport times, orders with more than one job, additionally needed

resources for processing, downtimes, and the assembly or split of jobs into

account. Ramudhin and Marier (1996) take the different shop types into ac-

count, applying the SB to open shops, partial shops, and assembly shops.

Sun and Noble (1999) update the single workplace problem with a heuris-

tic for sequence-dependent setup times. Wenqi and Aihua (2004) propose

a new single workplace algorithm, which they call Schrage algorithm with

a disturbance. They deal with the particular problem of prioritizing be-
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tween two jobs where job one has the earlier release date, but job two has

the earlier due date. Thus, they reduce the due date of jobs that release in

the future by multiplying the time between the end of the current sched-

ule and the job’s release with a coefficient and then subtracting the result

from the original due date. With this change, they can obtain better results

than with the original scheduling algorithm. Sourirajan and Uzsoy (2007)

use a revised SB procedure. The revised procedure schedules single work-

places, parallel workplaces, and batch processes. They integrate the idea

of Balas et al. (1995) and extend the batch processing algorithm of Uzsoy

(1995) for parallel workplaces. Topaloglu and Kilincli (2009) propose a new

single workplace method to schedule a re-entrant job shop with the Total

Weighted Tardiness goal.

In addition to extending the local sequencing problem to include complex

characteristics, some research was done to replace the single workplace

scheduling with different approaches. Ovacik and Uzsoy (1992) apply the

SB heuristic for semiconductor testing operations. They decompose the

system into work centers scheduled with the Jackson heuristic and an ex-

tended local search. They specialize in testing work centers that also in-

clude setup times. In Holtsclaw and Uzsoy (1996) again, two different local

subproblem solution procedures are tested, one providing an optimal, one

a heuristic solution. Balas et al. (2008) extend their algorithm from 1995

with sequence-dependent setup, deadlines, and precedence constraints.

They use an adapted Travelling Salesman Problem for the single workplace

subproblem, which can be solved efficiently. Scholz-Reiter et al. (2013)

replace the subproblem solution and re-optimization step with a variable

neighborhood search. Bilyk and Mönch (2012) also use a variable neigh-

borhood search but implement it in parallel to reduce computation time.

One last relevant use of the SB heuristic comes from Cayo and Onal (2020).

They use the heuristic to schedule a group of work centers but use different

local algorithms to schedule each of them. The applied algorithms mainly

include different dispatching rules but also insertion algorithms.
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2.3.2 Changes to the General Procedure

In contrast to chapter 2.3.1, this section’s publications alter the SB proce-

dure or use it differently. That includes changing the bottleneck selection

criterion, exchanging parts of the procedure for new methods – most often

the re-optimization step –, introducing new features to the heuristic, or tak-

ing measures to reduce problem complexity. An overview of all referenced

publications and their topic can be found in table 2.6.

Holtsclaw and Uzsoy (1996) test different bottleneck selection criteria in-

cluding random, most workload, maximum lateness from two different lo-

cal solution procedures, and a pre-emptive earliest due date approach. Ay-

tug et al. (2003) work on the same topic. They include static measures,

namely the Total Machine Load, the Average Remaining Operations to

Completion, the Average Remaining Processing Time, and dynamic mea-

sures. For the dynamic criterion, they calculate an infeasibility profile for

every workplace. The profile includes the number of jobs processed at a

workplace at any given time. If the number is greater than one, the schedule

is infeasible. From this infeasibility, they develop three criticality measures:

The Maximum Infeasibility, Total Infeasibility, and Average Infeasibility of a

workplace. Using these measures can reduce computing time by up to 20%

compared to the static measures. Mönch and Zimmermann (2007) use sim-

ulation to test different workplace criticality measures for which they com-

bine different measures into a single weighted sum where a simulation then

optimizes the weights. Pfund et al. (2008) use a multi-criteria approach for

the SB, which they based on Mason et al. (2002). They put together the

objectives makespan, cycle time, and total weighted tardiness into a desir-

ability function. It is then used on the single workplace subproblem and

the workplace criticality level. They can show that the combined approach

manages to minimize all three objectives simultaneously.

Lawrence and Sewell (1997) include uncertain processing times into the SB

heuristic. To do so, they create an initial schedule with the expected value

of the processing time and then update the schedule after each successful

processing step according to the difference between expected and actual
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Holtsclaw and Uzsoy (1996) X

Lawrence and Sewell (1997) X

Ovacik and Uzsoy (1997) X

Yoo and Martin-Vega (1997) X

Mehta and Uzsoy (1998) X

Pezzella and Merelli (2000) X

Cheng et al. (2001) X

Singer (2001) X

Mason et al. (2002) X

Aytug et al. (2003) X

Mason et al. (2004) X

Chen et al. (2006) X

Upasani et al. (2006) X

Yeung and Mason (2006) X

Mönch and Zimmermann (2007) X

Sourirajan and Uzsoy (2007) X

Pfund et al. (2008) X

Bülbül (2011) X

Driessel and Mönch (2012) X

Liu and Kozan (2012) X

Q. Zhang et al. (2014) X X

Table 2.6: Overview of publications to the general procedure and their focus
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processing time. Mehta and Uzsoy (1998) use the procedure as the first

step for their heuristics to include workplace breakdowns into the sched-

uling process. They create an initial solution with the SB and then apply

their heuristic to create idle time in the schedules to even out potential

breakdowns. Mason et al. (2004) consider general deviations from the cre-

ated schedule. They tested three different rescheduling strategies to handle

the deviations from the created schedule. The first, Right-Shift Reschedul-

ing, delays the whole schedule by the duration of the interruption. Fixed-

Sequence Rescheduling does not push all operations back by the delay du-

ration but instead uses existing gaps in the original schedule to even out

the delay. The last strategy is Total Rescheduling, which starts the sched-

uling process again with all remaining operations. They confirm that Total

Rescheduling leads to the best results at the expense of computing time,

whereas the other two strategies are faster but lead to 10-30% worse results.

Driessel and Mönch (2012) use the SB for complex job shops and add trans-

portation constraints to it. They first calculate a production schedule and

afterward compute if a capacity-limited transportation system can handle

all required transports. Their goal is to determine the required amount of

transport vehicles for the given production schedule. Q. Zhang et al. (2014)

also solve the scheduling problem with the SB heuristic and then add a sec-

ond heuristic to schedule transportation tasks afterward. If the heuristic

finds no feasible transportation schedule, the scheduling starts again. They

also allow the storage of orders between processing steps. Three storage

types are considered: No wait, no storage, or storage allowed. In the first

one, jobs are not allowed to wait between two operations, whereas in the

second, jobs can wait but only at workplaces since there are no storage

places. If storage places exist and storage is allowed, jobs may only wait up

to a given maximum time between two processing steps. In the case of stor-

age allowed, its capacity at workplaces is always infinite in this publication.

Pezzella and Merelli (2000) extend the SB with a Tabu Search. They use

the SB solution as initial input for a Tabu Search to improve the results.

Yeung and Mason (2006) change the re-optimization step. Instead of re-

optimizing every time, they use a real option analysis to value the option of
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re-optimizing and only do it if their model gives a promising result. They

can reduce the computation time for the Total Weighted Tardiness objec-

tive while simultaneously getting good results. Bülbül (2011) changes the

re-optimization procedure to a Tabu Search for the total weighted tardiness

objective. Liu and Kozan (2012) solve a parallel workplace job shop sched-

uling problem with a hybrid approach between the SB heuristic and a Tabu

Search. They also present a topological sequencing algorithm that effec-

tively calculates the release and due dates for the single workplace subprob-

lems. The hybrid approach is using a Tabu Search for the re-optimization

step in the SB procedure.

Yoo and Martin-Vega (1997) apply the same decomposition technique for

semiconductor production, which Mason et al. (2002) also uses. Unlike

them, however, in this publication, the goal criterion is the number of tardy

jobs. A so-called General Algorithm Framework does the scheduling of the

decomposed work centers, which schedules a set of single workplace prob-

lems. A publication entirely focused on decomposition strategies was pub-

lished by Ovacik and Uzsoy (1997). The ideas were later used again by Souri-

rajan and Uzsoy (2007). They use a revised procedure with a rolling horizon,

where jobs group according to their availability date and only one group is

scheduled at a time. Cheng et al. (2001) use the SB to schedule a paral-

lel workplace flow shop. The bottleneck is not identified on a single work-

place basis, but instead, a stage of the flow shop becomes the bottleneck. To

achieve better results, they also propose a new parallel workplace schedul-

ing heuristic for minimizing the maximum lateness.

Singer (2001) published a time horizon decomposition approach. It splits

operations into groups planned for a certain time window, thus reducing

the problem’s complexity. Also, it allows some overlapping of time windows

to improve the results. Upasani et al. (2006) reduce the problem size of the

decomposition approach by partitioning the work centers into two groups,

one of high utilization and one of low utilization. The SB is only done on

the high utilization work centers, whereas the low utilization work centers

bundle into a single infinite capacity workplace scheduled with a dispatch-

ing rule. Chen et al. (2006) publish an approach for the scheduling of job
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shops with non-identical parallel workplaces. To increase computational

efficiency, they propose a new heuristic that omits the bottleneck selec-

tion part. They schedule all work centers at once with a dispatching rule

and then directly start the re-optimization procedure with all work cen-

ters. They also include a procedure to determine the number of workplaces

needed in each work center.
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Production Planning

There is a trend towards modeling more and more complex systems in pro-

duction and logistics with decentralized solutions as they present a way

to deal with the flexible and modular structure of these systems (Leitão et

al. 2015). This chapter is supposed to introduce a variant of these systems,

called multi-agent systems, focusing on its use for production planning. In

a decentralized system, multiple (sometimes identical) independent ele-

ments work together to achieve the system’s goal. The elements are usually

called "agents". Chapter 3.1 presents a definition, and some essential char-

acteristics of agents. When more than one agent is present in a system, the

system is called a multi-agent system. Multi-agent systems and some im-

plications derived from them are outlined in chapter 3.2. Furthermore, we

want to show some existing agent solutions for production scheduling in

chapter 3.3.

3.1 Characteristics of Agents

As used in this thesis, the term "agent" is the short form of "software-agent".

Ferber defines the term agent (Ferber 1999, p. 9-10). He writes that an

agent is a physical or virtual entity which is capable of acting in an envi-

ronment and can communicate with other agents. It is autonomous and

tries to achieve its goals. For this, it watches its surroundings. This defini-

tion is extensive because it includes every control system and even humans

in it. Ferber presents more specific definitions following the general one.
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However, for this work, a definition by Wooldridge fits: "An agent is a com-

puter system that is situated in some environment, and that is capable of

autonomous action in this environment in order to meet its design objec-

tives" (Wooldridge 2006, p. 15). This definition focuses on software agents

and leaves out all physical agents, which fits agents’ usage in this work. The

autonomous actions mentioned in the definition typically involve the agent

taking input from the given environment and transform it into an output,

which is given back to the environment. With this transformation, the agent

tries to fulfill its goal best.

There are several different categorizations of agents concerning their abili-

ties and features from various authors, which extends this work’s purpose.

One differentiation made is between a reactive and a deliberate agent.

A reactive agent only reacts to the environment without representing its

state towards the environment (Ferber 1994). On the other hand, delib-

erate agents have explicit goals and plans, which fits the description from

Wooldridge. They are also able to store information and save a represen-

tation of the environment in a knowledge base. Actions from deliberate

agents are based on a planning process for realizing the given goals (Büttner

2011, p. 44-45). An exemplary early approach for a deliberate agent is the

BDI-model of Bratman (Bratman 1987). There are also combinations of the

two types, which combine the reactive agent’s fast answers with the slower

but more in-depth responses from the deliberate agent.

Apart from this definition, the term ’Intelligent agent’ is also often used.

According to Wooldridge (2006, p. 23), a reactive agent is not intelligent. In-

stead, the agent also has to take the initiative itself to reach its goal and has

to be able to interact with other agents. This extends the deliberate agent

with the ability to communicate and interact between agents. He states that

it is hard to effectively balance between the blind execution of tasks (similar

to the reactive agent) and the reaction towards new situations by changing

the goal or reaction pattern (p. 24). His argument about the interaction be-

tween agents leads directly towards multi-agent systems. There is a need

for interaction between these agents if their decisions influence each other

in any system with more than one agent making decisions.
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3.2 Multi-agent Systems

3.2 Multi-agent Systems

A multi-agent system consists of at least two agents who interact to reach

their own or shared goals (Jung 2016). In theory, a multi-agent system can

consist of an unlimited number of agents. The goal of using multiple agents

is to solve problems that a single agent would not be able to solve (Monos-

tori et al. 2006). Figure 3.1 shows an exemplary structure of a multi-agent

system. Each agent in this system has its own goal. If two agents have the

same goal, they have to cooperate to reach it. If their goals are different,

they are automatically rivals if they cannot reach their goals simultaneously.

Each agent has its area of influence in the environment, which does or does

not overlap with that of other agents. As one can see in figure 3.1, agents

may be in a group. Between the various groups or also within a group, there

may be a hierarchy of the agents. A hierarchy indicates some control of one

group of agents over another group. This, however, is not depicted in the

figure. According to Lima et al. (2006), apart from a hierarchical relation,

two other relations between agents are possible. Agents can either be au-

tonomous, which means that they can talk to each other directly or build a

federation where the communication takes place via a mediator architec-

ture. Of course, different relation types can also mix in a single system.

3.2.1 Interactions between Agents

Interactions mostly take part between the agents in a group, but it does not

have to be limited to that. Agents of different groups or even whole groups

can also interact with each other. The interaction between the agents can

include but is not limited to cooperation, coordination and negotiation

(Wooldridge 2006, p. 3). For agents to be able to communicate, they need

to talk in the same language. There are numerous communication proto-

cols described in the literature, which will not be presented in detail here,

as we developed the communication of the presented system without us-

ing an existing protocol. This will be presented in chapter 6. In addition

to a common language that defines the structure and content of messages

agents send and receive, agents also need a way to exchange messages.
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Environment

Area of influence

Agent

Interaction

Organizational relationship

Figure 3.1: Exemplary multi-agent system (Wooldridge 2006)

This problem does not exist in centralized systems since all information is

present at the only agent’s location (in our case, the scheduler or sched-

uling agent). Measures to share data and information between the agents

must exist if this is not the case. It is not only crucial that adequate data or

knowledge is present in decentralized systems since it can be done without

problems, as we will see. If many agents are to execute local algorithms, but

the agents’ results are dependent on each other, the system must guarantee

that the independent agents achieve fitting results. This will be discussed

further in the chapter 3.2.2 about coordination. For sharing information,

two different ways are common in multi-agent systems, shown in figure 3.2.

The first is the blackboard approach (shown on the left), a decentralized

system in which the data storage is centralized. Mandal et al. (2010) de-
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Database Agent

Blackboard approach Decentralized storage

Figure 3.2: Examples for data storage

scribe it in more detail. A communication artifact or blackboard serves

as a shared central information pool in which agents can store data and

messages. All agents can then retrieve information from the blackboard.

It makes the coordination between agents easier without taking away the

agents’ independent decision-making (see also Lee and Kim (2008)). The

second way (right side of the figure) works without such a tool. It stores data

directly in each agent. That creates a need for a feature to exchange new in-

formation between the agents to keep all databases in synchronization and

to ensure that agents only get the information relevant to them. For this,

event systems were developed. In them, each message (called "event") cre-

ated by an agent contains a topic. Agents can subscribe to topics and so

only receive the messages relevant to them. An event-managing agent is

responsible for receiving and distributing the messages without process-

ing them. This type of event processing is called a publish-subscribe sys-

tem. A detailed introduction to these systems can be found in Tarkoma

(2012). One can also use it in combination with the blackboard approach

where messages can be used, for example, to tell other agents to start or

stop working.

33



3 Multi-Agent Systems for Production Planning

An essential point for the interaction is that agents have to understand the

messages sent between them. If the agent system is developed newly from

the start, this is not a problem. However, if agents from various projects

or developers interact, a common language or ontology is necessary. An

example of a formalized system is the contract net protocol by Davis and

Smith (1983) which resembles an auction. In this thesis, we created the

interaction between the agents without considering any existing systems.

Therefore, we will not describe any protocol in detail here.

3.2.2 Coordination and Planning

A reason for using the described communication among the agents is the

coordination between them. Coordination is the problem of managing all

inter-dependencies between the agents (Wooldridge 2006, p. 200). There

are several approaches to ensure proper coordination between agents.

They depend on the fact whether the agents in the systems cooperate or

compete towards their goals. Cooperating agents work together to reach a

common goal. Competing agents, however, follow different goals and only

work together if needed. As this thesis’s topic requires the agents’ coop-

eration, we will focus on this aspect in the following. Cooperation can be

achieved in two different ways. By dividing the goal into several sub-goals

where a better result for a sub-goal leads to a better result for the overall

goal, agents automatically cooperate even if they act selfishly. This can be

reversed in that the different sub-goals compete with each other, whereby

the better fulfillment of one target can lead to a worse fulfillment of the

overall target. The second approach is to divide the possible actions, which

then distribute among the agents. If all of the agents have the same goal,

they need to work together to achieve it. This way, joint intentions of the

agents achieve the coordination (p. 204). Systems can also use a coordina-

tion agent to monitor the coordination or to make decisions if the agents

cannot settle on a solution. This approach is called Cooperative Multi-

Agent Planning as stated by Torreño et al. (2017).

34



3.2 Multi-agent Systems

Without considering hierarchies, there are three possibilities for planning

in a multi-agent system. The descriptions and evaluations stem from

Wooldridge (2006, p. 218-219). Ferber (1999) had previously described

almost the same possibilities more in-depth. The simplest way, because

it eliminates all necessary coordination, is to plan centrally and only exe-

cute the plan with several agents. Here, a central planning agent creates

a plan for one or several executing agents while the planning agent views

the whole system. This automatically introduces a hierarchy since the ex-

ecuting agents will use every plan given to them by the planning agent. As

a second step, the planning could also be done decentralized. To keep it

easier at first, several agents contribute to one plan where they are special-

ists for certain parts of the plan. This can be extended to the most difficult

possibility, to create individual plans decentralized. As already mentioned,

coordination so that all plans fit together is especially important now. That

is also what makes this step the most complicated. The agents must correct

their local results if they notice that the global solution becomes infeasi-

ble, all while still trying to get the best possible (or at least a sufficiently

good) global result.

When conflicts arise in a multi-agent system, either between cooperating

agents, which cannot decide on the same result or between rival agents,

who want to use the same resource, a fast mechanism for solving the con-

flict is required. For solving conflict situations, various negotiation mecha-

nisms are used. They include auctions, one-to-one negotiation, bargaining

and argumentation-based negotiation (Monostori et al. 2006). Again, this

thesis will use a newly designed system, which does not completely fit any

of the categories mentioned here, as we found none of the existing system

fits our needs perfectly.

Apart from conflicts about the planning result, there can also be conflicts

within the organizational structure. Those lead to deadlocks or livelocks of

the multi-agent system. Tanenbaum and Bos (2015, p. 439) give a formal

description of deadlocks: "A set of processes is deadlocked if each process

in the set is waiting for an event that only another process in the set can

cause". An example of this would be two people standing across each other
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in a very narrow hallway. Both want to continue onwards but cannot do so

since the other person is in the way. They are therefore blocking each other

and causing a deadlock. It is either possible to recover from an existing

deadlock or to avoid one occurring in the first place. An agent system needs

to guarantee one of the two possibilities. Otherwise, it can lead to situations

where the system fails, and manual intervention becomes necessary. There

are two more related concepts. The first is the livelock, which we already

mentioned. Explaining it with our hallway example again, now the two

persons have enough space to go past each other. However, as they stand

across each other, one moves to the right, while the other moves to the left

simultaneously. They are now standing across each other again, and there-

fore reverse their actions. This creates a cycle in which both are still acting,

but a solution to the problem is never acquired. The last point related to

these two concepts is the starvation of a process. Starvation means that a

process is available to be worked, but this never happens since higher pri-

oritized processes always cut in front of it. For an agent system, this could

be a communication request from one agent to another, which is never an-

swered since the requested agent deems other work more important. Then,

the requesting agent is waiting for an answer endlessly and is starved. We

will also look at this topic and preventing it when discussing deadlocks and

livelocks in chapter 6.3.

3.3 Existing Multi-agent Systems in the

Literature

Having now presented an introduction to multi-agent systems, in conclu-

sion, several existing multi-agent systems for production planning are pre-

sented. They divide into two categories—one for systems connected to the

SB heuristic and one for those not. The most relevant parts for understand-

ing the architecture of a multi-agent system are the types of agents present

in the system and which of those agents are intelligent and which are not.

A further topic of interest is the communication between the agents in the
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given system. Here, we will not explain the presented systems in full de-

tail. Some of them are very similar so that only the differences will be high-

lighted. For others, we mention only relevant or essential aspects of the

publication. Furthermore, since there are numerous multi-agent systems

published in the literature, this section focuses on publications that also

contain the scheduling aspect in the multi-agent system, which is the point

of interest of this thesis.

3.3.1 Applications of the SB Heuristic in Agent

Systems

The first to use the SB heuristic in agent systems were Brandimarte et

al. (2000). They use a two-level architecture consisting of local schedulers

for the workstations and a material coordinator above them. Figure 3.3 de-

picts the schema. They assume that every job has a given release and due

date. The coordinator determines a time window for each operation from

the job time window and sends it to the respective local scheduler. Each

time window’s start and end times serve as the release and due date for that

operation on the workstation. The local scheduler then tries to create an

optimal schedule from the given time windows. The scheduling finishes if

the time windows are feasible for each local scheduler. If not, the coordina-

tor updates the time windows, and the process continues iteratively until

it finds a solution. This process is decentralized, and the local scheduling

agents plus the material coordinator exchange the time windows and solu-

tions through messages. The result of this algorithm is not a plan that local

work centers have to adhere to but instead time windows for operations,

which were proven feasible during the planning step. If a local work center

cannot hold the given due date during the processing of an operation, it ex-

changes messages with the following work center agent to see if the delay

can be buffered there.

Mönch and Drießel (2005) use an approach very close to the original SB

heuristic but introduce a second level of decomposition to reduce prob-

lem complexity. They decompose the job shop into several work areas. The
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Figure 3.3: Two level architecture (Brandimarte et al. 2000)

SB heuristic is then applied on two levels. They use it to create a schedule

among the work areas, where each work area uses the SB heuristic again to

create a local schedule. From the local schedules, a bottleneck work area is

determined. The release times and due dates of all other work areas then

update with the determined bottleneck area’s start and release times. From

there on, the standard process of doing the local scheduling for all remain-

ing work areas applies. This repeats until no more work areas remain to be

scheduled. In this publication, there is no intention to use the system in a

decentralized way. The authors call it "distributed" instead, which relates to

the fact that the original bigger problem is decomposed into several more

minor problems at different job shop areas while still, a central process-

ing unit does the scheduling. This procedure was made faster by Drießel et

al. (2010) where they state that the work area subproblems are independent

of each other and can therefore be solved in parallel. The same group of

authors also published their agent-based system for semiconductor sched-

uling. It was first presented in Mönch et al. 2003 and is called FABMAS. This

system transports the hierarchical structure into a FAB (semiconductor fab-

rication plant) agent, work area agent, and work center agent. The idea is
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extender further in Mönch and Stehli (2006) and Mönch et al. (2006). They

operate their system with a centralized FAB scheduling agent, however.

Gavareshki and Zarandi (2011) use an agent system to improve upon a so-

lution found by the SB heuristic. For this, they develop their search method

based on a neighborhood search. Each machine gets one search agent

that tries to improve the local solution towards a global optimization cri-

terion. Iima et al. (1999) do not directly cite the SB heuristic. However,

their method is very similar to a decentralized implementation of the re-

optimization procedure in the heuristic. They generate an initial schedule

according to the Earliest Due Date dispatching rule. Afterward, a random

agent - each machine has an agent in this system - proposes a new solu-

tion. The proposal consists of choosing a random operation on the ma-

chine and producing it earlier. The agent proposes the new solution to all

other agents, which can accept or refuse the new solution. If the new solu-

tion is better on a local agent’s objective, the agent accepts it. The current

best solution is updated in case of all agents accepting. This procedure re-

peats a given number of times.

3.3.2 General Agent Systems for Production Planning

Since usage of the SB heuristic in agent systems is somewhat limited, we

extend our overview of agent systems for production planning to general

agent systems to gather additional information about how other publica-

tions do decentralized production planning. First, we describe a few older

systems and their basic ideas. Afterward, in more detail, more recent and

more relevant publications are presented. An overview of the publications

mentioned in this section and their characteristics can be found in table

3.1. We classified the publications according to whether the agent system

is hierarchical or non-hierarchical and if the decision-making is centralized

or decentralized. A separate category was included for auction-based sys-

tems, as most publications use auctions to reach decisions.

