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Abstract
The presented work addresses the problem of particle detection with neural networks (NNs) in
defocusing particle tracking velocimetry. A novel approach based on synthetic training data
refinement is introduced, with the scope of revising the well documented performance gap of
synthetically trained NNs, applied to experimental recordings. In particular, synthetic particle
image (PI) data is enriched with image features from the experimental recordings by means of
deep learning through an unsupervised image-to-image translation. It is demonstrated that this
refined synthetic training data enables the neural-network-based particle detection for a
simultaneous increase in detection rate and reduction in the rate of false positives, beyond the
capability of conventional detection algorithms. The potential for an increased accuracy in
particle detection is revealed with NNs that utilise small scale image features, which further
underlines the importance of representative training data. In addition, it is demonstrated that
NNs are able to resolve overlapping PIs with a higher reliability and accuracy in comparison to
conventional algorithms, suggesting the possibility of an increased seeding density in real
experiments. A further finding is the robustness of NNs to inhomogeneous background
illumination and aberration of the images, which opens up defocusing PTV for a wider range of
possible applications. The successful application of synthetic training-data refinement advances
the neural-network-based particle detection towards real world applicability and suggests the
potential of a further performance gain from more suitable training data.
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1. Introduction

A broad variety of particle imaging techniques exists in the
fields of science and engineering. After the rise of digital
imaging, particle image velocimetry (PIV) [1] has become a
very beneficial and cost-effective method to acquire accur-
ate velocity information with reasonable uncertainty margins,
due to the possibility of correlation computation not only
for one particle but for a particle ensemble. Given the Lag-
rangian frame of reference from the observation of single
particles, particle tracking velocimetry (PTV) can provide a
better understanding of physical phenomena involved in mix-
ing processes [2] or e.g. the movement of bacteria [3]. For the
measurement of three-dimensional flow topologies of small
spatial scales similar to the light sheet thickness or for flows
with large velocity gradients, the resolution of the standard
planar particle imaging setup is not sufficient, since velocit-
ies are averaged over the light sheet thickness. Therefore,
volumetric particle tracking techniqueswere developed, which
either employ multiple cameras, for example 3D-PTV [4, 5]
or tomographic PTV [6], or make use of defocusing, such
as astigmatism PTV (APTV) [7] or defocusing PTV (DPTV)
introduced byWillert and Gharib [8], as macroscopic defocus-
ing approach. Note that the latter used a three-pinhole mask as
aperture to generate three particle images (PIs) of the same
out-of-focus particle on the camera sensor. The technique was
adapted by research groups specialized in micro applications
like Pereira et al [9]. Using the complete defocused image as
estimate of the out-of-plane position was introduced by Wu
et al [10]. The single-camera setup required for the defocus-
ing approach allows for a simpler calibration and might even
be the only viable option for measurement volumes (MVs) that
are partially obstructed for all but one viewing angle. APTV
requires an additional cylindrical lens, while DPTV can be
realised through a standard planar PIV setup, however the eval-
uation of the experiments is not trivial.

The particles in the MV can be assumed to be point light
sources, that are emitting rays of light through a spherical lens
onto the camera sensor [10]. In context of DPTV, the defo-
cused particles, therefore, appear as rings in the image plane,
for which the diameter of the ring encodes the distance of the
particle from the focal plane. Assuming geometrical optics
and diffraction as Gaussian functions, the correlation of the
PI diameter de(z) to the depth coordinate z can be described
according to

de(z)
2 =M2d2p + 5.95(M+ 1)2λ2

e f
2
# +

M2z2D2
a

(so + z)2
, (1)

as elaborated by Olsen and Adrian [11].

The first term of equation (1) describes the magnification of
the PI in geometrical optics as function ofmagnificationM and
particle diameter dp. The second term represents the effects of
diffraction, defined by the wavelength λe of emitted light from
the particle and the focal number f# of the objective lens, while
the third term describes the growth of the particle-image dia-
meter with an increasing distance z from the focal plane in
geometrical optics, taking into account the lens entrance aper-
ture diameter Da and the object distance so. For a particular
optical equipment the magnification M, aperture Da and focal
number f# are constants and for microscopic optics in general
the object distance so relative to the distance z of the particles
to the focal plane is very large, i.e. (so ≫ z). For these condi-

tions equation (1) simplifies to de(z)∝
(
const.+ z2

)1/2
[11].

