KIT | KIT-Bibliothek | Impressum | Datenschutz

Generating optimal robust continuous piecewise linear regression with outliers through combinatorial Benders decomposition

Warwicker, John Alasdair 1; Rebennack, Steffen 1
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

Using piecewise linear (PWL) functions to model discrete data has applications for example in healthcare, engineering and pattern recognition. Recently, mixed-integer linear programming (MILP) approaches have been used to optimally fit continuous PWL functions. We extend these formulations to allow for outliers. The resulting MILP models rely on binary variables and big-$\textit{M}$ constructs to model logical implications. The combinatorial Benders decomposition (CBD) approach removes the dependency on the big-$\textit{M}$ constraints by separating the MILP model into a master problem of the complicating binary variables and a linear sub problem over the continuous variables, which feeds combinatorial solution information into the master problem. We use the CBD approach to decompose the proposed MILP model and solve for optimal PWL functions. Computational results show that vast speedups can be found using this robust approach, with problem-specific improvements including smart initialization, strong cut generation and special branching approaches leading to even faster solve times, up to more than 12,000 times faster than the standard MILP approach.


Verlagsausgabe §
DOI: 10.5445/IR/1000150803
Veröffentlicht am 20.09.2022
Originalveröffentlichung
DOI: 10.1080/24725854.2022.2107249
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2472-5854, 2472-5862
KITopen-ID: 1000150803
Erschienen in IISE Transactions
Verlag Taylor and Francis Group
Band 55
Heft 8
Seiten 755-767
Vorab online veröffentlicht am 06.09.2022
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page