Sikora and Shaw (1997) focus on the communication between planning

agents. In their system, a production line requires scheduling, but also, the
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decision about lot sizes has to be made beforehand. In the first step, two

agents, one for sequencing, one for lot-sizing, work together to create a line

schedule. This is then extended by applications to a system with multiple

lines and re-scheduling practices if changes to the system happen during a

planned time horizon. This approach can be seen as one of the first pub-

lications implementing agents for production planning. It only contains

scheduling agents and leaves out agents to control the system’s workflow,

which later publications also include. Another example focusing on com-

munication is the publication by Krothapalli and Deshmukh (1999). They

design three negotiation protocols that agents can use to create a sched-

ule and then compare them to a hierarchical model. The first model used

is based solely on the processing time of the tasks where the job chooses

the machine with the shortest processing time. The second is a currency

scheme, where jobs enter the system with some arbitrary currency. Ma-

chines calculate a price for processing a job task based on the expected

completion time and their recent bids’ success. The job then evaluates the

prices and chooses one within the limits of its money and due date. The last

model is similar to the second and additionally allows the pre-emption of

other tasks depending on the required due dates. Sousa and Ramos (1999)

use negotiation with a focus on problems of indecision and conflict avoid-

ance. Indecision occurs when a resource makes a bid for a production task

and is not informed about the bid’s acceptance or decline before bidding

for a second task, which it could produce in the same time slot. This prob-

lem is avoided by only allowing tasks to start a negotiation with resources

currently not in another negotiation process.

A multi-agent system, called HOLOS, was published by Rabelo et al. (1999).

It consists of a scheduling supervisor, enterprise agents assigned to every

resource, so-called distribution centers (groups of enterprise agents) whose

responsibilities contain choosing the best agent for an order. Lastly, the

consortium consists of the enterprise agents chosen to process an order.

The scheduling works with a negotiation process on an auction basis, which

Rabelo and Camarinha-Matos (1994) describe in detail. Another early ex-

ample for a negotiation on auction-basis is from Schoop et al. (2001). How-
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Rabelo and Camarinha-Matos (1994) X X X

Sikora and Shaw (1997) X X

Krothapalli and Deshmukh (1999) X X X

Rabelo et al. (1999) X X X

Sousa and Ramos (1999) X X X

Bussmann and Schild (2001) X X X

Schoop et al. (2001) X X X

Frey et al. (2003) X X X

Leitao and Restivo (2008) X X X X

Wang and Lin (2009) X X X

Sudo et al. (2010) X X X

Renna (2011) X X X X

Giordani et al. (2013) X X X

Y. Zhang et al. (2014) X X

Wang et al. (2016) X X X

Klein et al. (2018) X X X

Guizzi et al. (2019) X X X

Maoudj et al. (2019) X X

Mayer et al. (2019) X X

Egger et al. (2020) X X

Groß et al. (2020) X X

Table 3.1: Overview of publications of agent systems for production planning and their classi-
fication
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ever, the publication does not state how offers and decisions are calculated.

Bussmann and Schild (2001) present a more complex auction system. Their

system consists of three agent types, one for the machines, one for the jobs,

and a third for the transportation between machines. When an operation

of a job finishes or a job enters the system, the job agent starts an auction.

All machines configured to perform the task then make a bid based on their

current workload and the number of tasks the machine can do. After col-

lecting all bids, the job agent decides which machine to choose. If no bid ar-

rives, it restarts the auction. One interesting point for practical application

is that the machine agents manage their virtual input and output buffers.

The input buffer contains all the machine’s open tasks, while the output

contains all jobs that finished processing and have not yet been assigned to

a follow-up machine. The critical point for the management of the buffers

is that they are limited in size. Therefore, machines can only make a bid

for a job if they have a spot open in their virtual input buffer. This leads

to the fact that deadlocks may occur during the scheduling. The implica-

tions from it for the scheduling process will be discussed later in chapter

4. Another aspect making this paper very interesting despite its age is that

other publications related to it (Bussmann and Schild 2000, Sundermeyer

and Bussmann 2001, and Schild and Bussmann 2007) describe this system

in use in an automobile factory in Germany, the only publication of those

mentioned here to do so.

Frey et al. (2003) introduce two different multi-agent systems. Both consist

of machine and order agents. In the first system, orders start the schedul-

ing process. They call each machine agent, asking for a proposal. Machine

agents can refuse to either answer (decline the proposal), make a bid, or

ask the order agent for a new proposal since the current one could not be

understood. After collecting all answers, the order agent accepts one ma-

chine proposal and refuses all the others. The second system works exactly

opposite to the first. In it, the machine agents ask for proposals after fin-

ishing the processing of a task. Then, the order agents decide whether they

want to send a proposal to the machine agent or not. Afterward, they use

the same procedure as in the first case. The results of both systems were
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compared with a classical optimization problem. They conclude that the

multi-agent system is better if the underlying production system becomes

more complex and inhomogeneous and in cases of re-scheduling. Another

example of an auction-based negotiation comes from Sudo et al. (2010). In

this publication, again, job agents start a negotiation that machine agents

respond to with a bid. Renna (2011) presents an architecture for scheduling

manufacturing cells consisting of several machines. In his system, there are

part agents, manufacturing cell agents, and machine agents. The schedul-

ing process starts with the part agent determining which cell it has to visit

next. Then it sends a request to the corresponding machine cell agent. The

cell agent then asks all of its machine agents to send key performance fig-

ures regarding the part’s processing. After obtaining all answers, the cell

agent decides which machine will process the part and communicate it to

the machine and the part. The performance figures considered are the time

needed until the part’s processing can start, the percentage of the machine’s

downtime, and the average deviation from the expected processing time.

These three are weighted and calculated into a normalized index. Giordani

et al. (2013) use an iterative procedure to deal with the problems of con-

flicts among the agents. A central coordinator agent starts all auctions and

can change prices to improve result quality after getting all bids from the

agents. This ensures that the coordinator always considers all options be-

fore reaching a decision and awarding tasks.

WarehouseAgent

ProductionResourceAgent

OrderAgent

AuctioneerAgent

TransportProviderAgent

Figure 3.4: Agent system of Klein et al. (Klein et al. 2018)
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Using negotiation for scheduling in multi-agent systems is not only done

in older publications. Klein et al. (2018) use an approach in which an or-

der agent tries to schedule its way through a production system by setting

up auctions with the help of an auctioneer agent for each of its production

steps. Bidders consist of two kinds of agents. Transport agents compete

to get the transport order between production steps, and resource agents

compete to get production orders. Both groups of bidding agents try to

maximize their profit; therefore, they want to get as many orders as possible

allocated to them. After all of the bids have arrived, the auction agent relays

the best of them to the order agent. For transport, the order agent simply

chooses the best offer. For production, a second step is implemented in

which the order agent directly communicates with the best bidders. The

offers are criticized, and resource agents get the possibility to improve their

offer. This iterative procedure continues until none of the offers can be ne-

gotiated anymore. Afterward, the order agent chooses the best offer or can-

cels the negotiation. Guizzi et al. (2019) extend the well-known Contract

Net Protocol for their interaction. This system consists of resource and job

agents. Resource agents start the negotiation process. All jobs available for

processing on that machine then respond with a bid containing their re-

quired processing time. The machine evaluates the bids according to the

total processing time of a job, the job’s residual processing time, and those

two values only on the machine in question. Afterward, the machine de-

cides to process one of the jobs. This is equivalent to a complex dispatch-

ing rule that is implemented decentralized.

The most recognized publication in this section, by the number of citations,

is from Wang et al. (2016). The publication focuses on agents relevant to the

scheduling process and leaves out all other agents present in the system.

There are four agents for scheduling: Job agents (PA), machine agents (MA),

supplementary agents (SA), and transport agents (CA). The supplementary

agents are responsible for handling buffer spaces in the production. After

a task finishes or a job enters the system, it starts an auction for the next

task with all machine and supplementary agents. All receiving agents then

determine if they are capable of doing the task and are idle. If both ap-
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ply, they bid for the task. If an agent is capable but not idle, it informs the

job agent about this fact. Otherwise, it ignores the message. The job agent

then decides what to do next. If it receives no answer, there likely is a mal-

function in the system. In case of only busy messages, the job agent waits

and starts the negotiation again after a time. If there are bids, it will decide

for one of them according to a set of priority rules. Before awarding the

task to the chosen agent, it starts a negotiation with the transport agents.

Here, however, multiple transportation agents can form a group to finish

the task together if no one can do the transport by itself. After the trans-

port negotiation finishes, both transport and production or buffer task are

awarded to an agent.

Figure 3.5: Negotiation procedure (Wang et al. 2016)

Other than in the systems presented before, there is no mention of limited

buffers in this case. Since the authors write about dealing with deadlocks,

buffer slots must, however, be limited in some way. Dealing with deadlocks

is also an essential aspect of the model developed for this thesis; therefore,

we take a closer look at this publication’s deadlock avoidance strategies.

The authors present four strategies to avoid deadlocks. The first is for a

particular case of a production system in which multi-purpose machines

exist. In this case, they try to limit the number of multi-purpose machines

by restricting the use of those machines for tasks that could also be done

on other machines. This procedure leaves a maximum of one machine,

which shares the capability to do tasks with other machines. It consider-

ably reduces the number of loops in the product flows and consequently

the chance for deadlocks to occur. As a second step, the number of visits
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on the multi-purpose machine and the machines with the same operation

type is equally balanced. Strategy three reserves buffer spots for the critical

machines identified after steps one and two. According to the authors, if

there are enough buffer spots available, deadlocks can no longer occur af-

ter these three steps. If this is not the case, a protocol is applied, prioritizing

jobs in a loop over jobs not in a loop. These strategies work well, according

to the authors. However, they cannot eliminate deadlocks completely and

only reduce the chance of a deadlock occurring.

So far, all of the presented systems have used some variation of an auction-

based scheduling system. Some publications do not use an auction to

schedule production tasks, although their number is smaller than auction-

based publications. Wang and Lin (2009) describe a system called agent-

based agile manufacturing planning and control system (AMPCS) in detail.

The system includes variations of resource, job, and scheduling agents. Ad-

ditionally, there are specialized data and monitoring agents present. The

scheduling is done in multiple steps. A central scheduling agent first cre-

ates a production schedule based on demand, which contains the products

to be manufactured. Then, the schedule is evaluated in a simulation and,

if successful, saved. Afterward, with information from the resource agents,

the scheduling agent creates an operation schedule. Here, a small part of

an auction-based system remains since the resource agents submit their

information by making a bid towards the scheduling agent. The simulation

again evaluates the final plan before the production starts. Resource agents

may also reject the final plan if they cannot comply with it. This triggers a

re-scheduling from the scheduling agent. Another approach with a central-

ized scheduler is chosen by Y. Zhang et al. (2014). A Capability Evaluation

Agent evaluates the orders coming into the system and assigns the tasks to

the best-suited machine. Machines have their agents that supply the Ca-

pability Evaluation Agent and a Process Monitor Agent with real-time in-

formation. The Process Monitor Agent tracks the machine agents’ status

and calls for a re-scheduling if disturbances or interruptions occur. Finally,

the Scheduling Agent schedules all tasks on the assigned machines consid-

ering the given real-time information. Groß et al. (2020) focus on the si-
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multaneous scheduling of production and transports in remanufacturing.

A central scheduling agent in a multi-agent system creates schedules for

workplaces and AGVs.

The three presented non-auction-based publications while being multi-

agent systems, had a centralized scheduling agent. The last part of this

section presents publications that use decentralized non-auction schedul-

ing in at least some parts of the process. Leitao and Restivo (2008) pro-

pose a hierarchical holon system. A supervisor does the scheduling, and

operational holons execute the production plans. When disturbances such

as breakdowns or general deviations from the plan occur, the operational

holons gain more autonomy to re-schedule as they see fit. The system then

dynamically changes to a decentralized structure wherein the holons com-

municate and negotiate how to best react to the disturbance.

Figure 3.6: Scheduling process of Maoudj et al. (Maoudj et al. 2019)

Another example of a system in this category is the publication of Maoudj et

al. (2019). They use robotic assembly cells where each cell has a local agent,

which includes a scheduling module. Each agent only solves a part of the
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scheduling problem without having a global view. Before each agent sched-

ules its operations, a global scheduling agent assigns the operations to a

cell. For this, operations are prioritized, and then each prioritization level is

dispatched to a cell. Afterward, the cell scheduling agent assigns each oper-

ation to a robot within the cell, and finally, the operations on each robot are

sequenced. Scheduling in each step is done according to time-based dis-

patching rules. Agents exchange information about operations so that local

release times can be updated when necessary. Mayer et al. (2019) publish a

decentralized system where the job agent decides its route through the pro-

duction system by deciding which workstations to visit. The workstation

itself regularly updates its schedule with an optimization model according

to the jobs currently wanting to visit it. A vehicle agent handles requests

for transports from the workstation agent, which assigns the transports to

AGVs based on a different optimization model. In the publication of Eg-

ger et al. (2020), a job arriving into the system sends a request to the agent

processing its last process step. That agent then asks the precessing step to

make a statement about when they can finish processing these jobs. This

continues until the first process of the process sequence. Each agent who

has received the answers to its requests then plans its start and end time

until the final step finishes the planning.
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After providing the basics of the two main topics and an overview of the rel-

evant works published in the areas, this chapter finalizes the introduction.

It starts with concluding the literature research by summarizing it and iden-

tifying the research gap. A definition of the problem that the algorithm in

this work solves and its assumptions are developed. This problem is then

split up into research questions to structure the work on it.

4.1 Conclusion to the Literature Overview

and Research Gap

The publication dates of the extensions to the SB heuristic indicate that it

has fallen out of researchers’ focus over time. Publications added many

characteristics in the first years after the initial release, but there are rela-

tively few publications during the last years. To find out why is not easy,

but it may have to do with more powerful computers and the availabil-

ity of other heuristics, enabling to schedule systems without decomposing

them. It has not completely gone off the radar since there are still publi-

cations using it, mostly combining it with some artificial intelligence tech-

nique. It has been regularly used only in the area of semiconductor sched-

uling. Since semiconductor manufacturing is generally considered one of

the most complex production processes, this shows that the method is still

relevant. This is especially true in decentralized systems since the heuristic

can easily be converted into a decentralized algorithm. However, its use in

decentralized systems so far is also minimal. It is either extended with en-

tirely different algorithms (such as a Tabu or Neighborhood search) or used
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at several points in a distributed system but calculated centrally for each of

them. Although researchers have made many extensions already to the SB

heuristic, the literature overview has shown that only one of the mentioned

publications research available buffer space in the production system (Q.

Zhang et al. (2014)). And it even only mentions that their production sys-

tem contains buffer slots, not that they are limited.

The argument about missing research about limited buffer slots in sched-

uling extends beyond the SB heuristic. Even generally, limited buffer space

is a topic not widely researched in scheduling problems. In Fleischmann

et al. (2021), we searched for publications focusing on mathematical for-

mulations of the scheduling problem, including limited buffers, not only

looking for the SB heuristic or decentralized systems. We found some but

none of those matched the formulation of the presented problem. We refer

to Brucker (2012) for a general overview of the limited buffer topic. How-

ever, none of the cases presented match this thesis’s problem, as we will

see soon. There are also publications concerning the so-called "blocking

job shop", for example, in Lange and Werner (2019), which are equivalent

to a system having zero buffer slots, but they only work with precisely zero

buffer slots at every workplace. In conclusion, this topic is not only of in-

terest for this specific application of the SB heuristic, but it has not been

researched thoroughly in general.

There are numerous multi-agent systems for scheduling production sys-

tems, which do not use the SB heuristic. To find them, our search string

consisted of three groups. The first group contained the words "Agent-

based", "Distributed", "Decentralized", and "Multi-Agent". The second

group contained the words "Production" and "Manufacturing". The last

group consisted of "Scheduling", "Planning", and "Control". From these

groups, all possible combinations (in total 24) were used in the Google

Scholar search engine. A large part of the resulting publications focuses

on auction mechanisms to create a production plan. Auctions can have the

disadvantage that they base on relatively short-term planning, where they

plan each step only when the previous step finishes. Since they are easy to

implement and give good results if deadlocks are not a problem, publica-
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tions not using auctions are relatively scarce (excluding meta-heuristics).

We found only four publications matching our criteria and not using auc-

tions where the scheduling is done decentralized. In three of these sys-

tems, scheduling is done hierarchically. Only one publication presents a

decentralized, non-hierarchical agent-based scheduling system (Egger et

al. 2020). Their system, however, also plans short-term, as agents negoti-

ate about one job at a time. Among the auction-based publications, two

are dealing with limited available buffer space in the production. However,

both show rule-based strategies to avoid deadlocks but cannot guarantee

the absence of deadlocks. It can be concluded from the overview that no

decentralized deterministic scheduling algorithm taking into account lim-

ited buffers without hierarchies exists yet.

4.2 Problem Description

This work aims to develop a decentralized scheduling algorithm that incor-

porates limited available buffer space at each workplace. We made two sig-

nificant design decisions before starting the project. The first one was that

it had to be a decentralized system. The second one, and more relevant to

the scheduling aspect, that the resulting algorithm should be deterministic

in every aspect. After some research, we chose the SB heuristic as a base

since it can be easily used in a decentralized way and showed remarkable

results in the publications using it.

The underlying system is based on the job shop problem presented in chap-

ter 2.1.3 extended by a few advanced features. The most important is that

the job shop model assumes an unlimited available buffer space at each

workplace in the production. In this work, the buffer space at each work-

place is strictly limited. There is also no other buffer space than those at the

workplaces. This creates a need to limit the number of orders released into

the production system to prevent unnecessary waiting time, blockages, or

even deadlocks. We define that a job can only enter or leave a workplace’s

processing area via a buffer slot. Therefore, there always needs to be a free

buffer slot once an operation finishes for the job to leave the processing
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area, and a free buffer slot on the following workplace in the process se-

quence when it is transported there. This definition of buffer slots makes

a deadlock occur if two (or more) workplaces need to send jobs to each

other in a circle but cannot do so because input buffer slots at each affected

workplace are full.

We also changed the objective function of the algorithm. The original SB

heuristic uses the maximum makespan criterion. Instead, here we use the

average makespan of all jobs as our objective function. It is equivalent to

the "Total Completion Time" presented in chapter 2.1.2. Table 4.1 can ex-

plain the reason for this change. It is supposed to show the finish times of

eight orders after finishing the scheduling. The number of workplaces in

the system is irrelevant for this example. With the original objective func-

tion, both plans would have the same value, which is 40 if we assume plan-

ning to happen at time zero. From a one-time optimization standpoint,

that statement is correct. Taking a look at a scheduling algorithm’s practi-

cal applications leads to a separate evaluation of the two plans. In the real

world, not only one scheduling run is performed. Instead, scheduling re-

peats again and again. Therefore, more regular completion of orders makes

more sense because some are already finished at the next scheduling point,

which is achieved by each order having an impact on the objective function.

Another even more critical argument for the changed objective function is

that the more regular finishing of jobs leads to an overall reduced number

of jobs in the system. Then, buffer usage is lower, and the algorithm gains

more flexibility to improve the result.

Alternative End times

Plan 1 17,26,33,34,36,38,39,40
Plan 2 5,10,15,20,25,30,35,40

Table 4.1: Job finishing times of two plans

Buffer slots incur a delay; a minimum time a job needs to spend in a buffer

slot before it can leave again. Slots are also strictly divided into input and

output buffer slots, meaning that input buffer slots only store jobs that the
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workplace has yet to process, and output buffer slots only for those that

it has already finished. For simplification, especially in the agent system,

we assume that the division of buffer slots into input and output buffer is

strictly given and cannot be changed. This work assumes that one of them

is an output buffer, and the rest are input buffer slots for any given number

of buffer slots. Furthermore, more than one workplace may offer an op-

eration, this is the flexible shop extension from 2.1.3. Workplaces offering

the same type of operation are called parallel workplaces throughout this

work. We allow processing times to differ on workplaces offering the same

operation. Each workplace can only offer one type of operation. Setup and

transportation times are assumed to be always zero. The workplace follow-

ing in the process sequence always carries out transports. The ownership

of the job, therefore, switches once the job leaves the processing area. The

production system does not have to be empty when planning starts. In-

stead, there can be any number of work-in-progress jobs currently being

processed at a workplace or waiting in any buffer slot. Workplaces are al-

ways assumed to have 100% uptime, meaning there are no breakdowns or

interruptions of a process. Furthermore, the algorithm cannot stop an op-

eration in progress to start a different operation. We formulated this prob-

lem, including more than the mentioned extensions, as a mathematical op-

timization problem in Fleischmann et al. (2021).
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4.3 Research Questions

After defining the research problem, we can specify the questions to solve

it. The research of this thesis divides into four parts. The first area deals

with the scheduling aspect of the problem. Here, we make the necessary

extensions and changes to the SB heuristic integrated into the basic algo-

rithm of Adams et al. (1988). Especially the limitation of available buffer

slots needs significant changes in the logic of the algorithm. Therefore, the

research question that will be answered in chapter 5 is the following:

1st research question: How can a Shifting Bottleneck procedure

schedule the problem presented in chapter 4.2?

The result of the first question is a scheduling algorithm that can handle the

required characteristics but still executes centrally. The second research

area builds on the algorithm and converts it into a decentralized multi-

agent system. For this, some parts of the algorithm need to be adapted

to continue to work. Furthermore, all parts of the multi-agent system, for

example, data storage or communication between agents, have to be newly

developed. Chapters 6.1 and 6.2 try to answer the following question:

2nd research question: How can a decentralized multi-agent sys-

tem executing the algorithm of research question one be modeled

and implemented?

Finally, more critical than pure numerical quality is the reliability of the al-

gorithm. For this, the algorithm needs to avoid deadlocks, livelocks, and

starvation, which were described in chapter 3.2.2. There, the three prob-

lems were described referring to an agent system, which leads to the third

research question. With regard to our problem description, ideally, we can

prove that the algorithm will always create a schedule in any given situa-

tion.
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3rd research question: Does the decentralized multi-agent system

guarantee the creation of a production plan for every possible case

of valid input data?

However, the same problems can also occur during the execution of a

scheduling plan. Therefore, we also need to guarantee that the scheduling

result is free of deadlocks, livelocks, and starvation. Whether that is possi-

ble, is the aim of the fourth and final research question. Since the third and

fourth question are closely related, both will be answered in chapter 6.3.

4th research question: Is the production plan created by the de-

centralized multi-agent system always free of deadlocks, livelocks,

and starvation?
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This chapter presents the algorithm to solve the problem presented in

chapter 4.2 and therefore answers the first research question. For this, first,

the general procedure of the modified SB heuristic is presented. It follows

the original publication of Adams et al. (1988) in the order of the general

steps with some changes and additions. Before all five steps of the algo-

rithm are described in detail afterward, a short section describes the rules

and ideas guiding the algorithm in general. They will be relevant for every

step of the algorithm. The problem’s objective function has also changed

slightly as described in chapter 4.2. Chapter 5.4 will explain it in detail,

where a bottleneck is identified, and the objective function is applied. As

in the original procedure, M describes the set of all workplaces, and M0 the

set of workplaces already identified as a bottleneck. The general procedure

of the algorithm is as follows, also pictured in figure 5.1:

Step 1: Update all necessary information before scheduling.

Step 2: Create a local sequence on all workplaces M\M0.

Step 3: Identify a bottleneck workplace m among them. Set M0 =
M0 + {m}.

Step 4: Re-optimize the sequence of each critical workplace M0 while

keeping the other sequences fixed. Then, if M = M0 go to step five,

otherwise go to step two again.

Step 5: Finish the scheduling by creating a production and a transport

plan for each workplace from the scheduling result.

Step one of the original procedure is now included in the local sequencing

since it has to be done workplace-specific. Instead, a new first step to up-

date data, which only needs updating once per scheduling, is introduced.
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Which data exactly needs to be gathered is described in chapter 5.2. Step

two has not changed on the iteration level. We only divided it into two sep-

arate steps, presented in chapter 5.3 and 5.4. However, many changes were

made within the local sequencing since it needs to incorporate the addi-

tional features required to solve the problem. The re-optimization (step

four) is different in one crucial aspect in comparison to the original proce-

dure. The step was repeated until no change in all workplaces’ local plans

occurs but only until a maximum of three repetitions finished. We removed

the limit of three repetitions. Now, every time the re-optimization starts, it

will continue until a full repetition of re-optimizations without any change

completes.