Furthermore for a sufficient distance to the focal plane the
equation can be linearized, since the third term governs the
equation. For optics with a high magnification spherical aber-
ration influences the shape of the defocused PIs significantly
[10], which is not considered in equation (1). Therefore, an
individual calibration function has to be found for any partic-
ular optical equipment.

In order to determine the particle velocities, first the images
are post-processed via a particle-detection step, in which the
planar position and diameter are determined, followed by a
matching of the PIs on two consecutive frames (see figure 1).
Since its introduction by Willert and Gharib [8] in 1992,
a multitude of different defocusing particle tracking meth-
ods was developed, which according to Barnkob et al [12]
can be distinguished into methods based on model func-
tions, cross-correlation methods and—more recently—neural
network (NN) methods. Most methods of the former two
approaches share a common strategy, in which, firstly, region
proposals for particles are determined by an image segmenta-
tion on background subtracted images and secondly the loca-
tion is refined with sub-pixel accuracy by a particle-detection
algorithm. Generally, overlapping particles are avoided by a
low seeding density, typically ranging from nppp = 10−4 to
10−3 particles per pixel (ppp), which poses a limit to the
resolution of the method. Furthermore most post-processing
algorithms exclude overlapping PIs, as they often lead to erro-
neous measurements.

Model functions like the presented model of Adrian &
Olsen (1) are often based on the assumption that the light
intensity of the PIs has a Gaussian distribution [11, 13] and
allow for the deduction of the particle-depth position from
the measured particle-image diameter. Fuchs et al [14] obtain
region proposals through an intensity threshold on average
intensity filtered and binarized images. The three-dimensional
position of the particle is then determined from the edges of
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Figure 1. The planar position of the particle is defined by the
centre-point location x⃗ of the defocused PI; the depth position is
defined by the diameter de of the PI, measured at the maximum
radial intensity.

the PI, which are detected by fitting the extrema of the PI in
the horizontal and vertical direction with a thin-plate spline.
Leister and Kriegseis [15] determine the three-dimensional
position of the particle through a circular Hough transform
[16] in one step. In a comparative study by Leister et al [17]
this method—with an additional subpixel-refinement of the
position and diameter and the edge detection method by Fuchs
et al [14]—showed a comparable performance. Cierpka et al
[18] determine the particle position by an auto-correlation
of the proposed regions for particle candidates on unfiltered
images. Barnkob et al [19] estimate the three-dimensional pos-
ition of a particle by a normalised cross-correlation with a set
of a priori determined calibration images at known depth loc-
ation. In this approach sub-pixel accuracy is reached through
a Gaussian fit of the in-plane pixel values and a parabolic fit
of the cross-correlation peak along the calibration stack.

The established particle detection methods based on model
functions suffer from a reduced accuracy for the cases where
PIs diverge from the underlying limited theoretical assump-
tions, which describe the ideal physical principles involved in
forming of the PIs. Methods based on cross-correlation how-
ever rely on PIs similar to the calibration templates, which
limits their capabilities if the PIs vary significantly in planar
direction. Adverse impacts from optical aberration, reflec-
tions, fluctuations in illumination and image noise lead to
deviations in the PIs compared to the theoretical models or
templates, which further reduces the accuracy and has a neg-
ative impact on the rate of successfully detected particles
as well.

It has been shown that NN-based detection is more robust
against the adverse impact of overlapping objects and low
image quality [20] due to the ability of NNs to leverage a
higher amount of optical features for the detection in compar-
ison to the conventional algorithms. While image aberrations
in general reduce the performance of conventional particle
detection approaches, they represent features that the NN can
use for the recognition of PIs and the subsequent determination
of the depth position [12]. These features are internalised by

the NN as defining characteristics of the PIs during machine
learning on a set of labelled training images. Cierpka et al [21]
show that a Faster R-CNN object detection algorithm [22],
which is based on convolutional neural networks (CNNs) [23],
can be successfully employed in the detection of particles on
synthetic images in an APTV setup. Recently, König et al
[24] found that a cascaded CNN developed on the basis of
Faster R-CNN can be used to detect particles with high accur-
acy in APTV. Barnkob et al [12] use the Faster R-CNN object
detection framework to determine the planar position of the
particles and a subsequent CNN for the determination of the
particle depth position from singular PIs, with CNNs trained
on synthetic images. Franchini and Krevor [25] demonstrated
an improved detection rate of overlapping PIs on images
from APTV experiments with an object detector based on a
long short term memory (LSTM) network combined with a
CNN [26].

In contrast to the continuous development of NNs for
APTV there has been a lack of application for DPTV so far.
The accurate estimation of the depth position in DPTV relies
only on the measurement of the PI diameter, whereas in APTV
the orientation and size of the two axis of an elliptical PI can
be exploited. Therefore, the strategies based onNNs for APTV
have to be re-evaluated and adapted for particle detection in the
DPTV context. In general the NN-based approaches require
a large amount of labelled training data. High quality train-
ing data can in principle be acquired through manual image
annotation. However, such an approach is unfeasible due to a
high temporal effort. Alternatively, synthetic training data can
be produced with a relatively low effort through model func-
tions. Synthetic images, however, lack certain features of the
PIs that are characteristic for the particular optical setup, which
leads to a lower performance of the NNs once applied to real
experimental datasets [27], because the training and test data-
sets stem from different distributions. Further improvement of
the NN-based approaches for particle detection, accordingly,
depends on the advances in the generation of suitable synthetic
training data.

In view of the above-reported achievements and limita-
tions, the objective of the present work is two-fold: Firstly and
mainly the applicability of NNs for particle detection in DPTV
is to be uncovered, complemented by an enhancement of the
learning procedure to allow an advancement NN-based detec-
tion beyond synthetic test cases to a real world application.
Therefore, a two-stage approach is introduced, in which first
synthetic PIs are refined to match the characteristics of real
image data bymeans of an image-to-image translation through
a deep learning approach. Such refined datasets are hypothes-
ised to serve as realistic training data, which enables the NNs
for particle detection in the second stage to learn a more reli-
able detection of particles on real images from the experiment.
As a second additional aspect, also the potential of NNs to
overcome the currently open challenges in the post-processing
of DPTV measurements on images with degraded quality
or a high amount overlapping PIs is addressed, where the
former likely occurs during experimentation and the latter is
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particularly desired so as to achieve higher density of determ-
ined velocity information.

2. Methodology

The proposed two-stage approach is illustrated in figure 2 and
bases on synthetic training data generation and refinement,
as well as subsequent particle detection by means of deep
learning on the recordings gathered by the DPTV experi-
ments. An acquisition of training data through manual image
annotation is impossible due to (i) the immense manual effort
of labelling the required amount of images (O(10000)) and
(ii) the introduction of additional uncertainty and bias, which
would reduce the detection accuracy for the NNs trained on
those images. Therefore, the NNs for particle detection are
trained on two kinds of synthetic and one semi-synthetic data-
set for the extraction of particle position and size on real DPTV
images [28]. The first synthetic datasetDa is generated through
conventional algorithms based on model functions, while the
semi-synthetic dataset Db is generated from cut-out real PIs
annotated through a Hough algorithm. The refined synthetic
dataset Dc is generated by means of an unsupervised image-
to-image translation from the simple synthetic Da and real
Db PI through a NN-based algorithm, as also indicated in
figure 2.

2.1. Revolved 1D-Gaussian synthetic PIs

Since the theoretical considerations (such as [11, 13]) did not
model the intensity distribution of a defocused PI, a differ-
ent option to gain an initial synthetic PI could be chosen.
One option would be the image generation with the help of a
synthetic particle generator [29], the other to mimic already
obtained PIs from an experimental set-up. The intention of
this work was to model realistic-looking images with the use
of a 1D-Gaussian function, that revolved around an axis. To
further approximate the occurrence of spherical aberration, a
linear function is superimposed on the radial intensity pro-
file, which results in a higher intensity on the inner side of
the particle compared to the outer side. The resulting syn-
thetic intensity profiles for various PI diameters are plotted in
the normalised intensity diagrams of figure 3, where synthetic
(Da) and real (Db) PIs appear as yellow and red lines, respect-
ively. The decrease in the peak intensity and broadening of the
radial intensity profile towards more defocused particles was
further approximated by a linear fit on the experimental data.
Examples for the resulting synthetic PIs in comparison to their
real counterparts of similar diameters are further displayed in
figure 4.

2.2. Semi-synthetic data through real PIs

The dataset of real PIs Db builds upon DPTV measurements
in an open wet clutch by Leister and Kriegseis [15]. The
recorded PIs are detected with the afore-mentioned Hough
transform and subsequently extracted separately from the raw

DPTV-images. Overlapping and irregular PIs were filtered out
through manual inspection.