We also have to include an additional feature in the re-optimization since

limited buffers can lead to infeasible plans. We introduce a repair method

for the case of creating an infeasible plan during the re-optimization. This

step and the changes are described in chapter 5.5.

1. Preparations 
before scheduling

5. Finish 
scheduling

2. Create a local 
sequence

4. Re-optimization

3. Identify the 
bottleneck

Figure 5.1: Flow chart of the scheduling algorithm

The original procedure uses the algorithm from Carlier to sequence bottle-

neck and non-bottleneck workplaces (steps 3 and 4 of the new procedure).
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Here, we use different versions of a newly developed algorithm at various

points during the scheduling process. Until a workplace becomes a bottle-

neck in an iteration, we use the basic version. It is described in chapter 5.3;

we call it our local sequencing algorithm. Afterward, local sequencing is not

called any more for that workplace unless it is part of a parallel workplace

group. The differences between parallel and non-parallel workplaces will

be explained in chapter 5.4. Once a workplace was added to the pool of bot-

tleneck workplaces, the second version of the algorithm applies for the re-

optimization. If an infeasible plan is detected during the re-optimization,

a third version of the algorithm helps to repair the plan. Versions two and

three are the same as the base version for large parts; chapter 5.5 explains

the differences. After describing the algorithm’s general guidelines, we can

continue to give a detailed explanation of all steps in chronological order,

starting with the preparations before scheduling.

5.1 Guidelines for the Algorithm

The main addition compared to the original SB heuristic is the addition of

limited buffer space at each workplace. This brings up the question of how

and if the local sequencing on each workplace needs to change because of

this. If buffer space is unlimited, it is generally preferable that every work-

place works as fast as it can. The reason for this assessment is that it min-

imizes the possibility that any succeeding workplaces become idle by of-

fering them as many work-in-process as possible. Reducing idle time of

workplaces is in turn a way to achieve a better global plan, as a plan with

no idle time on any workplace can not be improved further concerning the

makespan. The algorithm of Carlier, therefore, only uses the due dates of

operations to prioritize between them, while the prioritized individual op-

eration is always produced as early as possible. With limited buffer slots,

this rule no longer applies. While producing as fast as possible on a work-

place is still optimal for the global result, an algorithm also has to consider

the fact that it may overfill the buffer slots of a succeeding workplace, block-

ing itself in the process, since finished operation can no longer be trans-
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ported to the following workplace. In the worst case, this creates a dead-

lock in the production system. This introduces a need for the workplaces to

only process operations as fast as the system can handle. As we will see, the

algorithm presented here does not schedule every operation as early as pos-

sible. Instead, if the bottleneck is downstream from the current workplace,

it tries to produce the operation after just-in-time, reducing required buffer

time and, therefore, slots. For an upstream bottleneck, the algorithm still

tries to produce as fast as possible. To achieve this behavior, the algorithm

contains several additional prioritization criteria, which will be presented

in detail later in this chapter. For each of them, a pairwise comparison with

multiple conditions is done between the current best and a candidate oper-

ation. If all conditions are fulfilled, the algorithm determines the candidate

as the more important operation. If not, then the current best operation

stays the most important. Sometimes a formula in the text of chapter 5.3

contains more than one criterion. They were grouped together in the de-

scription of the algorithm since they are closely related. If that is the case,

an operation only needs to fulfil one of the criteria to be deemed as more

important. After the algorithm has compared all operations for each crite-

rion, the most important operation is selected as next in the local sequence.

Its start time is then set according to the rules. The details of this process

and the criteria are described in section 5.3.

With just this guideline, the local sequencing can create infeasible plans.

Infeasible in this case means that the plan would require more buffer slots

for a production plan than there are available in the production system.

When that case occurs during the scheduling, a method to repair the plan

is needed. We extended the algorithm with a method to repair a plan, which

we call a negotiation. How the negotiations function is described in detail

in section 5.5 but we want to give a short overview here to describe the mo-

tivation behind them. The easiest way to repair a plan is to introduce a time

delay. The operation which does not have a buffer slot can be delayed until

a slot is available again. Also, the whole plan after that operation (time-

wise) is delayed by the same amount. This solution will always create a

feasible plan with the cost of a worse objective function value. Therefore,
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the algorithm first tries to find a different sequence of operations, in which

the amount of buffer slots is sufficient. Only if it can not find one, a delay

is included. That this delay will always work can be shown with a relatively

simple example of an extreme case. If it were needed, one could introduce

so many delays within the production plan that only one job is processed in

the production system at a time, meaning that the next job is only allowed

to start processing once the previous job has been finished. In that case,

infeasibilities are not possible anymore.

The algorithm described in this chapter was designed with the intention of

applying it in a decentralized scheduling system. Therefore, some of the so-

lutions or explanations of this chapter may seem unnecessary complex for a

centrally executed algorithm. However, they were chosen since they help to

make the transition to a decentralized system as smooth as possible. With-

out this background some of the features could be reduced in complexity

in case the user plans a centralized usage for which the above-mentioned

negotiations are an example. For the following functional description of

the algorithm, it helps to remember the general remarks of this section to

understand the design decisions made for the algorithm.

5.2 Preparations before Scheduling

Since the algorithm does not need to assume an empty system at the point

of planning, the first step is to gather the current system state before sched-

uling can start. The algorithm starts with a list of all operations needing

processing for every workplace. Whenever a job enters the system, its op-

erations get added to the workplace’s lists. The workplaces delete an op-

eration once it finishes processing. Therefore, the combination of all lists

represents the amount of work that needs doing in the production system.

It does, however, not correctly represent the operations that require sched-

uling. The algorithm needs to remove two kinds of operations before local

sequencing can start since the workplace will not process them. The first

kind are operations that are currently being processed on a workplace, if

there are any. These operations have already been planned in a previous
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call of the algorithm and cannot change any more since we do not allow

the interruption of a process. We also decided that the algorithm will not

plan the operations of all jobs already waiting in an input buffer slot. They

already must have a planned start time for processing from previous sched-

uling, which the algorithm will not change. However, if there was any delay

during the previous plan’s execution, the starting times of jobs waiting in

the input buffer have to be adjusted to account for the delay, if needed. The

input buffering times of these jobs are also lengthened for the same delay.

Table 5.1 shows a situation with which we will explain how the algorithm

proceeds in this case.

Operation Planned start time Process time Actual start time

Op. 1 0 10 0
Op. 2 10 5 12
Op. 3 15 8 -
Op. 4 27 4 -

Table 5.1: Example situation for a delay in the plan on a single workplace

The workplace in question had a local plan of four operations after the last

scheduling. The first operation started and finished on time. The second

operation had a delay of two time units. Operations three and four have

not yet started, so the current time must be somewhere between time units

12 and 17. Assuming that operations three and four are already waiting in

the input buffer, the algorithm needs to check their times. It corrects the

start time from operation three since it can start at time 17 at the earliest.

There was a gap of four time units before operation four so that one does

not need a change in times. Then, the algorithm removes the old buffer

slot reservation of operation three and creates a new one from the current

time up to time 17. Now the algorithm will account for the delay in the

current scheduling. A delay in one workplace might also lead to necessary

changes in a preceding workplace. This only happens if the input buffer of

the delaying workplace is currently full. In that case, a planned transport

might have to be carried out later, therefore inducing a delay in the output

buffer of the preceding workplace.
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If an operation, processed at a workplace that is available multiple times

in the production, is removed from the list of operations to be scheduled

for one of the two reasons, it is removed at all parallel workplaces. After

the list of operations for scheduling is now final, the algorithm deletes the

old times for processing and buffering of all previously planned operations

that will now be planned again (since they have not arrived at the work-

place in question).

Because a workplace might have leftover work from the last plan, it can-

not guarantee that the first operation can immediately start processing. In-

stead, the latest finish time of all operations, which were removed before

on that workplace, is saved as the earliest time (tst ar t ) an operation can

start processing in the new local sequence. The same happens for the input

buffer slots. The algorithm already knows if they are currently in use. It cre-

ates a buffer reservation from planning time to the time processing starts

for operations waiting in the input buffer.

During the scheduling, the algorithm will need a list of all predecessors of

a workplace. Since it is now clear, which operations it will plan, it can pre-

compute this list. This is done for time-efficiency because the algorithm

may use it many times later. It looks at every operation to be planned in a

workplace to create the list. If the workplace does not process the first step

in the process sequence, it saves all workplaces that offer the preceding op-

eration in the list. Duplicates will only be listed once.

After these steps, the algorithm knows the current system state and has fin-

ished pre-computations. The scheduling process can begin. It starts in the

same way as the original algorithm, with the local sequencing step at each

workplace described in the next section.

5.3 Create a Local Sequence

The process of creating a local sequence, also called local sequencing

throughout this thesis, describes the algorithm for scheduling the opera-

tions to be processed in a given workplace. The only input for it is the list
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of operations resulting from the preparations. If this section mentions any

operations, it refers only to those that the current workplace can process.

If other workplaces can process the same operations as the workplace cur-

rently planning, the operations will split between the parallel workplaces

during this step. The result of the local sequencing is a production and an

input buffering plan for the given workplace. The algorithm of this sec-

tion creates the local sequences for workplaces that are not yet a bottleneck.

The described procedure considers the already fixed start times of all oper-

ations on workplaces identified as a bottleneck while creating them. Every

time the sequencing starts, the algorithm makes an entirely new sequence

of operations, and the old sequence from a previous local sequencing gets

deleted. Due to an additional bottleneck, the plan from the last call is no

longer valid.

The process starts by updating the key variables (chapter 5.3.1), which is

done once at the start of sequencing. Afterward, it schedules one operation

after another until there are none left. Chapter 5.3.2 describes the process

of deciding which operation to schedule next and its start time. It consists

of two separate steps, first selecting and timing an operation that is to be

next in the sequence, then creating a buffer reservation for that operation.

5.3.1 Update the Key Variables of Operations

The local sequencing starts with an update of all operations with the cur-

rently available data from bottleneck workplaces. For each operation, key

variables are updated, which will be used for the sequencing. Table 5.2 gives

an overview of the variables, which will be described afterward.

From the variables in table 5.2, tp , only the operation’s processing time is

known at this point. Every other variable has to be determined or calculated

with information from other workplaces. The first is the variable earlier. It

describes the relative position of the first fixed operation within the process

sequence of this operation’s job. If the first fixed operation’s position in the

process sequence is before the operation to be updated, earlier is true. If the

position is after or there is no fixed operation yet, it is false. While looking
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Name Variable Type

Process Time tp Numerical value
Relative Bottleneck Position earlier Boolean variable
Job Started st Boolean variable
Earliest Available Time tavail Numerical value
Earliest Possible Start Time tearl Numerical value
Latest Finish Time tlate Numerical value
Optimal Start Time topt Numerical value

Table 5.2: Key variables used during the sequencing of operations

at the process sequence, st is also determined. It describes if the job of this

operation has already started the first operation of the process sequence.

tavail, j = max j−1
i=1 tstart,i +∑ j−1

k=i+1 tp,k (5.1)

tlate, j = min∞
i=p+1tstart,i −∑i

k=p+1 tp,k (5.2)

Afterwards, tavail and tlate are determined, which the formulas 5.1 and 5.2

describe. tavail describes the earliest time the operation can begin process-

ing. This time equals the earliest time the operation can arrive at the work-

place plus the minimum input buffer delay. It is calculated by adding the

process and minimum buffering times of all previous process steps in the

sequence to the current time t . If there is any fixed step before or the job has

already started, it takes the known end time of the last earlier fixed opera-

tion, and process and buffering times of the steps between are added. tlate is

calculated in the same way, starting from the current makespan value of the

job and subtracting the process and buffering times or taking the start time

of the first fixed step occurring later in the process sequence and subtract-

ing process and buffering times from there. The current makespan value

of a job is equal to the earliest time it can finish. tavail does not have to

be equal to the earliest possible starting time, tearl, since a job may arrive

earlier at the workplace than the workplace can begin processing. There-
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fore, tearl is equal to the maximum of tavail and tstart, which was determined

during the preparations.

An optimal start time topt of the operation is calculated from these values.

In a production system with unlimited buffers, it is always optimal to pro-

duce an operation as early as possible since it can be stored after processing

until the next workplace needs it. If buffers are limited, as they are in this

thesis, it is generally better to only produce an operation just in time for

the next step of the process sequence to limit the buffer usage as much as

possible to have a reserve for situations where buffering is not avoidable.

Also, buffering increases the makespan of a job (though not always of the

whole plan) and should only be done if necessary. Therefore, this algorithm

sets topt to the following: If the operation has no fixed step before (earlier is

false) and a fixed step afterward in the process sequence, it is optimal to

start the order as late as possible (while causing no delay), which is equal to

tlate − tp . If fixed steps exist before and after this operation, the algorithm

determines the first fixed operation. If it is after this operation, topt is as late

as possible. In the two remaining cases, we try to produce the operation

as fast as possible and, therefore, equal tearl. We either know that there is

a bottleneck before this operation and therefore want to produce it as fast

as possible to limit buffer usage. Alternatively, there is no fixed operation at

all in the process sequence, in which case the operation can be produced at

any time between tearl and tlate. We set the value to tearl because we would

rather have the algorithm produce it fast for a better scheduling result while

producing it later is always possible. It may also be that the result of tlate−tp

is smaller than the earliest start time, in which case the optimal start time is

also tearl. Table 5.3 summarizes this paragraph and the calculation of topt.

Fixed step before Fixed step after Result

false true tlate − tp

false false tearl

true false tearl

true true Depends on first bottleneck

Table 5.3: Different cases for the optimal start time
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After updating all operations, the algorithm classifies the operations into

two groups. The first contains all operations which have a fixed step in their

process sequence, and a second all orders without a single fixed step. We

make this differentiation because orders which have a fixed step need to be

planned as close as possible to their optimal start time, whereas the algo-

rithm can schedule the other orders at any point between their earliest and

latest start time. We will call the first group high-priority operations and the

second group low-priority operations for the next steps.

5.3.2 Determine the Next Operation to be Scheduled

The process of creating a local sequence for a workplace is iterative. In ev-

ery iteration, one operation is selected, scheduled at the end of the current

plan according to its start time. Adding an operation to the plan before an

already scheduled operation is not possible. An iteration consists of two

connected steps. First, an operation is selected and its start time is deter-

mined. Afterward, a buffer reservation in accordance with the planned start

time is created. At single workplaces, this process continues until all oper-

ations are scheduled. Parallel workplaces do this process simultaneously

since they still have overlapping lists after the preparations step. Therefore,

at a parallel workplace, only one operation is scheduled before stopping the

process. Then, the algorithm determines on which parallel workplace the

next operation will be scheduled. It always chooses the workplace with the

earliest plan end time. In case of a tie, any workplace can be taken.

Select an operation

The decision which operation to schedule next is made over several crite-

ria. For each criterion, a current best operation evaluates against the other

operations. If a candidate fulfills the criterion, it replaces the current best

operation. If the two compared operations are equivalent according to the

criterion, the current best operation does not change. The algorithm needs

to select one operation as the current best to start comparing operations.

Since this only influences the case of a tie between two operations, which
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indicates that it does not matter which operation to take, any operation can

be chosen for this. We take the first alphabetical entry of the high-priority

list as a starting operation. It is to note that only high-priority operations

are available for selection for the following criteria. Lower priority opera-

tions will be checked afterward at the end of the selection process. Some of

the criteria only apply if both operations were not planned during an ear-

lier planning process or both were. Operations that were already planned

before, but were not processed yet, are sometimes preferred over new oper-

ations to prohibit extensive backlogging of "bad" operations. "Bad" in this

context means that an operation always is at the end of a schedule, as it

does not fit well earlier. We will describe for each criterion if this rule ap-

plies. In the following, the index best indicates the current best operation,

and the index cand the candidate operation, which evaluates against it.

topt,cand < topt,best (5.3)

Equation 5.3 describes the primary condition after which the algorithm or-

ders the operations for the sequencing. Generally, it chooses the operation

with the earliest optimal start time. We take the operation with the earliest

topt since it replaces the tlate of the original algorithm as described in chap-

ter 5.3.1. If the same topt value occurs in multiple operations, a decision

between them is made according to equation 5.4.

Select



candidate topt,cand = topt,best, tlate,cand < tlate,best,

stopt = false,stcand = false

candidate topt,cand = topt,best, tavail,cand < tavail,best,

tlate,cand = tlate,best or stopt = true or stcand = true

current best otherwise
(5.4)

The original algorithm takes tp as a tiebreaker. We already included the

processing time in the calculations for topt. Therefore, the algorithm uses

the due date tlate as a tiebreaker. It is, however, only applied if the jobs of

both operations have not started yet. If at least one of the jobs has started or
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the two compared operations have the same value for the tiebreaker, tavail

is the tiebreaker. It forces a FIFO ordering of the two operations. Should

tavail also be the same for the candidate and current best operation, the

algorithm keeps the current best operation because it cannot decide which

of the two operations it should process first.

tstart is the start time of an operation in the local sequence. After the first

criterion, the algorithm plans to schedule the current best operation at its

optimal starting time topt,best. If that time is earlier than the end time t of

the current plan, it plans to schedule it at time t instead. Afterward, the se-

lection process does not finish yet. In the following, the algorithm checks

several additional unique cases, where it is better to diverge from the ba-

sic ordering. For this, it makes a case distinction. Case one applies if the

planned start time is equal to t , case two if it is later than t , meaning there

would be a gap in the plan if the selection process stops now.

Select


candidate tearl,cand ≤ t , tlate,cand < tlate,best,

tlate,cand < t + tp,cand + tp,best

current best otherwise

(5.5)

First, the case of tstart,best equal to t is presented. It implies that the

current best operation either causes a delay or is processed just in time

(tstart,best + tp,best ≥ tlate,best). The algorithm then checks if any candidate

operation gets delayed because it will start after the current best operation.

If one is found and has an earlier tlate, the algorithm switches the current

best operation. The reason is that one of the two operations will be late.

Therefore, the algorithm tries to minimize the combined lateness of the two

operations. Equation 5.5 describes the conditions for the switch. Here, the

algorithm only compares operations that both have not started. If at least

one of them has started already, this condition gets ignored, and it keeps

the basic ordering. Figure 5.2 describes an example of a situation in which

this criterion is applied.

For simplicity’s sake, we can assume that the two operations given in the

diagram are the only two remaining to be scheduled. Both operations are
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Candidate

Current best

25 30 35

t

0 5 10 15 20

Figure 5.2: Example situation for condition 5.5

drawn at their optimal start time in the diagram. From that we can already

gather that one will definitely be late as they must be processed in paral-

lel to both be on time which is not possible. The time instant t depicts the

current end time of the local sequence. Therefore, the operation marked

as current best will be late, as it can start earliest 10 time units after its op-

timal start time. In this example, the primary criterion chooses the oper-

ation marked as current best to schedule since it has the earlier optimal

start time. If the algorithm schedules this sequence, the candidate opera-

tion would be 30 time units late, as it would finish at time unit 50 instead of

20. The current best operation would be ten time units late, giving a total

delay of 40 time units. If it switches the sequence, the candidate opera-

tion would be on time, and the current best operation would finish at time

50, making it 20 units late. That is a superior solution, so the algorithm

switches the sequence.

At this point during the selection process, it might be that the current best

operation finishes later than its tlate,best. At a later point, that is not possi-

ble anymore, since the second case of the case distinction describes that

tstart,best > t . The criteria as mentioned earlier directly mirror that an oper-

ation finishing on-time starts at its topt,best. Therefore, the algorithm now

checks if obest finishes too late. If that is the case, it tries to find gaps ear-

lier in the plan, which can be closed by shifting the start times of already

scheduled operations forwards. Every operation with a start time later than

its earliest start time can shift. With this, the algorithm tries to finish a few

operations too early instead of finishing one too late. The maximum shift
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time is tstart,best + tp,best − tlate,best as that is the delay of the current best op-

eration. If the algorithm finds a possible shift smaller than that value, the

sequence will still be shifted by that number since it improves the plan’s

objective function value by reducing the delay of the currently selected op-

eration. After the possible shift, the first case finishes.

Select


candidate topt,cand < t + tp,best, tlate,cand < tlate,best,

tearl,cand ≤ t − tp,cand

current best otherwise

(5.6)

As described, in the second case obest is planned to finish exactly on time

(tend,best = tlate,best) and there is a gap to the previously scheduled operation.

In this case, the algorithm checks two more criteria for a potential switch of

the best operation. The first is for an operation supposed to start during the

processing of obest and finish earlier than it. The algorithm tries to put it into

the gap left between obest and the last scheduled operation. This criterion

tries to produce an operation earlier than needed and buffer it for a time (if

there are enough buffer spots available) rather than creating an unneces-

sary delay. Equation 5.6 shows the conditions under which this is possible.

Last operation

Current best

Candidate

20 25 30 350 5 10 15

t

Figure 5.3: Example situation for condition 5.6

For an operation, which fulfills condition 5.6 but with a processing time too

long to fit in the gap, the algorithm tries to shift already scheduled oper-

ations to create a large enough gap. If a large enough gap can be created

or was there from the start, the candidate is taken as the next operation to
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be scheduled, although it has a lower priority according to the basic order-

ing. All high-priority operations are considered for equation 5.6, no matter

if their job has started or not. Figure 5.3 shows a representative situation for

this condition. The sequence last operation → candidate → current best is

superior to leaving a gap in the plan.

The second criterion in case of a gap in the plan is a variant of the first

case. It applies if the gap was too small to fit the candidate, but the se-

quence would have less delay after switching the order of operations. It

only considers candidate operations starting during the current best oper-

ation’s processing and having a delay if produced afterward. Figure 5.4 is

an example.

30 350 5 10 15 20 25

t

Candidate

Current best

Last operation

Figure 5.4: Example situation for condition 5.7

If one operation fits the criteria, the sequence current best → candidate is

compared to the opposite sequence. Parallel workplaces are also taken into

account because an operation not chosen at this workplace could be cho-

sen as the following operation on a parallel workplace and therefore have

less delay than it would have on the currently selecting workplace. The four

delays of condition 5.7 are calculated by comparing the virtual end time of

the two operations with their tlate. For parallel workplaces, we assume that

the operation, which is later in the sequence on this workplace, would be

produced next on the parallel workplace. If that creates less delay, it re-

duces the calculated lateness from this workplace. Assuming no parallel

workplaces, for figure 5.4 this means that the candidate operation would
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be chosen since the combined delay would be five in that case, compared

to the 15 of the opposite sequence.

Select



candidate topt,cand < t + tp,best,

tlate,cand < tbest + tp,best + tp,cand,

delaybest,first +delaycand,second

> delaybest,second +delaycand,first

current best otherwise

(5.7)

If a gap in the plan before the current best operation still exists after con-

dition 5.7, the list of the low-priority operations is checked. The goal is to

find an operation fitting into the gap. Condition 5.8 depicts the conditions

a low-priority operation must fulfill to be acceptable. It is similar to con-

dition 5.6 so that the low-priority operation needs to fit in the gap without

delaying the current best operation.

Select


candidate tearl,cand ≤ t − tp,cand,

t − tprevious − tp,previous ≥ tp,cand

current best otherwise

(5.8)

If more than one operation fulfills this condition, condition 5.9 is the

tiebreaker between them. Should the algorithm choose a low-priority oper-

ation as the current best operation, its start time is always the earliest time

it can be processed, which equals the maximum of tearl,cand and t .

Select

candidate tlate,cand < tlate,best

current best otherwise
(5.9)

All conditions described up to this point only apply if at least one high-

priority operation exists. If there are no high-priority operations to select,

no operation has been selected as the current best so far. Only then, the

low-priority list is searched for the best fitting operation. Like at the be-

ginning of this process, any operation from the low-priority list needs to be
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chosen as the base for the comparison. All other low-priority operations

are compared according to condition 5.10. Here, the algorithm does not

need to compare topt, since all low-priority jobs always start as early as pos-

sible, their topt is always equal to tearl. Therefore, only tlate is relevant for

sequencing, making this criterion the same as the one used in the origi-

nal procedure.

Select

candidate tearl,cand ≤ t , tlate,cand < tlate,best

current best otherwise
(5.10)

At this point, the next operation to be scheduled and its start time are de-

termined. Now the algorithm still needs to plan the buffer reservation for

that operation in the next step.

Create a bu�er reservation

To create a buffer reservation, a start time and an end time of the input

buffering need to be defined. The end time is already known at this point

since it is always equal to the start time of the processing tbest, leaving the

determination of the start time of the input buffering, which will be used at

the end of the scheduling process to create the workplaces’ transport lists.

Three cases have to be differentiated here:

1. Operation is waiting in the input buffer of the current workplace.

2. Operation is not at the current workplace, and ...

a) ...the previous workplace is not a bottleneck.

b) ...the previous workplace is a bottleneck.

First and most straightforward, the operation may be already in the input

buffer at the scheduling time. Then, the start time is the current time t . If

the job has not yet arrived at the workplace, the algorithm checks the pre-

ceding operation’s planning status. If the workplace of the preceding op-

eration is a bottleneck, all operations on it are considered planned. If it is

not a bottleneck yet, the algorithm has no information about a possible fin-
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ish time of the preceding operation and cannot plan the buffer reservation

(case 2a). Therefore, it simply assumes that the preceding operation will be

finished just in time and sets the start time of the input buffering as tbest

minus the minimum buffer delay.

Only if the preceding operation’s workplace is a bottleneck (case 2b), the

algorithm can determine the time the job enters the input buffer. Here,

the general goal is to create a reservation with as little time as possible in

the buffer. Since we limit the number of output buffer slots to one, the al-

gorithm knows when the job has to leave the preceding workplace at the

latest, not to delay processing there. It is the time when the following oper-

ation on the preceding workplace will finish. The start time of buffering at

the current workplace is then the minimum time the job needs to leave the

preceding workplace and the time it has to arrive at the current workplace

due to the minimum buffer time constraint.

A particular case remaining is that the preceding operation is currently pro-

cessing or is already finished and waiting in the preceding workplace’s out-

put buffer. Then, the reservation is created in the same way as just de-

scribed, as one can make the same case distinctions.

Now that the algorithm knows the start and end time of the operation’s in-

put buffering, it can create a reservation. For that, the algorithm checks if

an input buffer slot is available during the required time frame. Since the

algorithm saves all workplace reservations, it can compare the maximum

number of jobs in the input buffer between the start and end time with the

number of available buffer slots. If the maximum number is less than the

number of available slots, the input buffer has a free slot during the required

time. If there is space, the algorithm creates a reservation and finally adds

the operation to the local sequence’s end at its planned start time. Then it

continues with selecting the next operation to be scheduled or, if both lists

of operations are empty, goes to the next step. If no buffer slot is available,

it means that the current plan is infeasible and needs repairing. For this, ei-

ther the current best operation needs to start later when a slot is available,

or the algorithm must create a new and different sequence. The second op-

tion is, however, only done during the re-optimization step. The algorithm
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ignores infeasible plans at this step since its goal is to determine the next

bottleneck, not creating feasible plans. Therefore, if no slot is available, the

start time of the buffer reservation is set to the point in time when a slot

becomes available. If that is earlier than the planned end time, the local

sequence does not need to change. The operation’s start time delays until

it can be produced the earliest after the delay if it is later than tbest. How-

ever, this might increase the makespan value of the workplace unnecessary.

That is a desired behavior since it increases the possibility that this work-

place becomes a bottleneck and, therefore, that re-optimization resolves

the problem. Afterward, the process continues with selecting the following

operation if there are any left or the next step.

5.4 Identi�cation of the Bottleneck

After the algorithm has created a local sequence on every non-bottleneck

workplace, it calculates each workplace’s lateness for the bottleneck crite-

rion. This algorithm uses a slightly different objective than the original pro-

cedure. The goal still is the minimization of the makespan. The original

procedure calculates a workplace’s value as the maximum lateness of a sin-

gle operation on that workplace compared to the current overall makespan.

Instead, here, we calculate the value by taking the sum of all latenesses. We

already explained the impact of this change and its reasoning in chapter

4.2. Equation 5.11 shows the formula, where tend represents the end time of

an operation on a workplace and Um the set of all operations scheduled

on a workplace.

O(m) = ∑
i∈U

max(tend,i − tlate,i ,0) (5.11)

After calculating this value for each workplace, the bottleneck can be identi-

fied. It is the workplace with the highest objective function value. Equation

5.12 shows the calculation.
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max
m∈M\M0

O(m) (5.12)

If the highest value occurs in multiple workplaces, any of them can become

the bottleneck. Since this algorithm manages workplaces in alphabetical

order, it chooses the one which comes first in the alphabet. The algorithm

now fixes the local sequence of the chosen workplace. It means that during

the step of updating data (5.3.1), planning workplaces recognize the start

and end times of operations on the bottleneck workplace.

It is important to note that only one workplace is chosen as a bottleneck,

no matter the circumstances. So, in the case of two or more parallel work-

places, they each become the bottleneck in a separate iteration. The reason

behind this decision is found in the fact that the algorithm of this chapter

was already planned as a decentralized system form the beginning. How

this leads to the workplaces becoming bottleneck one at a time will be be

described in the next chapter. Due to this decision, the strict division of

workplaces, one group planning during the local sequencing, the other in

the re-optimization step, does not apply to parallel workplaces. Following

how the creation of a local sequence works on parallel workplaces, it is im-

possible to not do it on all of them at the same time. This also has a better

optimization potential, for the operations can be exchanged between them

fluidly during the whole planning and not only once at the start. Therefore,

once one of the parallel workplaces is a bottleneck, and until all of them

are, the algorithm will plan every member of the parallel workplace group

in steps 2 and 4 of an iteration.

5.5 Re-optimization

The first time a bottleneck is identified, the algorithm skips this step. This

step is supposed to make sure that all bottleneck workplaces’ plans func-

tion together. Therefore, it would not give any different result doing the re-

optimization on a single workplace as it will never have any changes only

looking at itself. Therefore, after identifying the first bottleneck, the next
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round of local sequencing can start immediately. If there are two or more

bottleneck workplaces, the algorithm performs this step to make sure that

the results of all bottlenecks are compatible.

New local sequences are created on all bottleneck workplaces (all work-

places in M0) during the re-optimization. The order in which the work-

places are scheduled is the same in which they entered M0. Generally, the

local re-sequencing during this step is done precisely as on non-bottleneck

workplaces, meaning that chapter 5.3.1 and 5.3.2 do not change for the re-

optimization. There is, however, an additional step during the creation of

buffer reservations, which the algorithm ignored before. If there is no input

buffer slot available for the created buffer reservation, the current local se-

quence and, therefore, the whole schedule is infeasible. Before, during the

local sequencing on non-bottleneck workplaces, the operation was delayed

until the plan was feasible again. At this point, the algorithm will try to find

a different plan, which is better than the current sequence. In this context,

the new plan is better if it creates less delay than the old one, including the

delay needed to make the sequence feasible. If the algorithm finds a new

and feasible plan here, but it is worse than including a delay in the current

plan, it is better to include the delay than switching to the new plan. We

call the process of creating and evaluating the new plan negotiation and

will describe it next.

Negotiation

A negotiation starts immediately if an infeasible plan is detected. The local

re-sequencing pauses until the negotiation has finished and will continue

afterward. Therefore, only operations already scheduled and the one that

created the infeasibility are considered to be part of the negotiation. The

remaining operations not yet scheduled during the current re-sequencing

get ignored. As the first step, a new plan proposal is created on the work-

place that detected the infeasible plan. Only one proposal is allowed for

every infeasible situation. If the proposal is not successful, the operation is

delayed in the same way as in chapter 5.3.2. Since the goal here is to create
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an entirely new plan, tearl and tlate of the operations can be ignored. The al-

gorithm tries to create a new plan in two different ways. It first looks if there

is a large enough gap in the current plan, into which the infeasible opera-

tion could fit. If there is one, the operation is inserted at that point, and the

proposal is created. If there is no suitable gap, the algorithm creates a new

plan from scratch, where it tries to achieve a more regular usage of buffer

slots. This smoothing is done according to two criteria—the first criterion

groups operations depending on which workplace processes the succeed-

ing operation. The algorithm selects operations from each of them in turn.

Operations with the same succeeding workplace are smoothed according

to their processing time in this workplace taking fast and slow operations

in turn. This process’s goal is an average input buffer filling degree on the

workplace that detected the infeasible plan.

The created proposal does not include the start and end times of operations

at this point. Instead, it is only a sequence of operations. Since the infeasi-

bility occurred in the current workplace’s input buffer, the algorithm needs

to first determine the start and end times on the preceding workplaces be-

fore evaluating the current workplace. Of course, those workplaces might

need a result from their preceding workplaces in turn. This goes on un-

til a workplace has no predecessors anymore or it only has predecessors

that are already part of the chain. The second group of workplaces can-

not be asked again because it would create a livelock where the algorithm

switches between different workplaces, needing an answer of one before

scheduling the other and vice versa. The answer to a proposal consists of

an actual local sequence with start and end times and an evaluation of that

plan compared to the last created local sequence. The same local sequenc-

ing algorithm of chapter 5.3 is used again, with a few changes explained

at the end of this section. To summarize, the algorithm sets up a chain of

queries to predecessors and then creates local plans according to their re-

verse order to evaluate the proposal.

After creating all local plans, the algorithm has a list of answers for the

workplace, which created the negotiation. The evaluations state if the plan

created in response to the proposal is better, equal, or worse than the cur-
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rent local sequence. The algorithm calculates the new objective function

value on all workplaces taking part in the negotiation. This value shows

how much this workplace would worsen the global scheduling result. The

relative change is then compared to the case of the delay of the infeasible

operation. If each evaluation is at most as bad as the delay, the algorithm

can finally create a new local plan for the workplace that started the negoti-

ation. This step can be omitted if any evaluation is worse since the proposal

will get denied in any case. Suppose the workplace starting the negotiation

can create a feasible plan, all workplaces participating in the negotiation

switch to the new local plan. If one of the participating workplaces would

be worse with the new plan than with the delay, or the algorithm cannot

create a plan according to the required new criteria at any workplace, the

algorithm incorporates the delay since it is the better global solution. In

this case, the algorithm checks the effects of the delay on every workplace,

and local plans are delayed on preceding workplaces as well, if necessary.

After finishing the negotiation, the algorithm continues to create the local

sequence at the workplace it is currently planning. It does so by including

the delay of the operation that caused the infeasibility or sequencing the

subsequent operation at the end of the new plan. Figure 5.5 depicts this

whole process.

W4W1 W2 W3

Material flow

2. Query3. Query4. Query

5. Response 6. Response 7. Response

1. Proposal

8. Result

Figure 5.5: Exemplary negotiation procedure

In the example, the algorithm creates a negotiation proposal on workplace

four. Since we have a flow shop, the algorithm asks each directly preced-

ing workplace to create an answer to the proposal. It ends at workplace
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one since it has no predecessors. The algorithm then creates responses in

the opposite order. Once it created the response from workplace three, the

algorithm can finalize the negotiation on workplace four.

As mentioned, the algorithm for local sequencing during negotiations

works slightly differently on an administrative level from the previous cases,

explained in the following. The conditions and criteria used to determine

the next operation and its start time stay the same. There are two main

differences. The first is that it does not take the data for updating all oper-

ations from the bottleneck workplaces but instead from the predecessors’

results and the proposal’s sequence. With this data, the update of opera-

tions is the same as described before in 5.3.1. The second difference is that

the algorithm cannot start another negotiation during a currently running

one. Instead, if the algorithm concludes that the proposal leads to a differ-

ent infeasibility, local sequencing is stopped, and it declines the negotiation

instantly. In this case, the local sequencing continues, including the delay,

which it could not prevent.

Finish the re-optimization

The local re-sequencing, including negotiations, continues on all bottle-

neck workplaces until the algorithm schedules a complete repetition (a rep-

etition consists of all workplaces in M0) and every workplace has the same

local sequence as in the repetition before. For this, the algorithm saves each

workplace’s local sequences at the end of each repetition and then com-

pares the new sequences to the sequences of the previous repetition. In

the first repetition of the re-optimization, the algorithm uses the last previ-

ous sequence before the re-optimization. The newly added bottleneck uses

the plan just created during the local sequencing step. For the workplaces,

which are bottlenecks from previous iterations, the latest sequence is from

the re-optimization step of the last iteration. Once the algorithm detects no

changes during a round, it goes to step 5 to finish the scheduling. Alterna-

tively, it continues with step 2 if there are still non-bottleneck workplaces

to be scheduled.
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5.6 Finish the Scheduling Process

Once M equals M0, and the last re-optimization step ended, the schedul-

ing can finish. The results of steps one to four are two lists for each work-

place. One is the workplace’s production plan, containing the ID and the

start time of each operation. It can be used in production immediately.

The second list contains all buffer slot reservations on the workplace with

their start and end times. Since the algorithm guarantees that at no point in

time more buffer spots than available will be used simultaneously, this list

is of no use for the production system directly. If the operating system also

handles transportation within the production, it needs a list of all required

transports between workplaces. For this, it can use the list of buffer reserva-

tions. Every start of an input buffer reservation amounts to a job arriving at

the workplace. Each arriving job requires a transport ending then. As men-

tioned, we assume transports to happen instantaneously. Therefore, the

end time of the output buffer on the predecessor workplace is equal to the

start time of the input buffering on the successor workplace. The transport

also happens at that time instant. In this last step of the scheduling process,

the algorithm converts input buffer reservations into transportation orders

for the operating system. With the scheduling process finished, this chapter

has described an algorithm able to solve the scheduling problem presented

in chapter 4.2. However, this algorithm is only able to function on a central

planning unit having global information availability.
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System

After developing the scheduling algorithm in chapter 5, this chapter de-

scribes its application in a decentralized system and answers the remain-

ing three research questions. For this, we employ a multi-agent system.

The chapter starts with the general structure of the multi-agent system and

descriptions of all agents present in it in chapter 6.1. Afterward, chap-

ter 6.2 describes the additions and changes to the scheduling algorithm

to function in the developed multi-agent system to answer the second re-

search question. In the end, chapter 6.3 deals with the third and fourth

research question: Will the decentralized scheduling system always find an

executable solution to any given scheduling problem?

6.1 Multi-Agent System

Figure 6.1 shows the multi-agent system of this thesis focusing on the work-

place agents. The exemplary system consists of five workplaces, each ac-

companied by a workplace agent, pictured at the bottom. They are grouped

(indicated by the square) because they connect to the other elements in the

same way. The workplace agents also build smaller groups on their own

during the scheduling process if needed, for example, when parallel work-

places need to create a local sequence. The exemplary system has two par-

allel workplaces M4-1 and M4-2, shown as a subgroup in the picture. How-

ever, also the agents of a parallel group communicate independently with

their surroundings. At the top are the four elements, which only exist once
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M 1

M2

M4-
2

M3

M4-
1

Agent 
Directory

Blackboard Event broker

Ag1

Ag2

Ag3

Ag
4-1

Ag
4-2

Operation 
generator

Agent Non-Agent element

Figure 6.1: Multi-agent system for production planning

no matter how many workplaces are in the system. They are called central

elements in the following.

Operation generator and agent directory

Production jobs can be pushed into the system via the operation gener-

ator by, for example, the existing production control system. The opera-

tion generator then transforms the jobs into the structure needed for the

multi-agent system. This includes splitting the job into single operations

and initializing the blackboard entries for the operations and the complete

job. After initializing the operations, the operation generator informs the

workplace agents about the work they have to do. Each agent only gets a

list of the operations it can produce. The information required for the oper-

ation generator to do this is stored in the agent directory. When an agent
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initializes, it signs up at the agent directory via an event containing the

workplace’s name and a list of operation types it can produce. The agent

directory stores this information, retrieved by the workplace agents and the

operation generator. If an agent leaves the system, it signs off with a dif-

ferent event.

Blackboard

The blackboard is a typical data storing interface, where each element can

store and retrieve data as needed. Each agent has direct access to the black-

board. Due to the way the scheduling algorithm is designed, write and read

accesses have a soft lock on them. Writing is locked because every single

data point in the blackboard belongs to one specific agent. Only that agent

will change the value of the data point. The responsible agent for an en-

try changes at synchronization points, so every agent always knows if it is

responsible for an entry or not. Reading is safe because writing only hap-

pens at the synchronization points and all agents work with the data from

the last synchronization point until they update it at the next one. The

way reading and writing works in this system enables the possibility of de-

centralized data storage. In the decentralized database, instead of agents

directly writing the new entry, an event with the entry and its new value

would be created, which every other agent needs to process and update in

their database. This is possible in the depicted system without any changes

or further synchronization needed under the assumption that every write-

event reaches every agent guaranteed. For this thesis, we chose not to im-

plement the data storage decentralized for simplicity reasons and instead

went with the blackboard approach. If an external system not part of the

multi-agent system needs data from the production system, the external

system also accesses the blackboard, for example, when the ERP-system

needs finishing dates for the production jobs.
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Event broker

The last of the central elements is the event broker. It is responsible for

distributing the events between the agents. It functions in the classical

publish-subscribe pattern. Filtering happens topic-based, and there are

two topics in the system. One includes all events for the scheduling pro-

cess, and the other includes the sign-in and sign-off events for the agent

directory. Events always include the creating agent’s name and any infor-

mation needed by the receiving agents to process it. All workplace agents

process every event for scheduling. It always starts with the receiving agent

checking if the event is relevant for itself. If not, it skips further processing

of the event. For the following description of the decentralized scheduling

algorithm (chapter 6.2), we assume that all events always reach their des-

tination. What happens if this is not the case will be discussed afterward

in chapter 6.3.

Workplace agent

M1

Machine 
Agent

Scheduling 
Agent

Goal function 1: 
Makespan

Goal function 2: 
FIFO

Further goal
functions

Figure 6.2: Structure of the workplace agent

Each workplace in the production system gets its workplace agent. If there

are parallel workplaces, like M4-1 and M4-2 in the figure, they each have
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their own agent. Figure 6.2 depicts the inner workings of the workplace

agent. The workplace agent consists of two different agents internally,

which function the same for every workplace. One is the machine agent re-

sponsible for handling the workplace and the only element to interact with

it. Its tasks include handling jobs in the workplace, starting the processing

of operations, and requesting transportation of jobs to its workplace.

The other one is the scheduling agent, which does all of the content de-

scribed in chapter 5. The scheduling agent has no direct access to the

workplace; the machine agent provides an interface to its scheduling agent

containing all the necessary data. The scheduling agent’s interface offers

methods to add and remove operations, which the machine agent uses to

add, when it gets new operations from the operation generator, and remove

when an operation has finished processing. Once the scheduling finishes,

the scheduling agent pushes the resulting plans into the machine agent,

who then starts processing them. The scheduling agent has an inbuilt pos-

sibility to exchange the local sequencing algorithm according to the local

objective function that measures the result. Examples include, also shown

in the figure, the makespan, which is the content of this thesis, and a FIFO

sorting, which we used for tests. It is possible to implement additional

functions (e.g., a setup time minimization) without changing the agent’s

structure. The machine agent processes all external communication. This

means that it first evaluates incoming events and either processes them or

relays them to the scheduling agent. When the scheduling agent wants to

publish an event, it creates the event and sends it to the machine agent,

which sends the event to the event broker.

6.2 The Decentralized Scheduling

Algorithm

Before we can discuss the changes and additions to the scheduling algo-

rithm, we need a method to start the scheduling process in the multi-agent

system. After the system finishes initializing, the first scheduling starts with
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an event created by the operation generator. The operation generator is re-

sponsible for starting planning processes because it is the only element in

the multi-agent system that knows how many jobs currently wait for pro-

duction. Newly created jobs enter the system via the operation generator

as described before. Every time an operation finishes, the machine agent

checks if it was the last operation in the job’s process sequence. If it was,

an event is created, which informs the operation generator that a job has

been entirely produced. From this information, triggers to create the start

scheduling event can be derived:

• Based on the number of available jobs...

...entering the system.

...leaving the system.

• Schedule...

...all available jobs.

...only a fixed maximum number.

Within an empty production system, we can set the number of jobs to ar-

rive in the system before the first scheduling starts. Afterward, we can set a

different parameter that controls the interval after how many arriving jobs

scheduling starts regularly. Alternatively, it can not plan according to the

created jobs but try to keep the system’s jobs close to a constant like in the

CONWIP-principle. For this case, the operation generator compares the

number of scheduled jobs to the number of finished jobs and creates an

event to start scheduling if a certain amount of jobs has been finished. In

both cases, the operation generator does not have to trigger the scheduling

for all available jobs. An input parameter sets the maximum number of jobs

that the system can schedule at the same time. If it is limited, the operation

generator only takes the first jobs according to the time of their creation

until it reaches the maximum. The list of jobs to be scheduled is sent to the

workplace agents with the event that start the planning process. If there is

no limit, the scheduling agents interpret it to schedule all available jobs.

As described before, once the machine agent has finished processing an

operation, it removes the operation from the scheduling agent via the inter-
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face between them. This, however, ignores the possibility of parallel agents,

which would not know that the operation has finished. Therefore, while re-

moving the operation from all planning lists, the scheduling agent checks if

it has parallel agents. If it has, it creates an event containing the ID of the

operation to remove (Parallel Remove Event). Upon receiving an event of

this type, an agent checks if a parallel agent sent it and then also removes

the operation from its planning lists if that is the case. The scheduling algo-

rithm’s general procedure and objective function are the same as described

in chapter 5. Figure 6.3 shows them once again, including the added syn-

chronization points:

1. Preparations 
before scheduling

5. Finish 
scheduling

2. Local 
sequencing

4. Re-optimization

3. Identify the 
bottleneck

Synchronization point

Figure 6.3: Flow chart of the scheduling algorithm including synchronization

In the following, we will mention the scheduling algorithm’s steps again,

focusing on the additions needed to make the algorithm work in the multi-

agent system. This includes the explanation of all types of events and the

different synchronization points. In general, a synchronization point de-

scribes a point during the scheduling process at which an agent will wait

with continuing until all other agents are also at the synchronization point.
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It is needed because it guarantees that the information needed for the next

step is updated correctly. All synchronization points are implemented with

the help of events. Once an agent reaches the point, it will send out an

event. Most events are specific to a single synchronization point, but a few

are used for more than one if agents need the same information during dif-

ferent steps of the scheduling process. One example of this is the event that

the local sequencing has finished. It can be used during steps two and four

of the scheduling process. When an agent receives an event related to a

synchronization point, it saves the event and its information locally. Each

time the agent processes an event of this type, it checks if all agents have

arrived at the synchronization point. If that is the case, the scheduling pro-

cess continues. If not, the agent waits for the next event of the same type.

It is crucial to note that the agent will also update the data concerning itself

the same way. When an agent sends out an event, it will immediately forget

all information sent out and only learn it again once its own event is pro-

cessed. This is necessary to guarantee the same order of steps and availabil-

ity of information in all agents. Furthermore, the agent can tell if all agents

have reached the synchronization point by comparing the number of re-

ceived events with the number of agents taking part in the scheduling. This

works because we assume that all events always reach their destination and

agents never fail to function. Table 6.1 describes all events used for sched-

uling in the decentralized system. The events are listed chronologically in

the order they are first used during a scheduling process.

6.2.1 Preparations before Scheduling

The scheduling agent first needs to get information about the other work-

places in the system. The information is present in the agent directory,

and the agent updates it at the start of every scheduling process. An agent

saves information about other workplaces in two separate lists. One con-

tains all agents taking part in the scheduling process (equal to all agents

registered in the agent directory), and a second list all agents parallel to it-

self. The agent saves all information needed about other agents in the two
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Name Description

Parallel Remove Removes operations from parallel agents
Start Planning Starts the planning process
Delayed Transport Informs a predecessor agent that a transport

will be delayed
Fixed Jobs States that an agent has finished the first

part of preparations
Preparations States that the preparations before scheduling

are finished
Parallel Planning Sent out after a parallel agent has sequenced

an operation
Result Local Plan Distributes the result of the local sequencing
Plan Fixed Sent out once a new bottleneck agent has fixed

its local sequence
Re-Optimization Distributes the result of a local re-sequencing
Iteration Finished Information that an agent has finished the

re-optimization step
Announcement Announces a negotiation
Query Contains a negotiation proposal
Response Contains a response to a Query event
Commit Informs about the result of a negotiation
Commit Response States that an agent has realized the result of

a negotiation
Parallel Restart Tells a parallel agent to restart its local sequencing

Table 6.1: List of all events used for scheduling in the multi-agent system

lists’ entries during the scheduling process. The remainder of this chapter

will mention specifically which data it saves at the points the data is up-

dated. There are two synchronization points during the preparation phase.

The first one happens after the agents have determined which operations

they do not need to plan again since they will remain the same from the

last scheduling process (Fixed Jobs event). This information is relevant for

parallel agents since they otherwise might plan operations that are already

done on a different machine and is the only content of the first synchro-

nization point. The second synchronization happens after agents finish
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the preparations to start the local sequencing simultaneously (Preparations

event). Furthermore, they exchange the information obtained during the

preparation at the second synchronization point, including the lists of all

predecessors, the points in time at which the agents can start producing

new operations, and the start and end times of operations taken over from

the last scheduling process for each agent.