The unlabelled dataset Db is employed for image-to-image
translation directly, since only unpaired input (Da and Db) is
required by the NN for the refinement towards Dc as outlined
in section 2.3; see also first stage in figure 2. Later on, the real
PIsDb have to be labelled as well for the training of the particle
detection NNs (section 2.4, second stage in figure 2). In this
case, these NNs will demonstrate a reduced spatial accuracy in
comparison to the NNs trained on synthetic data, due to errors
introduced by the labelling process.

However, NNs for particle detection trained on the semi-
synthetic datasetDb are expected to reach a high detection rate,
since the feature distribution of Db equals the distribution of
the test data and accordingly will be used as a benchmark for
the synthetic datasets Da and Dc. Consequently, the dataset
Db is only considered for the validation of the suitability of
the two synthetic datasets as training data for the NN-based
particle detection algorithms.

2.3. PI synthesis through unsupervised image-to-image
translation

Particle detectors trained on purely synthetic PI-data are
expected to have a reduced performance on the real exper-
imental images, since they originate from significantly dif-
ferent data distributions. The reduced performance of NNs
trained on synthetic data is a well documented and discussed
observation [27]. To overcome this limitation, a new data-
set is generated, which is foreseen to take combined advant-
age of the precise labels (location & diameter) from the syn-
thetic training dataset Da and the detailed feature content of
the real PIs Db from DPTV measurements. Particularly, a
refined synthetic dataset Dc is developed by means of NN-
based image-to-image translation between datasets Da and
Db, to provide fully labelled synthetic datasets with a more
realistic image-feature distribution for the subsequent particle
detection efforts (see section 2.4).

The available synthetic and real training data is inherently
unpaired, because the particle datasets with a continuous range
of diameters would need to be measured first in order to match
them. This is not practical due to the introduction of meas-
urement errors. As such, unsupervised methods for image-to-
image translation are required to learn amapping from an input
domain consisting of the synthetic PIs to an output domain of
real PIs.

Three state-of-the-art algorithms (MUNIT [30], CycleGAN
[31] and DRIT [32]) for unsupervised image-to-image trans-
lation based on deep NNs are considered for the genera-
tion of refined synthetic PIs and evaluated in comparison to
each other. All three methods are an extension of the gen-
erative adversarial network (GAN) concept [33], which has
been shown to be very successful in generating synthetic
images that closely resemble the real data they were trained
on.MUNIT andDRIT additionally employ autoencoders [34],
a type of NN that is commonly used for dimensionality reduc-
tion and data compression.
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Figure 2. Two stage approach: integrated training pipeline for NN-based particle detection, employing image-to-image translation from
unlabelled real and labelled synthetic data for synthetic training data refinement.

Figure 3. Comparison of the radial intensity profiles for synthetic Da (■) and real PIs Db (■), as well as PIs generated by MUNIT Dc

(■, see discussion in section 2.3), for four characteristic diameters de = 12.5,17.5,22.5,27.5 px. The intensity profiles are averaged over
100 PIs at each characteristic diameter de± 0.025 px and the intensity is normalised with the respective maximum intensities per diameter.

Figure 4. Comparison of randomly sampled synthetic Da (upper
row) and real Db PIs (bottom row) at increasing diameters from
de = 10 px to de = 32.5 px.

2.4. Particle detection by means of NNs

Generally, the scope of the particle detection step in PTV is the
determination of the centre point location and the diameter of
each PI on the recorded images. In the present approach two
established standard methods for object detection based on
CNNs—namely Faster R-CNN [22] and RetinaNet [35]—are
considered for the particle-detection stage of the presented

approach. Note that preliminary testings with the popular one-
stage NN-based detection method YOLOv3 [36] revealed a
lower detection rate and accuracy than Faster R-CNN and
RetinaNet, and hence was not further considered for the thor-
ough comparison.

Previous reports by Cierpka et al [21] and König et al
[24] demonstrate a good performance of the two-stage object
detection algorithm Faster R-CNN for the post-processing of
APTV experiments. RetinaNet belongs to the group of one-
stage object detectors, representing a different approach to
NN-based particle detection. Due to its feature-pyramid net-
work based CNN architecture [37], RetinaNet is anticipated
to reach a higher spatial accuracy than Faster R-CNN, as it
has been shown to perform particularly well in detecting small
objects [38]. Both Faster R-CNN and RetinaNet first pro-
cess the input images through multiple convolutional layers to
extract image features which are used for the detection. While
this processing of the image features creates a so-called feature
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hierarchy with increasing semantic information over the lay-
ers of the network, the resolution decreases in each consecut-
ive layer. The detection is performed on the final layer, which
contains the highest semantic information, but also the lowest
resolution, which in turn leads to a reduction in spatial accur-
acy. The feature pyramid network (FPN) architecture encom-
passed in RetinaNet overcomes this down-sampling issue by
establishing an inverse flow of information from later layers
to earlier layers [37], which allows for the detection on higher
resolution feature maps and offers the potential of a higher
accuracy in comparison to the standard CNN-based detection
approach.