One aspect of the preparations from chapter 5.2 included more than one

workplace. If the delay at a workplace influences the preceding workplace,

the preceding workplace agent needs to be informed. A workplace can cal-

culate the required delay with the final schedules from the last planning

process. Afterward, if a preceding agent needs to be informed, the Delayed

Transport Event is used to inform the receiving agent about the delayed op-

eration, and the new time its transport will start. The receiving agent then

incorporates the delayed transport in its plans and adjusts them if needed.

6.2.2 Create a Local Sequence

Creating a sequence at a given workplace is done locally. Therefore, there is

no need for any changes to the procedure as long as it is not at parallel work-

places. The necessary information to create a buffer reservation needs to

be spread between the agents, however. For this, the agents always include

their new local sequence in the events used to indicate that local sequenc-

ing has finished (Result Local Plan and Re-Optimization Event). Agents save

these plans and use them to look up the end times of preceding operations

when needed. This information is also present in the blackboard. It would,

however, be harder to find the correct information there. The reason is that

the blackboard is organized on a job basis and does not contain informa-

tion about sequences on workplaces. So, the agent would need to build the

sequence of its predecessor with the information from the blackboard first.

Therefore, it is faster to exchange all local sequences between the agents.

Parallel agents need to build the aforementioned group to create a local se-

quence for parts of the scheduling process. Before building a group, each

parallel agent can update the key variables locally. In the sequencing al-
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gorithm, parallel workplaces always only plan one operation at a time be-

fore stopping again. Afterward, the parallel workplaces need to choose one

that will plan the next operation, which they achieve with the help of an

event (Parallel Planning Event). Every time an agent with parallel agents

has planned an operation, it sends out an event consisting of the ID of the

operation it just planned and its start and end time. Since all different local

sequencing types use this event, it also includes an indicator in which step

the agent currently is. In this case, the indicator states local sequencing.

Only agents parallel to the creator of this event process it, while all others

ignore it. They then update their list of parallel agents with the informa-

tion about the newly planned operation and remove that operation from

the list of operations that still need planning during their local sequencing.

If the list of operations is empty after the removal, the agent finishes the lo-

cal sequencing immediately. If there are still operations to be sequenced,

the agent can now identify which parallel agent will plan next from the list

of parallel agents. The identification works as described in chapter 5.3.2; if

it is the agent in question, it continues the local sequencing. If it identifies

another agent, the agent waits for the next event of this type. This situation

works the same way before the first operation is sequenced. There, agents

have information about the earliest time their parallel agents could start the

first operation from the preparations before scheduling. The agent with the

earliest possible start time starts local sequencing first.

6.2.3 Identify the Bottleneck

Identifying the bottleneck of the current iteration contains the next syn-

chronization point in the multi-agent system. After the local sequencing

finishes, an agent can locally calculate its objective function value. It then

sends out this value in an event containing the agent’s name and its value

(Result Local Plan event). All agents save the value locally to be able to iden-

tify a bottleneck. The synchronization happens here because an agent who

has finished sequencing needs to wait for all other agents’ results. Once the

event has arrived from all agents, it can identify a bottleneck. The agent that
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identifies itself as the bottleneck then writes its local sequence’s results into

the blackboard. Afterward, the bottleneck agent sends out another event

stating that the writing process is finished (Plan Fixed event). Upon re-

ceiving the event that a writing process has finished, the agents note which

agent has become the new bottleneck. All agents that are bottleneck then

start the re-optimization step.

6.2.4 Re-optimization

Re-optimization is the most complex step in the multi-agent system. For

easier understanding, the content is split in two parts. The first describes

the re-optimization step without an infeasible plan occurring, the second a

negotiation in case of an infeasible plan.

Standard procedure

The first important task of the re-optimization procedure is to identify

which agent is next to create a new local sequence. Before, we had the

central scheduler, which would do the local planning in the order of work-

places becoming a bottleneck. Now, the workplaces’ agents need to know

for themselves if it is their turn or that of another agent. From the previous

step of the procedure, an agent knows which agents are bottlenecks. The

agents do not only note which agents have become a bottleneck; they also

keep a separate agent list in which they add an agent once it has become

a bottleneck. Since the list is empty at the start, it is automatically sorted

by the order in which agents became bottlenecks. The agents then use a

simple counting system to determine which agent must plan next. Assum-

ing a situation in which the list of bottlenecks has five entries and the agent

we look at is third in the list. Agents re-sequence according to the order

they became a bottleneck; thus, this agent knows that it must plan once

the counter reaches three. The next time it has to plan after a full round,

equalling five plus three. Therefore, it would plan again once the counter

hits eight. This procedure can continue indefinitely. An agent calculates

this in the same way. If the current counter matches an expected number,
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the local re-sequencing starts. If the agent does not need to plan at the

current counter, it increases its counter and still checks if the agent match-

ing the counter is parallel to itself. In that case, the local re-sequencing

also starts. To be able to handle parallel agents, the counter mentioned

above is also kept by non-bottleneck agents. If their parallel agents plan,

they also do the re-optimization even if they are not a bottleneck. However,

those agents do not save their results since they are not relevant for the re-

optimization. If a bottleneck agent plans out of its turn because of a parallel

agent, it saves the plan and uses the same result again once it is its turn to

save computation time. This means that all agents of a parallel group do

their re-optimization according to the position of the agent who first be-

came a bottleneck within the group. Once the local re-sequencing ends, the

agent or agents who planned update the blackboard with their new plans.

Afterward, only the agent who matches the counter sends out an event that

it has finished the local re-optimization (Re-Optimization Event). Parallel

agents, which planned and updated the blackboard earlier than their turn,

immediately send out the event once they notice it is their turn since they

have already done the re-optimization.

Upon receiving a re-optimization event, an agent saves the information in

it, consisting of the new local sequence, and a decision variable if there

was a change in the local sequence. The new local plans of all agents are

needed to create buffer reservations, as described earlier. Then, the agent

determines again which agent is to re-sequence next. Once all bottleneck

agents have created a new local sequence, the current repetition of the

re-optimization completes. Each agent then checks if there was a change

of a local plan for any agent. If that is the case, the next re-optimization

repetition starts. If there is no change, each agent creates an event to in-

form all agents about that fact (Iteration Finished Event). The event indi-

cates the completion of a whole iteration of the planning process and is the

last synchronization point. Only bottleneck agents send out the event. All

agents wait until they have received the event from every bottleneck agent

to make sure the re-optimization has finished. Once that is the case, the

non-bottleneck agents start with the local sequencing (chapter 5.3) again.

95



6 Decentralized Scheduling System

Agents who already are a bottleneck but have a parallel agent, which is not

a bottleneck yet, must also do the local sequencing. Should there be no

more non-bottleneck agents at this point, the complete planning process

finishes. Finishing the scheduling works the same as in chapter 5 since it

is done locally at each workplace.

Negotiation

At any point during the re-optimization step, an agent can detect an infea-

sible plan and start a negotiation to solve the problem. As we have seen

in the previous section, this requires creating local sequences on multiple

workplaces. Therefore, the multi-agent system needs a process to inform

agents that they have to participate in a negotiation and a method to re-

solve negotiations. Since agents can work in parallel, the negotiation sys-

tem is designed with that fact in mind. It can handle any number of negoti-

ations starting in parallel by sorting the negotiation queries time-wise and

only allowing one negotiation to start once the previous one has ended. The

following explanations describe a negotiation in chronological order. Spe-

cific steps may not be happening in every negotiation, which is explained

when it happens.

Creating a proposal

When an agent detects an infeasible plan and wants to start a negotiation, it

sends out a negotiation announcement event (Announcement Event). This

event does not include a proposed sequence or recipients yet; instead, it

only serves as a reminder so that all agents know that there will be a nego-

tiation. Upon receiving the announcement, every agent in the production

system creates a local reminder about this negotiation without knowing if

they will or will not participate in the actual negotiation. Furthermore, an

agent always assumes that it currently takes part in its reminder list’s oldest

entry. This is necessary to ensure that every agent processes the negotia-

tions in the same order and that no new negotiation is processed until the

previous one has finished. Every time a negotiation finishes, the agents re-
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move its entry in the reminder list and see if there is another negotiation

waiting. If there is, the agents process the negotiation accordingly. Apart

from creating the reminder, no further action is necessary for the negotia-

tion announcement event. The only agent continuing to work on the an-

nouncement is the creator of it. When it is time to process its announce-

ment (once it is the oldest entry in the reminder list), the agent first checks

if the negotiation is still required. There might have been other negotiations

in the meantime, resulting in a situation different from when the agent cre-

ated the announcement. Table 6.2 lists the possible situations, which the

following paragraph describes.

Was there a Was it Did I take
Case negotiation? successful? part in it? Conclusion

#1 No - - Continue negotiation
#2 Yes Yes Yes Cancel negotiation
#3 Yes Yes No Restart local

re-sequencing
#4 Yes No Yes Continue local

re-sequencing
#5 Yes No No Continue local

re-sequencing

Table 6.2: Possible situations for the creator of a negotiation

In case that no negotiation happened between the announcement and

the creator processing it (#1), the negotiation still needs to be done since

the whole multi-agent system is still in the same state. If the announcing

agent took part in a successful negotiation (#2), its negotiation is no longer

needed. As a result of the successful negotiation, the creating agent has

already switched to a different local sequence. Then, it cancels the nego-

tiation by sending out an event (Commit Event), which signals a canceled

negotiation. If the negotiation stops at this point, the local re-sequencing

can continue directly. There, the agent only has to send out the event that

it has finished the re-optimization repetition since it always creates a com-

plete local sequence during a negotiation it did not start. If the agent, who
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wanted to negotiate, is part of a parallel group, this process is slightly dif-

ferent. Instead of directly continuing the negotiation at the point it was

stopped, the parallel agent starts from the beginning again. It also notifies

the other parallel agents that the local re-sequencing is restarted (Parallel

Restart Event). This step is not strictly necessary. However, it may improve

the result’s quality since parallel agents may distribute the operations be-

tween their workplaces again and may find a better distribution and there-

fore better local sequences than they had before.

If there was a successful negotiation and the agent did not participate

(#3), the agent’s situation has changed. Therefore, it must create a new

local sequence from the beginning based on the new system state. If it

can create a new sequence without an infeasibility, it cancels the negoti-

ation. Otherwise, the negotiation will still take place. If there was any non-

successful negotiation (#4 and #5), the agent first tries to continue the local

re-sequencing at the same point it was stopped before to check if the in-

feasibility still exists. If it does not exist anymore, the negotiation can stop;

otherwise, it continues. It is important to note that if the agent still wants

to negotiate in these three situations, it does not need to send out a new

announcement. Instead, it uses its old announcement and directly creates

a proposal for the negotiation according to the rules described in chapter

5.5. If it would send out a new announcement, it might get stuck in a loop of

announcements. This happens if the system state always changes between

the announcement and the processing of the negotiation.

If the negotiation continues, the agent can create a proposal in the same

way as in the central algorithm. Next, assuming a proposal was created, the

agent determines all direct predecessors of the operations in the proposal.

If one of the predecessors is part of a parallel group, it adds all agents in that

group. This stays the same at any point during a negotiation: Every time a

predecessor is part of a parallel group, all agents of the group are added

to the negotiation. It might be in special cases that the list of recipients

is empty. Then the negotiation is finished as not successful immediately

instead of continuing with a query event. This happens if all preceding op-

erations are fixed in time already and cannot be changed anymore (for ex-
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ample, because they are currently being processed or taken over from the

last plan). In that case, the only possible solution is to include the necessary

delay into the local sequence. After the list of predecessors is determined

and contains at least one agent, the agent sends out a query event for the

proposal (Query event). It contains the plan, a list of recipients (the prede-

cessors), and the agent’s name.

Processing Queries

All agents in the recipient list of a query event process it directly because

the query can only be sent out if the negotiation is on top of every agent’s

reminder list. A processing agent saves the creator of the event and the

proposal. Afterward, there are several possible situations, which the agent

has to differentiate:

1. Agent receives a query asking it to take part in the negotiation the first

time and...

...it can create a response directly.

...it cannot create a response yet.

2. Agent receives a query asking it to take part in the negotiation a sec-

ond or more time and...

...has already created a response.

...has not yet created a response.

3. Agent receives a query of a negotiation it is not part of, and the query

does not mention the agent.

If it is the first time that the agent receives a query event for the current

negotiation, it checks if it can create a response to the query. For this, it

creates a list of its predecessors based on the operations in the proposal. It

is not allowed to add all agents to this list, however. Instead, there are some

limitations, which prevent query circles, in which two or more agents are

querying each other and wait endlessly for a response. The agent cannot

send a query to the requester of the negotiation, and all other agents already

part of the negotiation, so it does not include them in the predecessor list.
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With these means, a temporary topological sorting of agents arises during

a negotiation. Agents sort by when they entered the negotiation, with the

original creator on top of the chain. If the agent’s list of predecessors is not

empty, the agent sends out its query event to the agents in its list.

An example for the distribution of query events is shown in figure 6.4. Num-

bers on the arrows stand for the order in which queries are sent if agents

were not working in parallel.

AG1

AG4

AG3

AG2AG5

AG6

AG8

CreatorLevel oneLevel twoLevel three

1

2

2

1

1

4

5

3

AG7
4

Figure 6.4: Example for the spontaneous sorting of agents during a negotiation

The figure describes a negotiation with eight participating agents. Agent 1

is the creator of the negotiation. It identified agents 2, 3, and 4 as its pre-

decessors. Since these three agents enter the negotiation simultaneously,

as part of the recipient list of the same query event, they get placed on the

same level within the negotiation. Next, agent 2 identifies agents 5 and 6 as

its predecessors. They are not yet part of the negotiation, so it can send a

query to them. However, they are not on the same level anymore since they

are now two queries away from the creator and therefore on level two.

Agent 3 only has agent 4 as a predecessor. However, agent 4 is already part

of the negotiation and on the same level as agent 3. Therefore, agent 3 is not

allowed to send a query to it. The situation is slightly different for agent 4.

It wants to send a query to agent 6, which agent 2 already made part of the

100



6.2 The Decentralized Scheduling Algorithm

negotiation. This time, agent 4 can send a query even though 6 is already

in the negotiation since agent 6 is on a lower level. For agent 6, it makes no

difference if it has to respond to only agent 2 or also agent 4. Agent 4 also

sends a query to agent 7. It gets placed on the same level as 5 and 6 since it

is the same number of queries away from the creator. Last, agent 5 sends a

query to agent 8, which gets its separate level again.

Before an agent uses the list of recipients for its query event, it can do an-

other step to improve the final topological sorting by considering agents

not yet part of the negotiation. The agent checks if it would create a pos-

sible future query circle to send a query to another agent from the recip-

ient list. Each predecessor is checked independently for this. It searches

for predecessor circles with each agent’s predecessors list created during

the scheduling preparations. A predecessor circle is a chain of agents that

would send query events to the following agent in the chain, ending at the

current working agent again. This circle would already not be closed by the

agents because of the prohibitions explained earlier. However, the agent

can forecast that situation, and a decision, which agent is allowed to send

a query, can be reached by ordering the agents in the possible circle ac-

cording to their position in the full agent list. If an agent detects a potential

negotiation circle now, it can include the agent in the recipients only if it is

listed earlier in the full agent list. If it is behind, it removes the agent from

the recipients, and the working agent will receive a query event from it at

some later point. This addition helps with finishing the negotiation faster

and also creates better results the closer the production system structure is

to a line, in which always the agent later in line would ask the agent in front

of it. This leads to situations in which agents with more predecessors are

generally higher in the topological sorting than agents with fewer prede-

cessors. Of course, in a system where every agent is a predecessor of every

other agent, it helps less because there is no structure to identify and use.

There are two important points about this topological sorting of agents.

First, it works in every case, not depending on the number of agents in

the negotiation or the predecessor relations. Second, it works in parallel or

non-parallel computing systems. It does not matter if all agents process the
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events simultaneously or if only one agent works on each event at a time.

Both cases lead to the same result because also in parallel systems only one

negotiation is open at a time and the afore-mentioned process leads to the

same result no matter the processing order of queries. The presented rules

also guarantee that the negotiation process always finishes and never en-

ters a deadlock or livelock.

If the predecessor list of an agent (other than the creator) is empty, it can

create a response to the query. The agent creates a new local sequence ac-

cording to the proposal. The process to create a new local sequence was

described in detail in chapter 5.5. An answer to a query contains a list of

all agents receiving the response (equal to all agents, which sent a query to

this agent), the responding agent’s name, the created local sequence, and

an evaluation of the new local plan (Response Event). The agent can re-

ceive queries from multiple agents for the same negotiation, as shown in

the example. If a second query for the same negotiation arrives, the agent

reacts in two possible ways. If it has already created and sent out a response

before, it directly takes that response and sends it to the querying agent. If

it did not create a response yet, it only needs to save the name of the sender

of the query. The process for creating a response has already started in this

case. Once it finishes, the response only needs to be sent to an additional

agent. Parallel agents use the same method here, which they also use dur-

ing the other local sequences. They plan alternatively until all operations

have been planned between them, and then each sends its response.

Lastly, specific agents not in the recipient list of a query event also need

to process it. The negotiation’s creator updates its list of all participating

agents, which it will need at the end of the negotiation. Agents not (or not

yet) participating in the negotiation also keep a list of all participants. They

do so because they need to know which agents are already participating in

order to determine their recipient list if they join the negotiation.
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Processing Responses

When an agent receives a response event, it saves the event as part of the

current negotiation. Once responses from all agents, which the agent sent

a query event, have arrived, it can create its response. It does not matter

how the responses arrived, as the topological sorting ensures that an agent

creates responses at the correct time for the whole negotiation. If the agent

processing the response event is not the negotiation creator, it creates a new

local sequence. This is, however, only done if all responses received are pos-

itive. If one of the responses states that the proposed new plan is infeasible,

creating a new local sequence is skipped, and it directly reports the infea-

sibility in the response. In either case, the agent creates its response event

for all agents that require it. The evaluation included in the response is the

worst evaluation between itself and all the responses it received. Therefore,

in the end, the creator of the negotiation always sees the worst impact of

the proposal.

AG1

AG4
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AG2AG5

AG6

AG8

CreatorLevel oneLevel twoLevel three

7
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1
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Figure 6.5: Order of the responses in the earlier example

Again, we present an exemplary situation in figure 6.5. It shows the same

negotiation as before; this time, the arrows indicate the order of responses.

The first response created comes from agent 3. It was not allowed to send

another query earlier, so it can directly create a response. Next to create a
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response is agent 6. It first sends its response to agent 2 and then directly af-

terward is queried by agent 4. Then, it sends the same result also to agent 4.

Agent 7 can also directly respond to the query of agent 4. For the third level,

agent 8 can respond to agent 5. Now, the responses of agents 6 and 7 have

arrived at agent 4. So, agent 4 itself can create a response for agent 1. Af-

ter agent 5 and then 2 have created their responses, the creator can decide

about the negotiation result. As for the queries, this works independent of

the order of processing responses (and queries). Since there is a defined se-

quence of when each agent can create its response, delays in the processing

an event do not have an influence on the result of the negotiation.

Finishing the negotiation

Once the creator has received all responses it is waiting for, it can finish the

negotiation. For this, it first evaluates all the responses it has received. If

any evaluation among the responses is worse than the delay or infeasible,

the negotiation was not successful. If the result is satisfactory and there-

fore better than having a delay, the creator does a new local sequence. If

the creator itself detects no infeasibility in the local sequence, the whole

negotiation was successful. In both cases (successful or not), the negotia-

tion result spreads with a finishing event (Commit Event). It contains the

result of the negotiation, all participants, and the duration of the delay in

case of a negative result.

Agents who participated in the negotiation, but are not the negotiation’s

creator, now implement the negotiation result upon receiving the commit

event. This can be done in parallel by all agents. If the negotiation was suc-

cessful, the agent replaces its local sequence with the one created during

the negotiation and updates the blackboard with the new information. Fur-

thermore, it cancels its local re-sequencing for the current re-optimization

repetition if it is not already finished at this point. Instead, it takes the

plan created during the negotiation as the result of the current repetition.

If there was a successful negotiation, another re-optimization repetition is

needed since there were changes in multiple agents’ local sequences.
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If the negotiation result is negative (or non-successful), the agent checks

if the resulting delay has an effect on its workplace. That is the case if

the agent’s workplace also processes the delayed operation’s job. If the

associated operation has not been planned during the current local re-

sequencing, its latest finishing time is updated to include the delay, and it

marks that the operation must not finish earlier than this time. If the local

re-sequencing of the operation is finished, the plan is updated to accom-

modate the delay, which is written to the blackboard afterward.

In the case of a canceled negotiation, the agent needs to do nothing as it

only happens when the agent creating the negotiation could independently

solve the problem. One additional step for non-canceled negotiations is to

confirm to the negotiation’s creator that the necessary local changes have

been implemented and written to the blackboard. This is done via one last

event, not containing unique information (Commit Response Event).

After doing all necessary local steps, if an agent was part of the negoti-

ation, all agents save the result of this negotiation in a list to use if they

have requested or will request their own negotiation during the current re-

optimization repetition. In this case, they require the information to de-

termine if that negotiation is still needed, as described earlier. Finally, all

agents except the creator remove the negotiation from their reminder list

and see if another negotiation query is waiting to be processed.

Only the creator of the negotiation processes commit response events. It

waits until it has gathered the confirmations of all participating agents.

Then, it can do the same steps as the participating agents. The reason why

that had to wait until now is that in the case of a non-canceled negotia-

tion, the local re-sequencing continues at the point the infeasibility was

detected. But to be able to do so, the agent needs the updated informa-

tion from the blackboard. After receiving all confirmations, it can be sure

that the blackboard is up-to-date again. The negotiation is completed with

the creator removing its negotiation from the reminder list and continuing

the local re-sequencing.
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6.3 Termination of the Decentralized

Algorithm

After having described the functionality of the multi-agent system, there

are still two essential aspects left. The algorithm has to guarantee that it

generates a solution for every possible input data case and that every solu-

tion is executable. Only with these two conditions fulfilled, the system can

be used in a real-world production system. For the decentralized algorithm

as described in this chapter so far, this would not always be the case. While

it guarantees an executable plan, it is not able to find one for every possi-

ble set of input data. Therefore, this section gives an overview of additional

measures to ensure that the algorithm terminates with an executable solu-

tion every time and also a reasoning of why every created plan is executable.

For this, we present a detailed look at the possible cases in which the sched-

uling could fail either during planning or execution. They include a descrip-

tion of how the algorithm deals with them for each case. In general, the

system tries to avoid deadlocks from the start instead of repairing them.

Livelock

Planning
Planning

Execution

Deadlock Livelock

Deadlock

Planning

Deadlock

Execution

Livelock

Execution

Figure 6.6: Possible termination problems of the algorithm
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Two characteristics can identify the algorithm’s possible failures regarding

convergence and problem-free execution of the resulting plan. The first is

the point in time at which the problem occurs. It can occur during the plan-

ning process described in this and the last section, or it can only happen

during the plan’s execution. The other characteristic is the type of problem.

The algorithm cannot converge either because of a deadlock or because of

a livelock. These alternatives and starvation as a special case of a livelock

were already described in chapter 3. The two characteristics can be com-

bined in any way, leading to the four possible ways the algorithm could not

work correctly, shown in figure 6.6.

The remainder of this section explains the four possible problem scenar-

ios and the algorithm’s solutions to prevent them from happening in order

of their difficulty, starting with the easiest. As we will see, it is possible for

almost all of the scenarios to be solved within the algorithm itself. How-

ever, some scenarios remain where we could not guarantee a solution for

every possible case within the algorithm. Therefore, an additional external

solution is necessary, presented in the last sub-chapter.

6.3.1 Deadlock during Execution

The first case we want to look at is the example of a deadlock during this

plan’s execution. Figure 6.7 shows an example. In this situation, work-

places two and three currently work on an operation, and all of their six

buffer slots are occupied by jobs. Now, one of the jobs at workplace two

needs transportation to workplace three and vice versa. Assuming instan-

taneous transport and no other workplaces in the system, this would not

be possible, and a deadlock has occurred.

Although this situation appears during the execution of a plan, the algo-

rithm already prevents it during the planning phase. We defined that in a

feasible plan, every job has to have a clearly defined place during the whole

timespan the plan covers, can not be scheduled at two places at the same

time, and each job that gets planned has to finish. Every operation within

each job has to have a planned start and end time, and all buffering times
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M2 M3

Input InputOutput Output

Figure 6.7: Example for a deadlock during the execution

scheduled. All scheduled times of a job must uphold the feasibility criteria.

With these, a situation like in the example can never happen since the al-

gorithm would detect the infeasibility during the planning process and use

its method (the negotiation) to solve it. In case of a non-successful negotia-

tion, the algorithm delays an operation and therefore puts a time gap in the

plan of a workplace. With this measure, every plan with a deadlock can be

made feasible. If nothing else works, the algorithm could create time gaps

so large that only one job is in the production system at any given time.

Then, a deadlock cannot occur. Of course, the objective function value also

would be rather bad. Therefore, this measure creates gaps as small as pos-

sible each time it is used.

6.3.2 Livelock during the Execution

The problem of livelock during the execution can only appear in applica-

tions with multiple scheduling runs at different times. If the system plans

only once, this problem can not occur since, according to the section above,

the plan will be functional and finish every job. On closer look, not all types

of livelocks can occur during the execution. Instead, only the problem of

starvation can happen here. Several steps are needed to solve it. First, it

can happen as a result of parallel workplaces offering to process the same

operation. Figure 6.8 shows an example where two parallel workplaces, M4-

1 and M4-2, repeatedly switch the planned processing of job J1 between

them. In the first plan, the workplace one wants to process it. Then, a

new plan is made, and the operation is now planned on workplace two and

108



6.3 Termination of the Decentralized Algorithm

therefore transported to it. Afterward, it could again happen that before

workplace M4-2 processes it, a new plan is made, and the operation now

has to go to workplace M4-1 again.

M4-2M4-1J1

M4-2J1M4-1

Plan two:

Plan one:

Figure 6.8: Example for a starvation during the execution

To prevent this situation from occurring, we restricted the agents in the op-

erations they are allowed to plan during the preparation phase before the

scheduling, which was mentioned in chapter 5.2. There we introduced the

rule that a workplace must not plan an operation, which has already physi-

cally arrived at another workplace capable of processing it. This rule, how-

ever, does not entirely solve the problem. It could still be that the single

workplace always plans the operation at the end of a local sequence and

always has this one operation left from the old plan when it creates a new

one. Then, the operation stays in the input buffer of that workplace for an

indefinite time. For this situation, we introduced a second rule that oper-

ations belonging to a job, which has finished the preceding operation, are

not scheduled again and keep their start time from the previous plan. These

two rules, in combination, ensure that a job always gets finished once it
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started but still leaves one last case of possible starvation. They do not pre-

vent a job from never being started in the first place. This problem solves

itself as long as the production system’s utilization is below 100% and with

an unlimited amount of time available. For practical applications, we want

to prevent a large spread of individual jobs’ makespans, if possible. There-

fore, we can not rely on the fact that the problem will solve itself over time.

We include the time between creating a new job and its planned starting

time in the objective function. This makes longer waiting jobs prioritized

over jobs that only arrived in the system a short time ago, preventing in-

convenient jobs from being delayed indefinitely and starved.

6.3.3 Deadlock during Planning

Describing how to prevent a deadlock during the algorithm’s run time or,

even further, proving it, is not easily done. In the algorithm described in

chapters 5 and 6, every step is clearly defined, and each agent always knows

what to do next or for which other agents it has to wait. As long as all events

always reach their destinations and no agent has a failure so that it does

not respond anymore, the system will never enter a deadlock. For this algo-

rithm’s practical application, where the mentioned assumptions of chapter

4.2 are not given, we included several features to lead the system out of a

deadlock. The first is a timeout of agents. Each agent has to send an event

to the agent directory each minute that it is present and functional. If it fails

to do so, the agent directory assumes that the agent is not part of the system

anymore and cancels the current planning process in case one is running.

Afterward, the planning process is started with the same parameters again.

The same also happens if a new agent enters the system. Since agents up-

date their view of the system at the start of the planning process, they also

remove or add agents.

The problem of events not reaching agents is not so easily solved and is not

implemented in the algorithm yet. An event never being created can only

happen if the agent fails and that case is dealt with already. If the event

reaches only some but not all needed agents, the situation can be resolved.
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Agents already know which event from which agent they are waiting for to

continue working. If it does not arrive within a predefined time, they could

ask the other agents if they have received the event and can resend it. For

this purpose, the agents could save a copy of all events between two syn-

chronization points. If an event is created but does not reach a single agent,

the event broker has failed, or there is a connection problem to the send-

ing agent. Both cases should be solvable with the timeout feature, but we

will have to analyze this in more detail once it is implemented. The features

mentioned here are not needed to apply the algorithm in the scope of this

thesis and are not part of the version of the algorithm used to create the

numerical results. This question is therefore not answered in this thesis.

6.3.4 Livelock during Planning

A livelock during the algorithm occurs when the algorithm continues to

plan indefinitely and never finds a solution. This can only happen dur-

ing the algorithm’s re-optimization step since the other steps have a clearly

defined end and the general iterations a maximum number of steps. Star-

vation can not occur during the planning phase. The reason is similar to

the deadlocks during planning described before. It simply does not happen

that an event is not processed because the other agent has more important

processes to work. All communication between agents is well defined and

there are no livelocks within a single agent. This guarantees that an agents

will process all events and, therefore, that agents waiting on another agent

will receive an answer within reasonable time.

Livelocks divide into four different sub-cases again similar to the overall

termination problems:

1. Feasible plans with the same objective function values

2. Infeasible plans with the same objective function values

3. Feasible plans with worse objective function values

4. Infeasible plans with worse objective function values
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While describing the solutions for the cases, two other points have to be

kept in mind, preventing more straightforward workarounds to the livelock

situations. The first is that the livelock can affect any number of agents.

Were it only a maximum known number of agents in a livelock, the reso-

lution could be easier. The second point is that we also have to include

systems where each agent can be the predecessor and successor of every

other agent. Again, were the agents to be sorted (for example, in a line pro-

duction system), solutions would be easier to obtain.

Feasible plans with the same objective function values

In this first case, the agents create multiple feasible plans, which also have

the same objective function value. However, they cannot decide on which

of those to take. The situation is equal to the livelock example from chap-

ter 3.2.2, just with agents instead of people in a hallway. It happens be-

cause agents react to the local sequences of the other agents from the last

re-optimization repetition. If two or more similarly react to each other, a

loop can appear. For this, livelock prevention was implemented into the

agents. Agents save the results of all their local sequences during the re-

optimization in a hash value. After each local sequence, they check if they

have created the same sequence at a prior point. They only search se-

quences starting from the second to last created, since if the last and the

current plan are identical, the agent is not in a loop but instead signals that

it is okay with the sequence and wants to finish the re-optimization. This

only happens if there was no negotiation during the current repetition be-

cause we assume that the agents make progress while negotiations hap-

pen. If an agent detects itself being in a loop, it stops making new local

sequences and instead always sends the last created one for all future rep-

etitions. Which local sequence it sends does not matter here since they all

result in the same objective function value. If multiple agents detect them-

selves being in a loop, only one is allowed to break it. Agents decide this by

looking up if they are the first agent to become a bottleneck among those

who want to break the loop. Only the highest ranked agent then actually

does it. That agent also informs the other agents that it will now try to break
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the loop with an event (Loop Interrupted Event). All agents then save the

number of the repetition the event was sent in.

The sending of old local sequences leads to the other agents not chang-

ing their plan anymore as a reaction to the agent, which has now stopped

making new sequences. It may, however, be that it is not enough that one

agent stops making new local sequences. If more repetitions have passed

than there are bottleneck agents after an attempted loop interruption, and

the same problem still exists, the next agent stops making local sequences.

This has to continue at maximum until the second to last agent in the loop

stops making plans since one agent can never go into a loop on its own.

Infeasible plans with the same or worse objective function values

If an agent detects an infeasible plan, the negotiation process starts. If one

or several agents do not correctly implement the negotiation results, a loop

can appear. In that case, the agents try the same negotiation repeatedly,

but they will never solve the problem. The negotiation process described in

chapter 6.2.4 does not prevent an agent from simply reverting the changes

it made in reaction to a negotiation during the next local re-sequencing.

Figure 6.9 shows an example in which this problem could occur. In this

situation, two workplaces (M1 and M2) currently have the local sequences

on the top left. Assume that M2 now starts a negotiation, leading to a delay

for OP2 of two time units (top right). In the next repetition, M2 correctly

keeps the delay in its local sequence. M1, however, did not and reverts to

the old start time (bottom left). This prompts another negotiation from M2

with the same result as in the previous repetition (bottom right). With the

rules so far, this happens because M1 tries to optimize its local sequence

which means producing OP2 as early as possible even if knows from the

negotiation that M2 needs a delay.

To prevent this behavior, we implemented two additional functionalities,

one for successful negotiations, one for non-successful ones. When a ne-

gotiation fails, the preceding agent delays an operation so that the succes-

sor has enough buffer space again. To prevent the agent from planning it
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6 Decentralized Scheduling System

Current Situation

M1 M2

Operation Start Time Start Time

OP1 10 20

OP2 15 22

After Negotiation

M1 M2

Operation Start Time Start Time

OP1 10 20

OP2 17 24

Next Repetition

M1 M2

Operation Start Time Start Time

OP1 10 20

OP2 15 24

After Negotiation

M1 M2

Operation Start Time Start Time

OP1 10 20

OP2 17 24

Figure 6.9: Example for infeasible plans

earlier again in the following local re-sequencing, it saves the start time of

the delayed operation. Before the next local re-sequencing, when updating

the key variables, it makes sure that it does not sequence the operation that

caused the infeasibility earlier than its start time after the negotiation. It

does so by setting the tear l variable of the operation to the maximum of the

determined tear l and the saved start time. This prevents the same problem

from occurring again.

If there was a successful negotiation, the agent that started it skips the next

local re-sequencing because it finished the last repetition with a working

local sequence. But since not all agents might have participated in the ne-

gotiation, they need time to implement the changes into their sequences.

Therefore, it is a benefit not to directly change the new plan again.

These two additional features solve this problem. With them as part of the

algorithm, all negotiation results are correctly implemented. This type of

livelock does not occur in the version of the algorithm presented in this

thesis any longer. So far in this subsection, we assumed that the objective

function value stays the same over multiple iterations. If the same problem

occurs, but the objective function gets worse over time, it is actually be-
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6.3 Termination of the Decentralized Algorithm

cause of the same reason. The negotiation process (and its included deal-

ing with failed negotiations) is also not correctly implemented locally in the

agents. It can lead to delay after delay without solving the problem. The

above solutions, therefore, solve both types simultaneously. In contrast to

the first livelock problem (feasible plans with the same objective function

values), however, we can not proof that it will never happen in any random

example as there may still be cases where the implementation does not help

avoiding a problematic situation with infeasible plans which we might not

even have seen yet. This type of problem did not occur in any of our uses of

the algorithm for our tests, which is a good sign.

Feasible plans with worse objective function values

The final and most complex solution is the case of feasible plans, which

get worse over time. It happens when an agent reacts to a delay in another

agent’s plan with a delay of one of its operations, and in turn, the other

agent delays the same operation again. Figure 6.10 gives an example of this.

It is a problem solely of the local sequencing, where the agents cannot find

the appropriate solution for the current situation. In the example, on the

left side, two exemplary local sequences are presented. Assume that in the

next repetition, M2 delays the operation OP2 by two time units. The reason

for this delay is not important here. Also assume that the following opera-

tion, OP1, is scheduled directly after OP2. In that case, M2 also delays it by

two time units as there is no other option. Now, since M2 is planning first, it

must have become a bottleneck earlier than M1. Thus, M1 tries to accom-

modate the change and delays both operations by two time units to con-

tinue delivering OP2 just-in-time and to minimize the amount of time OP1

needs to be buffered. This, however, does not change the situation for M2 at

all as the relative difference of start times on the two workplaces has stayed

the same. Therefore, in the following (not pictured) repetition, M2 would

incorporate another delay of two time units, which M1 again would also

include. This situation would then go on endlessly and create a livelock.
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6 Decentralized Scheduling System

Current Situation

M1 M2

Op. Start 
Time

Op. Start 
Time

OP1 10 OP2 20

OP2 15 OP1 22

Next Repetition

M1 M2

Op. Start 
Time

Op. Start 
Time

OP1 12 OP2 22

OP2 17 OP1 24

Figure 6.10: Example for feasible plans with worse objective function values

The solution implemented for this problem was already included in the lo-

cal sequencing description in chapter 5.3. Delaying the operations on M2

creates a time gap to the operations prior to OP2 in the local sequence,

into which other operations can fit after a few repetitions. The agent makes

use of the time gap, if this case occurs, by switching the sequence of oper-

ations if the time gap is big enough for the following operation to fit into it.

In the case of the example, at some point, M2 would switch the order and

plan OP1 first once the sum of the incremental delays becomes larger than

the processing time of OP1. As in the section before, we cannot proof that

this solution works guaranteed for every possible case as they can get ar-

bitrarily complex in number of workplaces and operations included in the

problem. In contrast to the previous problem, this one also still occurs ir-

regularly during our testing with random production systems. In all cases

presented in chapter 7, it did not occur, however.

6.3.5 Additional Solution to Termination Problems

Since we could not proof the algorithm’s termination in every possible case,

we had to implement a solution outside of the planning process. All cases

described before in this sub-chapter only occur in the re-optimization part

of the algorithm. Agents already track their local sequences for every rep-

etition as part of the problem avoidance. This can be used to cancel the

planning process if no result is found after the agents have non-successfully

tried the implemented solutions for termination problems. For this, the op-

eration generator saves all agents’ local sequences and creates a hash value
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6.3 Termination of the Decentralized Algorithm

of the current repetition. If the same result occurs more often than there

are workplace agents in the system, the planning process stops. Since the

non-creation of a plan is not an option, the planning process immediately

restarts afterward. One small change is made before restarting because the

whole planning process is deterministic, and just restarting it would lead

to the same problem again. When restarting the planning process, the op-

eration generator reduces the number of jobs planned by one. It has a list

of all jobs sorted after their time of creation. It removes the newest job and

starts the planning process again. This reduces problem complexity for the

agents while only slightly reducing optimization potential. If still no plan

is found, the number of jobs can be reduced by one again. In theory, the

operation generator can do this until there is only a single job left. In that

case, only one, and therefore optimal, solution exists, which will be found

by the algorithm. For the removed jobs, the operation generator has two

possibilities. The operation generator either includes them in the follow-

ing scheduling process or adds them to the end of the schedule with the

FIFO dispatching rule. This procedure always guarantees a planning result

although with a reduced optimization potential. In our numerical experi-

ments, following in the next chapter, the system never applied this method

as it found a solution for all jobs in every experiment without this feature.
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the Multi-agent System

After answering the research questions by presenting the complete multi-

agent system, including the algorithm and all of its extensions, it also has

to be shown how the algorithm performs numerically in practical appli-

cations. In this chapter, the algorithm is tested in three different settings.

Before describing the settings and their results, an overview of the exper-

imental setup is given in chapter 7.1. Afterward, the decentralized multi-

agent scheduling algorithm is tested in two different practical applications,

for which we used real data from the two companies. Finally, the system

gets tested in settings consisting of randomized examples, whose input pa-

rameters represent characteristics not present in the application examples.

This is done in chapter 7.4. We chose the FIFO dispatching rule as our basis

for comparison mainly because the current production planning systems

in both real-world application systems use it, and it gives good results in

systems that plan without a due date as our examples do.

7.1 Setup of Experiments

Before we can discuss the experiments, we can state some points about the

general procedure, relevant to all of them:

1. The required input parameters to set up an experiment.

2. Describing the FIFO algorithm used as a base for comparison.

3. The process of an experiment, including our stop criterion.
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7.1.1 Input Parameter of Experiments

To be able to set up an experiment, all input parameters have to be defined

beforehand. The possible input parameters for an experiment are the fol-

lowing:

• Number of workplaces

• Number of different job types/variants

• Number of different processes in the production system

• Assignment of workplaces and processes (if multiple workplaces offer

the same process)

• Number of buffer spots at each workplace

• The process sequence for each variant

• The processing time for each operation on each workplace

• The number of pieces in a job

With these parameters given, the multi-agent system and the FIFO algo-

rithm can begin scheduling. However, even with all of them defined, there

are still many possible tests to do. In a production system with a given

amount of variants and jobs to schedule, the number of possible scenar-

ios equals to |N ||V |. Exemplary, with ten variants and ten jobs, it would still

be possible to create ten billion different scenarios for an experiment since

one can pick this amount of different combinations of the ten variants to fill

the ten jobs. After deciding on one of the scenarios to use, each of the com-

binations can still arrive at the system between a single one and 3.7 million

different sequences |S| depending on the order of creation of the ten jobs.

This value is dependent on the number of different variants |Vs | in the sce-

nario, which can be between one and ten, and the number of times Kv a

variant is present in the job batch of the experiment. Formula 7.1 calcu-

lates the possible number of job sequences given the number of variants,

and their distribution within the job batch.

|S| = |N |!∏|Vs |
i=1 Ki !

(7.1)
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7.1 Setup of Experiments

Moreover, these exemplary numbers given here were only for a single pro-

duction system. As one can see, the possible number of experiments

for performance analysis of this multi-agent system is virtually unlimited.

Therefore, it is practically impossible to explore even a single production

system in all of its possibilities (statistical methods help here) or to create a

meaningful coverage of the relevant different production systems. Weber et

al. (2019) mention the same problem stating a need for standardization of

job shop test data, which has not been done yet. Therefore, in the following

sub-chapters, we focus on analyzing exemplary systems, primarily based

on actual data, to show some key characteristics of the algorithm instead of

choosing many random examples.

7.1.2 Implementation of the FIFO Dispatching Rule

Our software implements FIFO as a dispatching rule in the agents. Each

agent only knows the operations it has to do immediately and tries to pro-

cess them in the order in which it was notified of them. In the example of

ten jobs, only ten operations are planned at the beginning of the schedul-

ing. Once one of them finishes, the following workplace able to process it

adds it at the end of its work queue. Parallel workplaces communicate so

that operations get added to the workplace, which has less work left in its

queue. Transports are always carried out as soon as possible. As long as a

workplace has free spots in its input buffer, it tries to transport all jobs in

the work queue to itself until they are at the workplace or the input buffer is

full. The FIFO dispatching rule does not prevent deadlocks, and depending

on the topology of the system, they may happen during our experiments.

Since it would be biased to add a fixed time penalty for each deadlock, as

we do not have data about how long it takes to repair, we decided to re-

solve all deadlocks instantaneously by switching two (or more) jobs creat-

ing a deadlock in the production system. The only thing tracked afterward

is the number of times FIFO had to do this, which we will evaluate at the

end of an experiment.
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From this procedure, it directly follows that a complete plan of the opera-

tions is available at no point. Therefore, to obtain results for the FIFO al-

gorithm, a simulation is used to simulate the jobs’ production. Results can

then be gathered after all jobs have finished in the simulation. In compari-

son to this, the algorithm of this thesis only needs to do its planning. Since

we are using deterministic values for each step, the simulation does not

need to carry out the created plan. Instead, it can assume that everything

will happen as the algorithm has planned. We still use the same simulation

for the multi-agent system, but only to set up the system and create the ex-

periments in the same way. After the algorithm has finished planning, the

simulation stops again. Another important point from the FIFO algorithm’s

description is that it depends on how the simulation creates the jobs. The

result’s quality can drastically change depending on generating a sequence

of the jobs, either good or bad for FIFO. On the other hand, the multi-agent

system is almost independent of this order. The creation sequence of the

jobs, as long as the total jobs are equal, only influences tiebreaker situa-

tions during the local sequencing.

7.1.3 Process of Experiments

To obtain a fair base for comparison between FIFO and the algorithm, we

decided to define that one experiment contains a fixed number of sched-

uled jobs with a fixed distribution of variants between them. This experi-

ment is then done once for the deterministic algorithm and repeated with

different job arrival sequences for FIFO until it fulfills the following statis-

tical criterion.

We know that there is a maximum possible number of sequences. There-

fore, we can use an estimator to estimate the statistical population based

on our observed data. We do this with a student’s t-test deciding if the ob-

served average makespan represents the average of all possible makespans.

We defined the makespan as the time between starting the first operation

and the last operation’s end time. We decided to choose the confidence

interval’s width based on the first FIFO simulation run. We said that the
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7.2 First Application Example

final makespan result should deviate less than a fixed percentage (0.1% or

1%) of the first simulation run’s makespan. As an example, a makespan of

ten hours will have a confidence interval of plus and minus 36 or 360 sec-

onds. Which value we take depends on the input values since some tests

with a high makespan and large fluctuations would have a runtime of sev-

eral months otherwise. After each finished simulation run, we can compare

the number of finished runs with the number of required runs to achieve

statistical significance. We use a statistical significance of 95% if not other-

wise mentioned. If the number of required runs is smaller or equal to the

number of finished runs, the experiment can stop.

Before starting the actual experiments, we decided to do one experiment

to test our procedure. For this, we planned five jobs in the first applica-

tion example and let the simulation run for all possible 120 different arrival

sequences of those five jobs. After obtaining the result, we also used the

iterative procedure, which stopped after 30 iterations. The confidence in-

terval was plus or minus 50 seconds on an average makespan of roughly

4.3 hours. In the end, the average makespan of all possible runs resulted in

15,347 seconds, and the iterative procedure gave 15,374 as a result, which

was within the defined confidence interval. For all this chapter’s experi-

ments, the simulation and algorithm ran on a single CPU core and were all

done on the same system. Therefore, when mentioning run times, those

do not include the speed-up potentially gained by parallel execution of the

agents’ computations.

7.2 First Application Example

The first application example stems from the production of an electronics

component manufacturer from Germany. The part of the production we

looked at is a final assembly, including testing and packaging of the fin-

ished goods. All required components for the products are already finished

before this point. As we designed the algorithm with this production sys-

tem in mind, we had to make no adjustments to the available data. The

assembly contains fifteen manual and automatic steps on sixteen different
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7 Numerical Evaluation of the Multi-agent System

workplaces, meaning that there are two workplaces doing the same step. A

total of eleven different variants are assembled here with similar but slightly

different process sequences through the system. Process times for single

pieces range from 20 seconds up to two minutes. Each variant has a fixed

number of pieces in a job, differing between 15 and 30. Four of the variants

make up for 80% of the total production volume, while the other seven vari-

ants are less frequently produced versions making up the remaining 20% of

jobs. Each workplace in the system has six buffer spots, of which we use

one as the output buffer and five as input buffers. Table 7.1 summarizes

the input parameters; the detailed data, including all process sequences for

this system, can be found in the appendix.

Workplaces Variants Process times Pieces per job Structure

16 11 19-120 sec 15-30 Job shop

Table 7.1: Input parameters for the first application example

W1 W2 W3 W4
W5
(2)

W6 W7

W8W9W10W11
W12

W13W14W15

Main flow

Variations

Figure 7.1: Material flow of the first example

Figure 7.1 shows the material flows in the system. There are two main flows,

which belong to the two product families. If one takes the black line as a
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7.2 First Application Example

basis, there is only one example of a backward flow in the second family

with the dotted black line. The thick black line makes up about 60% of the

production volume and the dotted black line another 25 %. Variations of

the main flow also only happen alongside the thick black flow in the same

general flow direction. Therefore, this system is close to a production line

except for one flow starting at W5 before going to the line’s start.

We decided to schedule two different job batch sizes for this system. The

first contains 20 jobs, the second 50 jobs. It takes roughly eleven hours of

real-time to finish the 20 orders, representing one planning run per shift if

including some overlapping of planning runs. The bigger batch takes about

24 hours to finish, which equals one planning run per day if one assumes a

three-shift model. In both batches, each variant is represented as closely as

possible to its average overall production volume. The exact composition

of variants within the batches can also be found in the appendix. Table 7.2

provides an overview of the results of this application example.
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Figure 7.2: Makespan results of the first experiment
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We start with the results of the smaller batch size. It took our simulation

1578 iterations to achieve statistical significance, which took about 24 hours

in total. The average makespan was calculated with a 95% significance and

a confidence interval of plus and minus 39 seconds. Figure 7.2 shows the

results of the makespan distribution. The x-axis depicts the makespan re-

sults of all simulation runs, which we classified to improve readability. The

y-axis shows the number of runs in each class. The fastest FIFO run took

37,114 seconds to complete. On the other side of the spectrum, the longest

run took 50,690 seconds. This run seems to be an extreme outlier since the

second slowest run only took 44,619 seconds. On average, it took 39,510

seconds to finish each of the FIFO runs, which the right line in the figure in-

dicates. No deadlock occurred during any of the FIFO simulation runs. On

the other hand, the algorithm, depicted by the left line, needed only 35,935

seconds to finish the 20 orders. Therefore, it saves 9.0% on the average FIFO

result with a maximum saving of 29.1% (or 17.1% if we ignore the outlier)

and a minimum improvement of at least 3.2%.

Experiment Small Large

Batch size 20 50
Simulation runs 1,578 392
Average FIFO [s] 39,510 91,423
Best FIFO [s] 31,114 88,540
Worst FIFO [s] 50,690 94,122
Result Alg. [s] 35,935 81,809
Difference -9.0% -11.3%
Deadlocks FIFO 0 40
Avg. deadlocks per run 0 0.1
Runtime Alg. [s] 5 25

Table 7.2: Results of the first application example

Results of the larger batch size show a similar picture. Here, the simulation

needed 392 runs to achieve significance with a confidence interval of plus

and minus 92 seconds. Figure 7.3 shows an average makespan of 91,423

seconds with a maximum of 94,122 and a minimum of 88,540 seconds. In
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7.2 First Application Example

total, the spread of the FIFO results is much narrower than it was for the

smaller batch size. Since the plan’s absolute time is larger than in the first

experiment, the absolute gap between FIFO and algorithm also becomes

more significant as the algorithm’s plan needed 81,809 seconds to finish.

Percentage-wise this makes it faster by 11.3% on average, 7.6% at least, and

13.1% at maximum. With this batch size, the FIFO rule also produced some

deadlocks, with 40 of them occurring over the 392 runs. As mentioned be-

fore, these did not influence the makespan result of the simulation. There-

fore the difference between algorithm and FIFO would probably be more

considerable in a real-world application.
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Figure 7.3: Makespan results of the second experiment

One promising result to note about the algorithm is the time it needs to

create the plan. The plan for 20 jobs takes about five seconds to finish, and

the plan for 50 jobs takes 25 seconds. As mentioned, these times resulted

with the whole agent system running on a single core in the CPU. Therefore,

none of the calculations were done in parallel, possibly further reducing the

required computation time.
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7 Numerical Evaluation of the Multi-agent System

To obtain further information about the reasons behind the algorithm’s bet-

ter performance, we tested the following scenario. In a production system

with unlimited buffers, performance gains can only be obtained by choos-

ing a better sequence of operations at the workplaces and, therefore, in the

whole system. If buffers are limited, the usage of the available buffer spots

is another factor influencing performance. The FIFO rule does not limit its

buffer usage and instead always fills them as much as possible, leading to

congestion problems within the production system. To single out this fact,

we also reran the same tests with unlimited buffer space. Table 7.3 gives the

results. It shows the different minimum, maximum and average makespans

for FIFO for the limited and unlimited buffer case.

Jobs Category Limited buffer Unlimited buffer Difference

20
Minimum 37,114 36,902 -0.6%
Average 39,510 38,589 -2.3%
Maximum 44,619 40,092 -10.1%

50
Minimum 88,540 85,993 -2.9%
Average 91,423 87,466 -4.3%
Maximum 94,122 89,040 -5.4%

Table 7.3: Comparison of the limited and unlimited system

From this table, it can be seen that the performance gains of the algorithm

do not only come from the better usage of the buffer spots. FIFO with un-

limited buffers had better results by 2.3 and 4.3% on average. That was,

however, not enough to close the gap to the algorithm. Even if FIFO has

unlimited buffer spots available, the algorithm still produces a better re-

sult than the best FIFO performance. The algorithm itself does not change

results between the limited and unlimited case. After analyzing the algo-

rithm’s buffer usage in this example, it shows that it never uses more than

two input buffer slots of a workplace at any given time. Therefore, the solu-

tion stays the same as long as two or more input buffer slots are available.
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7.3 Second Application Example

7.3 Second Application Example

The second application example also comes from a German company, this

time from the healthcare business. Again, the data comes from the assem-

bly area, including testing. The packaging is not a part of this process. In

this case, we could not take the data without adjusting it to build this ex-

ample. The main reason for this is that the company produced about 1,000

different product variants over one year in this production system. As the

algorithm is suitable for short-term planning of a shift or a day at maxi-

mum, it made no sense to model all variants for our example as almost 30%

occur only once a year. Only 164 of all variants are produced more than

once a month. To build our example, we decided to model only the most

produced variants. In the data, 28 variants occur at a minimum once a day

on average. This system can produce a job batch of roughly 100 orders tak-

ing one day of real-time as the basis for a production plan again. If we take

the production orders for the reduced number of variants, the job batch

contains the rarest of the 28 variants exactly once. We, therefore, decided

to only model these 28 variants, which make up roughly one-third of the

total production volume.

The entire system consists of 62 different processes at 194 workplaces.

Many of them are special processes for exotic variants, however. The 28

modeled variants only use 19 of those processes. We model them on 21

workplaces, meaning that the two most utilized processes are offered by

two workplaces each. Processing times range between 1 and 240 seconds.

We use a fixed number of pieces in a job for all variants since the difference

in production volume between variants was already taken into account via

the job batch’s composition. As the whole system has unlimited buffers, we

set the buffer size to be the same as in the first example with six per work-

place. Table 7.4 summarizes the input parameters.

We do not present the production system’s material flow in a graph here

because the reduced system results in a flow shop. The total production

system has a flow shop area at the beginning, followed by a job shop for the

remaining processes. Since we reduced the number of variants, the whole
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7 Numerical Evaluation of the Multi-agent System

Workplaces Variants Process times Pieces per job Structure

21 28 1-240 sec 20 Flow shop

Table 7.4: Input parameters for the second application example

production system ends up as a flow shop. In the total system, after the flow

shop part, most variants only have to do very few (0-4) additional steps on

workplaces specialized for their product families. The job shop then only

builds within the processes of the product families. As we removed the pro-

cesses the 28 variants do not use, we removed many exotic variants of the

product families and ended up with a flow shop. We compare three differ-

ent job batch sizes this time. This time they are a bit larger with 50, 100,

and 200 jobs for the experiments, as average job process times are faster in

this example. Table 7.5 presents the numerical results. Figure 7.4 shows the

result of the experiment with 50 jobs.
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Figure 7.4: Makespan results of the third experiment
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7.3 Second Application Example

We increased the confidence interval to 0.5% of the first simulation run for

this production system. As the diagram shows, the algorithm does not per-

form well at all in this example. It is 10.2% worse than the average FIFO

result and only 1.9% better than the worst FIFO run.

Experiment Small Medium Large

Batch size 50 100 200
Simulation runs 454 96 10
Average FIFO [s] 53,580 94,855 182,026
Best FIFO [s] 48,433 91,582 180,892
Worst FIFO [s] 60,157 100,576 183,668
Result Alg. [s] 59,025 97,611 194,199
Difference +10.2% +2.9% +6.6%
Runtime Alg. [s] 12 33.5 140

Table 7.5: Results of the second application example

The same also shows for the larger job batch size depicted in figure 7.5. Re-

sults here are slightly better, with the algorithm being 2.9% worse on av-

erage and also 2.9% better than the worst case. This trend does not con-

tinue onwards, as a job batch size of 200 jobs leads to the algorithm being

6.6% worse on average. On the bright side, the algorithm’s run times are

even faster than they were in the first case. The algorithm needs 12 sec-

onds to schedule the 50 jobs, 33.5 seconds to schedule 100 jobs, and 140s

to schedule 200 jobs.

Every single job has to visit the bottleneck workplace in this example. As

long as that workplace is 100% utilized, the total plan cannot be improved.

The algorithm does not manage to achieve this. One reason could be that

the bottleneck has too little influence on the planning result. This is a very

general reason and is hard to prove or improve. A different argument for the

worse results is much easier to explain. In a flow shop, deadlocks cannot oc-

cur. Therefore, it is always advantageous to have the buffers as full as possi-

ble to never arrive in a situation where a workplace has no work left because

it has to wait on the preceding process. Precisely this is how FIFO works,

and it shows in the results. The basic idea of the algorithm is to be care-
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Figure 7.5: Makespan results of the fourth experiment

ful with buffer utilization to prevent deadlocks. That prevents it from being

able to create good plans for flow shops. In this situation, the algorithm

needs to be more aggressive with its buffer usage. It must, however, achieve

a balance; if it uses buffers too aggressively, it will be bad for complex sys-

tem structures. Then, the algorithm would run into the same problem as

FIFO. As there is another point where the algorithm currently is not aggres-

sive enough in its buffer usage, we will discuss this argument and possible

solutions more in the conclusions. It is not worth using the algorithm in

the reduced and simplified form of the example in its current form. More

generalized, it is not worth using an algorithm this complicated to plan a

flow shop. This fact also aligns with the discovery in the first example that

the algorithm does not get better with unlimited buffers. If buffers are un-

limited, the same logic as in flow shops applies, where one always wants as

much work-in-process as possible to maximize throughput of the system.
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7.4 More Complex Production Systems

7.4 More Complex Production Systems

It is now clear that the algorithm does not function well in flow shops. It has

worked well in the first example, which is still very close to a flow shop with

only one sequence not in the flow direction. Therefore, this section presents

examples for five more complex production systems. Table 7.6 shows the

values for each parameter, which were tested:

Workplaces Variants Process times Pieces per job Structure

20 10 1-25 1-20 Job shop

Table 7.6: Input parameters for the random experiments

The production systems all consist of 20 workplaces. These workplaces of-

fer between 14 and 19 different processes. A maximum of three workplaces

offer one process in the examples. Each system consists of 10 different vari-

ants, which consist of 7 to 19 operations. Which processes a variant needs

to complete, and their order was chosen randomly from the available pro-

cesses.

Experiment 1 2 3 4 5

Simulation runs 174 406 278 231 315
Average FIFO [s] 22,859 28,168 21,124 19,862 24,506
Best FIFO [s] 19,453 22,217 17,340 15,822 20,325
Worst FIFO [s] 26,629 35,558 27,856 24,515 31,026
Result Alg. [s] 21,806 21,095 25,321 20,654 22,817
Difference -4.6% -25.1% +19.9% +4.0% -6.9%
Deadlocks FIFO 1,070 3,628 4,511 3,152 2,886
Avg. deadlocks per run 6.1 8.9 16.2 13.6 9.2
Unsolvable deadlocks 4 14 22 22 9
Runtime Alg. [s] 46 51 50 39 54

Table 7.7: Results of the random experiments

Figure 7.6 shows the material flow of random experiment two. Almost ev-

ery possible flow is present in the system. Connections in the example are
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Figure 7.6: Exemplary random material flow

either one-way or go both ways. Processing times are random from 1 to

25 seconds per piece, while a job consists of 1 to 20 pieces. We decided to

do the tests with the input parameters with a fixed buffer size of six avail-

able buffer slots. Every experiment schedules 50 jobs. The detailed data

for each experiment is listed in the appendix. Table 7.7 shows the results

of the experiments.

As one can see, the results were of mixed quality. They do not allow to make

a general statement about the quality of the algorithm. FIFO produces an

enormous amount of deadlocks in these complex systems ranging from 6

to 16 deadlocks per job batch on average. We also encountered deadlocks

during the execution of FIFO, which we could not solve by switching the

place of two jobs. In that case, we canceled the simulation run and started

the next. It seems as though the algorithm can work fine in these random

examples but cannot do so for every possible case. Runtimes still are excel-

lent, planning jobs for several hours in under a minute.
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7.4 More Complex Production Systems

Comparing the amount of time the algorithm loses in experiments three

and four with the average deadlocks per run, FIFO would be faster if dead-

locks take less than a minute (experiment four) or less than 4.5 minutes

(experiment three) to solve. Therefore, one could argue that the algorithm’s

result is still acceptable in experiment four, as detecting and solving a dead-

lock in practice may take longer than a minute. The result of experiment

three is, however, not acceptable under any circumstance. So far, we were

not able to identify an apparent reason for this behavior. The buffer usage

in these experiments shows the same behavior as in the first application ex-

ample. Even with five input buffer slots available, the algorithm never uses

them, giving another hint that the algorithm needs to be more aggressive

in that area.
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8 Conclusion

Although decentralized planning systems offer many advantages, not many

of them are in use today. This thesis contributes by developing a multi-

agent system with decentralized planning. At the end of it, we summarize

the results of our research. Chapter 8.1 does so according to the research

questions of chapter 4.3. An outlook with further extensions and improve-

ments to the presented system is given in chapter 8.2.

8.1 Summary

This thesis aimed to develop a decentralized scheduling algorithm that in-

corporates limited available buffer space at each workplace. For this, we

have extended the Shifting Bottleneck heuristic by Adams et al. (1988) to in-

clude the additional characteristics. It was implemented in a decentralized

multi-agent system offering flexibility to changes of the underlying pro-

duction system and good scalability options. The algorithm can be used

to schedule a flexible job shop and has shown excellent efficiency. It en-

ables companies to schedule their production system under the required

demands from the market. The content of this work divided into four re-

search questions:

First: How can a Shifting Bottleneck procedure schedule the problem

presented in chapter 4.2?

Second: How can a decentralized multi-agent system executing the

algorithm of question one be modeled and implemented?

Third: Does the decentralized multi-agent system guarantee the cre-

ation of a production plan for every possible case of valid input data?
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Fourth: Is the production plan created by the decentralized multi-

agent system always free of deadlocks, livelocks, and starvation?

To answer question one, we adapted the idea of the SB heuristic to the prob-

lem statement. We kept the general iterative procedure, adding only a step

at the start and end of it. The necessary significant changes regarding the

limited buffer space came from the fact that the procedure potentially cre-

ates infeasible plans now. Therefore, it was not possible to limit the algo-

rithm in the time it spends. Instead, it has to make sure that it saves only

feasible plans at the end of every iteration. Therefore, the procedures within

every step had to change completely to model the new requirements. The

additional step at the start of the scheduling allows us to plan in an empty

production system and systems already in use. Creating a local sequence

on a workplace was adapted to plan the workplace’s buffer slots. It also

needed several additional scheduling rules to improve the resulting qual-

ity under the new conditions. The objective function was slightly changed

as we found out that using averages instead of a maximum makespan fin-

ishes jobs more regularly, which on the one hand reduces buffer usage as

jobs leave the system faster and is also better suited for real-world appli-

cations. During the re-optimization, we added a method to solve infeasi-

ble plans should any be detected. This negotiation method was developed

entirely from the start and can now solve the significant problems created

by limited buffers.

Question two was referring to the implementation of the algorithm in a

decentralized multi-agent system. For this, we designed a new agent sys-

tem consisting of four agents being present once in the system and the

same workplace agent for each workplace. The workplace agent got an

inner structure, so that it consists of two agents, one for scheduling, one

for the control of the workplace. Afterward, all steps of the algorithm were

analyzed again, and changes to fit the agent system made where neces-

sary. The communication among the agents works with the help of events

and a publish-subscribe distribution pattern. For the negotiations to work

in the decentralized system, a new pattern was developed. It can handle
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any number of negotiations simultaneously and is functional no matter if

agents are running on a single or multiple CPU cores.

The algorithm was not able to prevent all deadlocks, livelocks, and starva-

tion itself without additional measures. Therefore, for research questions

three and four, the different situations in which one of the three problems

can occur were presented and categorized. Livelocks can be further cate-

gorized by making the resulting plan worse or not, as well as if only feasi-

ble, or also infeasible plans occur during the repetitions. For deadlocks,

we can guarantee that the algorithm will produce a planning result that

is deadlock-free and also that the decentralized multi-agent system itself

will not enter a deadlock. To prevent starvation, we implemented several

rules related to the prioritization of jobs to ensure production. Accord-

ing to the assumptions made for this work, the system can never suffer

from starvation during execution or planning. Livelocks proved to be the

most challenging point to solve. Here, we found ways to avoid typical live-

locks in the agent system, and they did not occur anymore during our test-

ing. It was, however, not possible to prove that they will never occur under

any given circumstance. Therefore, an additional solution was developed,

which stops a planning run, reduces complexity, and starts it again if the

system is in a livelock. It guarantees a solution at the cost of optimization

potential. In the end, the algorithm as presented in this thesis is able to

guarantee that no deadlock, livelock, or starvation occurs during the plan-

ning phase or the execution of the plan.

Finally, after answering all research questions, a short numerical study was

done. It focused on two real-world application examples. In one of them,

the system performed well; in the other, however, not so much. We found

reasons for this and will also present a possible solution approach in the

following sub-chapter. An excellent point about the algorithm in its current

state is the runtime. It can schedule even quite large systems with a high

number of jobs in only a few minutes. This fact permits further potential

for additional features, which also the following section will describe. As

one real-world system is a flow shop and the other only had a single con-

nection against the flow direction, we also tested five systems with random
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material flows. In these systems, the algorithm shows mixed results. It pre-

vented the enormous amount of deadlocks FIFO produces but was not able

to provide better results consistently. This result shows that the numerous

little rules the agent system uses for scheduling are all fine individually but

do not work together well in every case. Therefore, more work is to be done

on the algorithm to guarantee that it can extend the promising results to

every experiment. So far, most of the work went into developing solutions

for the characteristics of the system. Improving them is now an essential

task for future work.

8.2 Outlook

As it is planned to use this thesis’s multi-agent system in a real-world pro-

duction system, it needs to deal with a few more characteristics. We have

identified three of them, which are needed for the algorithm to plan appli-

cation example one. So far, the algorithm can not merge or split jobs as

part of the processing. It is, however, typical if components are produced in

the same production area as the final product. The algorithm needs to plan

the start time of operations according to finish times from another job. An-

other point is the inclusion of transport times. We assumed them to happen

instantly, but that cannot be. Adding transport times between workplaces

makes planning more manageable, as, during transport, a job occupies no

buffer slot at any workplace. Therefore, one can view the transport sys-

tem as an additional buffer, increasing the total number of buffer slots in

the system. This in turn reduces the time jobs need to be buffered at the

workplaces. Adding transport times will be done within the local sequenc-

ing. The last addition is the most complex one. Currently, the algorithm

allows multiple workplaces to offer the same process. In reality, it is also

the case that one workplace offers multiple processes. This problem can be

solved with the help of our parallel groups. However, it might be that these

groups get large, which would significantly increase planning complexity.

We have not yet identified a final solution to include this feature. While
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working on these points, the algorithm also needs to be generally improved

regarding result quality.

During chapter 7.3, we talked about a shortcoming of the algorithm in its

current version. It cannot plan flow shops well because it is too careful with

its buffer usage and only produces operations just in time for the following

process. The same happens in another situation, which is also very rele-

vant for practical application. When multiple planning runs are done on

the same system, it is advantageous to produce operations more early than

needed. This is because the algorithm does not know which operations it

has to plan during the next scheduling period. If a workplace has little work

to do for a first period and therefore includes gaps but then has to do much

work in the second plan, it would have been better to pre-produce during

the first period. Currently, the algorithm always plans as if no more jobs will

arrive in the future. Similar to the bad performance in the flow shop prob-

lem, this point is solved by not producing operations just-in-time but in-

stead, use available buffer slots as much as possible. That is, however, eas-

ier described than integrated into the algorithm (we already tried it) since it

could lead to many infeasibilities and the algorithm not able to solve them.

It will be necessary to find a middle ground. This problem might even be

the starting point of another work of this size since it can be generalized

towards planning under uncertainty.

Apart from these features for practical applications, countless additional

characteristics could be implemented, including all of the advanced mod-

els from chapter 2.1.3 for example. While working on the algorithm, we

noted numerous smaller improvements, which we could not try out so far.

The following list presents some of them:

• No distinction between input and output buffer slots. Instead, the

algorithm assigns them dynamically.

• During the local sequencing, allow the algorithm not only to add op-

erations at the end of the sequence.

• Do not set some operations from the previous plan as unchangeable.

Instead, plan them as any other operation.
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• Remove the distinction between high and low priority operations.

• If several workplaces have the same objective function value, use an

additional criterion to decide for a bottleneck.

• Implement more ways to create proposals for negotiations and apply

them specifically depending on the situation.

• Add a way to connect several multi-agent systems (e.g., factories at

different locations or component manufacturing and assembly).

It will also be possible to implement runtime improvements by redesign-

ing parts of the system’s implementation to reduce the required computa-

tions. Apart from these small and medium-size additions to the system, the

single most extensive additional feature will surely be including stochastic-

ity in the multi-agent system. It can appear in processing and transporta-

tion times as well as in the downtime of workplaces. Then, new strategies

for dealing with deviations from the plan have to be developed and imple-

mented. As one can see, the work on this system can and will be continued

for a long time still.
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Notation

Basics

FIFO First-In-First-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

SB Shifting Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

d j Due date of job j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

k j Number of operations of job j . . . . . . . . . . . . . . . . . . . . . . . . . 8

M The set of all workplaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

m A single workplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

M0 All machines declared as bottleneck . . . . . . . . . . . . . . . . . 16

N The set of all jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

n A single job. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

oi , j Operation of job j on workplace i . . . . . . . . . . . . . . . . . . . . . . 8

r j Release date of job j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

to Start time of operation o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

tp,o Processing time of operation o . . . . . . . . . . . . . . . . . . . . . . . 8

Scheduling Algorithm

delayo Delay of operation o in case it is produced late . . . . . . 69

earliero Relative bottleneck position of operation o . . . . . . . . . . 60

st j Job j has started or not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

O(m) Objective function value of workplace m . . . . . . . . . . . . 72
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tavail,o Time operation o is available for processing . . . . . . . . . 60

tearl,o Time operation o can start processing . . . . . . . . . . . . . . . 60

tend,o End time of processing operation o . . . . . . . . . . . . . . . . . . 67

tlate,o Time operation o has to finish processing . . . . . . . . . . . 60

topt,o Optimal start time of operation o . . . . . . . . . . . . . . . . . . . . 60

tstart Earliest time a workplace can start processing . . . . . . . 59

Um Set of all operations scheduled at workplace m . . . . 72

Numerical Evaluation

|Kv | Number of times variant v is in the number of jobs of

an experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

|N | Number of jobs in an experiment . . . . . . . . . . . . . . . . . . . 116

|S| Number of possible job sequences in an experiment116

|V | Number of variants in a production system . . . . . . . . 116

|Vs | Number of jobs in an experiment . . . . . . . . . . . . . . . . . . . 116
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A Data for Application

Example One

Workplace Process Workplace Process Workplace Process

W1 P1 W6(2) P6 W11 P11
W2 P2 W7 P7 W12 P12
W3 P3 W8 P8 W13 P13
W4 P4 W9 P9 W14 P14
W5 P5 W10 P10 W15 P15
W6 P6

Table 8.1: List of workplaces and their processes in application example one

Variant Process sequence

V1 P1 P2 P3 P5 P6 P7 P8 P9 P10 P11 P12
V2 P1 P2 P3 P5 P6 P7 P8 P9 P10 P11 P12
V3 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
V4 P1 P2 P6 P7 P8 P10 P11 P12
V5 P1 P2 P4 P6 P7 P8 P9 P10 P11 P12
V6 P1 P2 P3 P5 P6 P7 P8 P10 P11 P12
V7 P1 P2 P3 P5 P6 P7 P8 P10 P11 P12
V8 P6 P2 P3 P7 P13 P14 P15 P12
V9 P6 P2 P3 P7 P13 P14 P15 P12
V10 P6 P2 P3 P7 P13 P14 P15 P12
V11 P6 P2 P3 P7 P13 P14 P15 P12

Table 8.2: List of variants and their sequences in application example one
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W-P V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

W1-P1 19 25 19 23 20 19 19
W2-P2 48 51 50 35 48 50 50 35 35 35 35
W3-P3 18 16 14 14 14 25 18 26 26
W4-P4 20 21
W5-P5 24 22 18 20 20
W6-P6 35 40 70 30 35 30 30 100 120 120 120
W6(2)-P6 35 40 70 30 35 30 30 100 120 120 120
W7-P7 27 50 49 25 27 30 30 16 16 16 16
W8-P8 16 24 22 11 16 22 22
W9-P9 27 27 26 27
W10-P10 26 26 26 26 26 25 25
W11-P11 60 62 63 60 60 60 60
W12-P12 32 32 30 34 32 30 30 34 34 34 34
W13-P13 36 36 36 36
W14-P14 66.5 66.5 76 76
W15-P15 83 83 83 83

Table 8.3: List of process times per piece in application example one
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Variant # Variant # Variant # Variant #

V1 30 V1 30 V2 30 V4 25
V1 30 V2 30 V3 25 V8 25
V1 30 V2 30 V3 25 V8 25
V1 30 V2 30 V3 25 V8 25
V1 30 V2 30 V4 25 V8 25

Table 8.4: Orders of batch size 20 in application example one

Variant # Variant # Variant # Variant #

V1 30 V1 30 V2 30 V8 25
V1 30 V2 30 V2 30 V8 25
V1 30 V2 30 V3 25 V8 25
V1 30 V2 30 V3 25 V8 25
V1 30 V2 30 V3 25 V9 25
V1 30 V2 30 V3 25 V9 25
V1 30 V2 30 V3 25 V9 25
V1 30 V2 30 V4 25 V9 25
V1 30 V2 30 V4 25 V9 25
V1 30 V2 30 V5 30 V10 25
V1 30 V2 30 V6 25 V11 15
V1 30 V2 30 V7 30
V1 30 V2 30 V8 25

Table 8.5: Orders of batch size 50 in application example one
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B Data for Application

Example Two

Workplace Process Workplace Process Workplace Process

W1 P1 W8 P8 W15 P14
W2 P2 W9 P9 W16 P15
W3 P3 W10 P10 W17 P16
W4 P4 W11 P11 W18 P17
W5 P5 W12 P11 W19 P17
W6 P6 W13 P12 W20 P18
W7 P7 W14 P13 W21 P19

Table 8.1: List of workplaces and their processes in application example two
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B Data for Application Example Two

Variant Process sequence Variant Process sequence

V1 P1 P2 P3 P4 P7 P11 V15 P1 P2 P3 P4 P11 P10
V2 P1 P2 P3 P4 P10 P15 V16 P1 P2 P3 P4 P15
V3 P1 P2 P3 P4 P7 V17 P1 P2 P3 P4 P7
V4 P1 P2 P3 P4 P5 P14 V18 P1 P2 P3 P4 P7
V5 P1 P2 P3 P4 P12 P17 V19 P1 P2 P3 P4 P5 P14
V6 P1 P2 P3 P4 P5 P14 V20 P1 P2 P3 P4 P14 P11 P6 P7
V7 P1 P2 P3 P4 P5 V21 P1 P13 P7
V8 P1 P2 P3 P4 P7 V22 P1 P2 P3 P4 P5 P14
V9 P1 P2 P3 P4 P7 V23 P1 P11 P9
V10 P1 P2 P3 P4 P11 P17 V24 P1 P13 P14 P7
V11 P1 P2 P3 P4 P19 P6 V25 P1 P2 P3 P4 P14 P5
V12 P1 P2 P3 P4 P11 P18 V26 P1 P2 P3 P4 P14 P10
V13 P1 P13 P14 P16 P6 V27 P1 P2 P3 P4 P14 P8
V14 P1 P2 P3 P4 P11 P18 V28 P1 P2 P3 P4 P14 P17

Table 8.2: List of variants and their sequences in application example two

Variant # Variant # Variant # Variant #

V1 20 V3 20 V8 20 V18 20
V1 20 V3 20 V8 20 V19 20
V1 20 V4 20 V9 20 V20 20
V1 20 V4 20 V9 20 V21 20
V1 20 V4 20 V10 20 V22 20
V1 20 V4 20 V10 20 V23 20
V2 20 V5 20 V11 20 V24 20
V2 20 V5 20 V12 20 V25 20
V2 20 V5 20 V13 20 V26 20
V2 20 V6 20 V14 20 V27 20
V2 20 V6 20 V15 20 V28 20
V3 20 V7 20 V16 20
V3 20 V7 20 V17 20

Table 8.3: Orders of batch size 50 in application example two
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W-P V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

W1-P1 13 13 13 21 13 21 13 13 13 13 13 13 13 13
W2-P2 3 8 3 110 113 148 52 6 3 304 3 3 4
W3-P3 8 8 8 14 17 18 18 8 8 18 16 16 15
W4-P4 1 5 1 13 15 15 25 1 1 29 12 1 1
W5-P5 30 42 1
W6-P6 18
W7-P7 18 18 12 12
W8-P8
W9-P9 47
W10-P10 16
W11-P11 103 240 24 24
W12-P11 103 240 24 24
W13-P12 107
W14-P13 31
W15-P14 42 33 28
W16-P15 15
W17-P16 20
W18-P17 240 188
W19-P17 240 188
W20-P18 84 84
W21-P19 1

Table 8.4: List of process times per piece in application example two (part 1)
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W-P V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28

W1-P1 13 13 13 13 13 21 13 13 13 13 13 13 13 13
W2-P2 32 87 11 11 8 35 95 38 23 8 118
W3-P3 8 16 8 8 11 8 11 11 17 12 29
W4-P4 12 29 1 1 15 1 15 1 20 1 23
W5-P5 58 37 33
W6-P6 9
W7-P7 19 15 20 31 23
W8-P8 49
W9-P9 52
W10-P10 40 52
W11-P11 42 39 83
W12-P11 42 39 83
W13-P12
W14-P13 42 18
W15-P14 43 6 42 46 45 12 17 208
W16-P15 138
W17-P16
W18-P17 327
W19-P17 327
W20-P18
W21-P19

Table 8.5: List of process times per piece in application example two (part 2)
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Variant # Variant # Variant # Variant #

V1 20 V3 20 V6 20 V14 20
V1 20 V3 20 V6 20 V14 20
V1 20 V3 20 V7 20 V15 20
V1 20 V3 20 V7 20 V15 20
V1 20 V3 20 V7 20 V16 20
V1 20 V3 20 V7 20 V16 20
V1 20 V3 20 V8 20 V17 20
V1 20 V4 20 V8 20 V17 20
V1 20 V4 20 V8 20 V18 20
V1 20 V4 20 V8 20 V18 20
V1 20 V4 20 V9 20 V19 20
V1 20 V4 20 V9 20 V19 20
V2 20 V4 20 V9 20 V20 20
V2 20 V4 20 V10 20 V20 20
V2 20 V4 20 V10 20 V21 20
V2 20 V4 20 V10 20 V21 20
V2 20 V5 20 V11 20 V22 20
V2 20 V5 20 V11 20 V22 20
V2 20 V5 20 V11 20 V23 20
V2 20 V5 20 V12 20 V23 20
V2 20 V5 20 V12 20 V24 20
V2 20 V5 20 V12 20 V25 20
V2 20 V5 20 V13 20 V26 20
V3 20 V6 20 V13 20 V27 20
V3 20 V6 20 V13 20 V28 20

Table 8.6: Orders of batch size 100 in application example two
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B Data for Application Example Two

Variant # Variant # Variant # Variant #

V1 20 V3 20 V6 20 V14 20
V1 20 V3 20 V6 20 V14 20
V1 20 V3 20 V6 20 V14 20
V1 20 V3 20 V6 20 V14 20
V1 20 V3 20 V7 20 V15 20
V1 20 V3 20 V7 20 V15 20
V1 20 V3 20 V7 20 V15 20
V1 20 V3 20 V7 20 V15 20
V1 20 V3 20 V7 20 V16 20
V1 20 V3 20 V7 20 V16 20
V1 20 V3 20 V7 20 V16 20
V1 20 V3 20 V7 20 V16 20
V1 20 V3 20 V8 20 V17 20
V1 20 V3 20 V8 20 V17 20
V1 20 V4 20 V8 20 V17 20
V1 20 V4 20 V8 20 V17 20
V1 20 V4 20 V8 20 V18 20
V1 20 V4 20 V8 20 V18 20
V1 20 V4 20 V8 20 V18 20
V1 20 V4 20 V8 20 V18 20
V1 20 V4 20 V9 20 V19 20
V1 20 V4 20 V9 20 V19 20
V1 20 V4 20 V9 20 V19 20
V1 20 V4 20 V9 20 V19 20
V2 20 V4 20 V9 20 V20 20
V2 20 V4 20 V9 20 V20 20
V2 20 V4 20 V10 20 V20 20
V2 20 V4 20 V10 20 V20 20
V2 20 V4 20 V10 20 V21 20
V2 20 V4 20 V10 20 V21 20
V2 20 V4 20 V10 20 V21 20
V2 20 V4 20 V10 20 V21 20
V2 20 V5 20 V11 20 V22 20
V2 20 V5 20 V11 20 V22 20
V2 20 V5 20 V11 20 V22 20

Table 8.7: Orders of batch size 200 in application example two (part 1)
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Variant # Variant # Variant # Variant #

V2 20 V5 20 V11 20 V22 20
V2 20 V5 20 V11 20 V23 20
V2 20 V5 20 V11 20 V23 20
V2 20 V5 20 V12 20 V23 20
V2 20 V5 20 V12 20 V23 20
V2 20 V5 20 V12 20 V24 20
V2 20 V5 20 V12 20 V24 20
V2 20 V5 20 V12 20 V25 20
V2 20 V5 20 V12 20 V25 20
V2 20 V5 20 V13 20 V26 20
V2 20 V5 20 V13 20 V26 20
V3 20 V6 20 V13 20 V27 20
V3 20 V6 20 V13 20 V27 20
V3 20 V6 20 V13 20 V28 20
V3 20 V6 20 V13 20 V28 20

Table 8.8: Orders of batch size 200 in application example two (part 2)
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C Data for Randomized

Experiments

Random Example One

Workplace Process Workplace Process Workplace Process

W1 P1 W8 P8 W15 P15

W2 P2 W9 P9 W16 P16

W3 P3 W10 P10 W17 P17

W4 P4 W11 P11 W18 P18

W5 P5 W12 P12 W19 P7

W6 P6 W13 P13 W20 P3

W7 P7 W14 P14

Table 8.1: List of workplaces and their processes in random example one
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C Data for Randomized Experiments

Variant Process sequence

V1 P8 P2 P5 P11 P9 P10 P13 P18 P6 P15 P12 P16 P3

V2 P9 P13 P7 P3 P17 P2 P8 P16 P4 P18

V3 P3 P15 P7 P18 P2 P11 P1 P14 P6 P8 P17

V4 P12 P11 P10 P9 P13 P5 P2 P17 P15 P16 P14 P6 P18 P8 P7

V5 P14 P1 P9 P3 P2 P10 P6 P8 P13

V6 P15 P7 P10 P8 P3 P18 P14 P16 P9 P17

V7 P4 P17 P18 P14 P10 P5 P2 P7 P13

V8 P12 P16 P10 P8 P9 P3 P7 P1 P5 P4 P11 P17 P18 P14 P15 P6 P13

V9 P8 P7 P18 P5 P15 P16 P3 P2 P17 P10 P16 P12 P1 P14 P13

V10 P6 P13 P9 P15 P2 P12 P18 P17 P11 P10

Table 8.2: List of variants and their sequences in random example one

Variant # Variant # Variant # Variant #

V1 17 V2 6 V6 7 V10 4

V7 20 V1 6 V8 5 V6 10

V1 15 V10 1 V2 20 V8 1

V9 15 V9 13 V7 3 V4 1

V10 14 V8 13 V3 3 V1 17

V2 8 V4 19 V5 6 V8 16

V7 7 V9 11 V7 15 V1 19

V2 18 V1 1 V9 3 V10 7

V5 10 V10 16 V1 5 V8 16

V3 6 V8 10 V9 5 V2 17

V4 15 V7 1 V8 2 V7 7

V1 18 V4 18 V8 3

V1 1 V9 17 V10 16

Table 8.3: Orders in random example one
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W-P V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

W1-P1 11 24 10 5

W2-P2 16 2 6 15 18 21 6 1

W3-P3 3 4 7 15 23 19 15

W4-P4 7 12 2

W5-P5 23 7 6 9 3

W6-P6 15 4 21 15 16 10 15

W7-P7 21 10 22 25 4 11 19

W8-P8 9 16 3 7 20 7 15 8

W9-P9 1 23 22 1 13 21 1

W10-P10 9 14 11 16 18 20 1 21

W11-P11 23 16 16 19 18

W12-P12 10 7 4 5 15

W13-P13 5 2 16 23 14 9 1 4

W14-P14 4 25 24 22 8 14 3

W15-P15 5 22 22 24 20 3 7

W16-P16 7 11 23 17 8 22

W17-P17 13 24 20 24 12 21 1 7

W18-P18 22 5 16 20 14 4 15 22 12

W19-P7 5 22 1 22 4 17 7

W20-P3 5 13 15 20 1 25 23

Table 8.4: List of process times per piece in random example one
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C Data for Randomized Experiments

Random Example Two

Workplace Process Workplace Process Workplace Process

W1 P1 W8 P8 W15 P15

W2 P2 W9 P9 W16 P16

W3 P3 W10 P10 W17 P17

W4 P4 W11 P11 W18 P17

W5 P5 W12 P12 W19 P16

W6 P6 W13 P13 W20 P13

W7 P7 W14 P14

Table 8.5: List of workplaces and their processes in random example two

Variant Process sequence

V1 P11 P12 P16 P15 P2 P13 P3 P14 P17 P5 P7 P6 P9 P10 P1 P8

V2 P17 P10 P8 P14 P2 P4 P7 P16 P9 P1 P13

V3 P12 P6 P10 P7 P5 P16 P9 P17 P2 P13 P11 P15 P4 P14 P3 P1

V4 P15 P7 P4 P16 P14 P9 P1 P17 P11 P12 P6 P13 P3 P2

V5 P8 P16 P13 P1 P2 P7 P4 P10 P15 P5 P3 P14 P11

V6 P16 P1 P2 P6 P11 P12 P13 P5 P3 P10 P15 P9

V7 P7 P5 P14 P1 P10 P8 P9 P13

V8 P7 P4 P5 P9 P17 P3 P6 P8 P13 P14 P10 P12 P11

V9 P11 P8 P15 P4 P13 P1 P9 P14 P3 P12 P6 P7 P16 P17

V10 P4 P17 P7 P5 P11 P16 P15 P13 P10 P6 P3

Table 8.6: List of variants and their sequences in random example two
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W-P V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

W1-P1 7 11 3 7 9 25 22 16

W2-P2 12 1 3 6 17 11

W3-P3 7 12 20 2 10 5 15 1

W4-P4 10 24 20 3 17 2 19

W5-P5 9 19 2 1 7 15 7

W6-P6 8 18 6 21 12 12 5

W7-P7 25 20 24 6 24 20 25 18 4

W8-P8 7 12 19 20 9 19

W9-P9 18 25 25 17 11 25 14 22

W10-P10 12 13 19 22 13 10 21 23

W11-P11 8 13 18 16 13 21 21 18

W12-P12 1 12 25 3 1 19

W13-P13 12 13 22 19 8 1 20 4 19 16

W14-P14 8 1 8 23 17 14 11 24

W15-P15 16 2 13 10 4 21 8 21

W16-P16 21 17 8 14 16 23 13 13

W17-P17 11 6 16 2 23 3 4 9

W18-P18 19 1 13 1 6 2 24 10

W19-P7 17 7 13 18 9 19 10 14

W20-P3 21 10 24 19 23 4 6 19 25 3

Table 8.7: List of process times per piece in random example two
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C Data for Randomized Experiments

Variant # Variant # Variant # Variant #

V9 14 V2 20 V7 3 V3 6

V2 2 V6 7 V2 4 V4 8

V3 4 V1 17 V3 13 V1 2

V7 3 V4 9 V1 13 V5 11

V8 9 V2 20 V2 4 V1 20

V6 11 V3 2 V7 2 V5 12

V9 7 V3 7 V1 14 V6 8

V5 6 V10 9 V1 13 V9 3

V3 11 V3 14 V5 1 V3 17

V5 10 V4 15 V10 17 V7 6

V10 1 V6 16 V3 4 V3 6

V9 9 V8 11 V9 7

V7 14 V5 3 V2 19

Table 8.8: Orders in random example two

Random Example Three

Workplace Process Workplace Process Workplace Process

W1 P1 W8 P8 W15 P15

W2 P2 W9 P9 W16 P16

W3 P3 W10 P10 W17 P11

W4 P4 W11 P11 W18 P12

W5 P5 W12 P12 W19 P1

W6 P6 W13 P13 W20 P6

W7 P7 W14 P14

Table 8.9: List of workplaces and their processes in random example three
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Variant Process sequence

V1 P5 P11 P2 P1 P13 P7 P9 P15 P8 P4 P12 P6 P10 P14 P16

V2 P2 P10 P4 P11 P8 P16 P14 P13 P3 P5 P15 P7

V3 P16 P9 P1 P14 P7 P4 P10 P8 P11 P5 P3 P6 P15 P2

V4 P4 P7 P10 P12 P9 P6 P5 P14 P2 P15 P1 P11

V5 P13 P2 P15 P8 P3 P16 P6 P5 P14 P10 P11

V6 P16 P11 P10 P6 P15 P2 P5 P13 P12 P14 P8 P7 P4 P9 P1

V7 P13 P14 P8 P16 P15 P2 P12 P10 P4 P11 P1

V8 P1 P15 P9 P6 P16 P8 P2 P14 P4 P5 P3 P10 P7

V9 P4 P7 P11 P15 P13 P2 P6 P5 P16 P14 P3 P1

V10 P13 P14 P16 P5 P11 P7 P10 P9 P15 P8 P12 P6 P2

Table 8.10: List of variants and their sequences in random example three

Variant # Variant # Variant # Variant #

V2 14 V2 17 V3 20 V1 19

V8 18 V2 9 V4 9 V1 4

V1 3 V6 12 V1 4 V7 15

V8 17 V5 13 V10 1 V10 4

V10 9 V8 19 V1 7 V3 16

V1 13 V5 1 V6 15 V2 3

V1 16 V9 4 V8 15 V9 1

V7 10 V7 13 V7 20 V4 18

V10 4 V1 16 V9 14 V4 5

V7 6 V7 16 V8 8 V9 19

V10 7 V3 17 V8 14 V6 3

V7 13 V10 17 V3 12

V5 9 V4 2 V10 1

Table 8.11: Orders in random example three
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C Data for Randomized Experiments

W-P V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

W1-P1 6 21 5 25 2 9 18

W2-P2 8 10 19 11 11 15 18 5 5 3

W3-P3 17 11 17 3 3

W4-P4 6 6 22 23 18 21 4 23

W5-P5 22 9 19 9 12 1 7 14 19

W6-P6 9 20 9 10 24 14 19 13

W7-P7 16 14 18 9 2 5 19 24

W8-P8 15 8 16 8 23 24 12 12

W9-P9 5 2 9 20 10 17

W10-P10 15 4 7 6 17 23 1 16 16

W11-P11 24 9 10 19 12 11 13 19 21

W12-P12 3 14 14 5 22

W13-P13 14 19 10 4 21 13 20

W14-P14 25 5 1 9 4 18 8 14 7 12

W15-P15 2 11 1 18 13 23 14 23 8 22

W16-P16 21 15 5 17 7 10 15 23 12

W17-P17 16 5 10 16 9 25 1 2 11

W18-P18 10 16 14 22 8

W19-P7 19 10 2 6 5 3 4

W20-P3 11 8 18 23 1 5 17 5

Table 8.12: List of process times per piece in random example three
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Random Example Four

Workplace Process Workplace Process Workplace Process

W1 P1 W8 P8 W15 P3

W2 P2 W9 P9 W16 P5

W3 P3 W10 P10 W17 P8

W4 P4 W11 P11 W18 P7

W5 P5 W12 P12 W19 P5

W6 P6 W13 P13 W20 P12

W7 P7 W14 P14

Table 8.13: List of workplaces and their processes in random example four

Variant Process sequence

V1 P5 P13 P1 P14 P12 P2 P7 P11 P9

V2 P3 P11 P7 P10 P1 P5 P9

V3 P1 P13 P6 P4 P8 P7 P3 P2 P10 P12 P11 D14 D9

V4 P11 P7 P9 P4 P8 P3 P12 P6 P10 P13 P2 P5

V5 P7 P11 P8 P3 P13 P10 P5 P6 P2 P14

V6 P4 P1 P9 P5 P7 P2 P10 P8 P11

V7 P9 P2 P6 P4 P8 P11 P5 P7 P14 P1 P13 P10 P12

V8 P7 P4 P12 P5 P1 P13 P11 P3 P6 P10 P14 P9 P2

V9 P10 P7 P6 P4 P5 P3 P12 P2 P9 P1 P8 P14

V10 P13 P3 P9 P11 P7 P1 P6

Table 8.14: List of variants and their sequences in random example four
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C Data for Randomized Experiments

W-P V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

W1-P1 24 21 19 5 18 7 5 14

W2-P2 12 4 17 11 5 3 5 19

W3-P3 19 7 2 5 5 12 20

W4-P4 15 1 6 13 15 19

W5-P5 3 2 16 7 1 6 18 20

W6-P6 13 17 9 18 8 12 15

W7-P7 1 4 21 23 8 9 12 3 8 25

W8-P8 14 20 9 2 16 5

W9-P9 20 5 23 8 20 14 14 13 16

W10-P10 7 24 3 16 11 25 10 9

W11-P11 6 25 7 5 5 18 11 2 10

W12-P12 15 15 12 7 18 17

W13-P13 14 16 21 11 17 21 13

W14-P14 4 21 16 1 4 10

W15-P3 21 10 15 20 22 12 7

W16-P5 8 15 7 19 18 2 8 1

W17-P8 7 25 23 2 7 16

W18-P7 13 21 13 1 12 21 3 6 20 5

W19-P5 20 16 7 10 23 23 1 2

W20-P12 18 19 17 8 17 2

Table 8.15: List of process times per piece in random example four
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Variant # Variant # Variant # Variant #

V1 14 V10 10 V1 14 V6 16

V9 6 V8 9 V1 1 V9 12

V9 9 V2 4 V7 6 V2 1

V7 19 V3 19 V7 15 V5 19

V1 11 V4 9 V4 8 V3 12

V8 7 V4 3 V3 4 V1 2

V3 5 V8 19 V3 7 V1 8

V7 3 V1 15 V1 3 V10 19

V6 20 V5 5 V6 2 V2 15

V6 4 V5 16 V3 7 V9 12

V10 1 V3 18 V8 7 V8 2

V5 13 V9 17 V7 13

V4 12 V2 9 V6 13

Table 8.16: Orders in random example four

Random Example Five

Workplace Process Workplace Process Workplace Process

W1 P1 W8 P8 W15 P15

W2 P2 W9 P9 W16 P16

W3 P3 W10 P10 W17 P17

W4 P4 W11 P11 W18 P18

W5 P5 W12 P12 W19 P19

W6 P6 W13 P13 W20 P8

W7 P7 W14 P14

Table 8.17: List of workplaces and their processes in random example five
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C Data for Randomized Experiments

Variant Process sequence

V1 P10 P13 P11 P16 P17 P15 P4 P1 P18 P8

V2 P8 P19 P18 P16 P10 P2 P13 P4 P9 P12 P7 P6 P15

V3 P5 P6 P8 P19 P18 P14 P1 P17 P9 P2 P7 P4

V4 P4 P1 P13 P6 P19 P8 P10 P2 P11 P16 P12 P5 P7

V5 P6 P9 P17 P5 P13 P10 P14 P3 P4 P16 P19 P15 P1 P2 P18

V6 P12 P10 P1 P17 P14 P7 P2 P11 P19 P15 P9 P18 P6 P4 P13

P16 P5

V7 P4 P18 P15 P17 P3 P19 P16 P14 P2 P1 P9 P10 P12 P7 P8

V8 P8 P11 P4 P13 P17 P10 P16 P1 P14

V9 P6 P16 P15 P10 P19 P8 P14 P13 P4 P12 P18 P11 P2 P1 P5 P3

P3 P17

V10 P19 P14 P3 P1 P16 P12 P8 P11 P15 P17 P9 P18 P7 P5 P10 P2

Table 8.18: List of variants and their sequences in random example five

Variant # Variant # Variant # Variant #

V1 6 V10 2 V3 12 V2 10

V9 18 V2 6 V6 8 V3 5

V8 1 V4 9 V5 17 V9 18

V4 11 V8 7 V2 17 V8 20

V10 2 V8 9 V5 20 V7 8

V7 7 V6 1 V4 2 V2 12

V8 19 V10 12 V8 4 V7 9

V10 6 V9 14 V2 11 V6 15

V4 10 V4 18 V2 15 V5 15

V2 12 V6 16 V3 1 V4 7

V1 2 V8 20 V5 1 V10 2

V1 4 V1 12 V3 3

V8 4 V8 5 V2 9

Table 8.19: Orders in random example five
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W-P V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

W1-P1 8 17 11 15 20 19 14 18 25

W2-P2 23 6 25 6 23 4 8 13

W3-P3 15 19 2 22

W4-P4 22 12 23 20 21 16 18 25 11

W5-P5 17 23 11 15 11 2

W6-P6 1 1 17 18 14 4

W7-P7 18 9 3 5 9 5

W8-P8 17 11 16 10 16 11 3 4

W9-P9 19 1 22 1 17 2 11

W10-P10 12 10 8 21 16 25 21 11 22

W11-P11 18 7 24 23 19 14

W12-P12 4 8 21 2 14 14

W13-P13 19 1 10 24 13 13 3

W14-P14 25 8 4 7 2 13

W15-P15 5 4 22 9 6 14 22

W16-P16 24 1 17 8 1 4 22 19 18

W17-P17 17 16 18 13 20 12 25 1

W18-P18 15 1 23 12 7 3 6 16

W19-P19 19 22 1 8 14 17 19 20

W20-P8 9 14 6 20 13 11 19 2

Table 8.20: List of process times per piece in random example five
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