The implementations of Faster R-CNN and RetinaNet, as
well as the training algorithms were sourced from the Tensor-
Flow 1 library for Python [39], keeping default settings unless
stated otherwise. Transfer learning based on NNs pretrained
on the COCO dataset [40] was used to reduce the amount of
required training data and accordingly training duration, and
the risk of overfitting.

3. Data treatment and processing

In the present section, the proposed two-stage NN-based
approach for particle detection in DPTV is first validated and
tested with simple synthetic data. Subsequently, the impact of
desired training-data refinement is evaluated in a comparative
study on real data. The findings of each testing step will, there-
fore, initially be elaborated separately alongside the respect-
ive processing step and will be afterwards conflated in a more
comprehensive discussion (see section 4). The performance of
the proposed particle detection approach based on NNs is first
assessed in section 3.1 on Gaussian synthetic images Da and
compared to a conventional detection algorithm based on the
Hough transform with a subsequent sub-pixel refinement of
the particle position. An advantage of synthetic images is the
possibility to associate the PIs with ground truth labels, which
allows for an objective evaluation of the localization uncer-
tainty by the different detection methods, as opposed to real
images Db and refined synthetic images Dc. Recall that the
labels for Db contain measurement errors and those for Dc

would compromise the labels by means of image translations.
The ability of the NN-based approach for the detection on

images with a high seeding density is evaluated in section 3.2,
particularly on pairs of increasingly overlapping PIs. The NNs
trained in section 3.1 are therefore employed on a test data-
set with simple synthetic PIs Da with different relative over-
lap and the detection accuracy is evaluated. Likewise, the
NN-based particle detectors trained in section 3.1 are tested
under aggravated conditions in section 3.3, where the synthetic
images are artificially superimposedwith varying background-
illumination conditions. Following the validation and testing
of the NN-based detectors with simple synthetic data, the cap-
ability of the proposed approach based on synthetic training
data refinement is evaluated. Therefore, first the results of the
training data refinement by means of unsupervised image-
to-image translation from synthetic PIs to the real domain
are presented in section 3.4. The competing objectives of the

transferability of features from Db to Dc versus the simultan-
eous preservation of accurate labels from Da to Dc are both
evaluated here.

The generated refined synthetic data Dc is then employed
for the training of the particle detection NNs as presented in
figure 2. Section 3.5, finally, addresses the detection perform-
ance of the NN-based particle detectors trained on refined
synthetic data Dc on real data. These detection results are
compared to their corollary trained on simple synthetic data
Da, in order to determine the impact of the training data refine-
ment. The comparison to particle detectors trained on cut-out
real PIs Db additionally serves as a benchmark of the max-
imum possible detection performance with ideal training data,
i.e. data that comes from the same distribution as the test
set. Consequently, all three data sets Da, Db and Dc are con-
sidered to test the NN-based particle detectors Faster R-CNN
and RetinaNet in a comparative manner on real data.

Unless stated otherwise the different synthetic image data-
sets for the particle detection study were created by placing ten
PIs at random positions on a plain background, allowing for
overlaps. The mean background intensity matched the back-
ground intensity observed in the experimental images [15] and
the noise observed in the real images was approximated by
white Gaussian noise with a signal-to-noise ratio (SNR) of 30.
The images were saved as 8 bit .png-files with a resolution of
600 × 600 pixels. The NN-based detection approaches Faster
R-CNN and RetinaNet were trained by supervised learning
through stochastic gradient descent with momentum (SGDM)
[41]. The NNs of all image-to-image translation models were
trained with the Adam optimisation algorithm [42], which is
an extension of SGDM. For completeness, the full set of train-
ing hyperparameters are listed in tables A1 and A2 in the
appendix.

The performance of particle detection methods was evalu-
ated by the metrics precision and recall, as well as the uncer-
tainty and bias errors in localisation:

• The bias errors of the PI diameter δD and the planar posi-
tion δX and δY are calculated by the mean of the deviation
ei = xi− x ′i between the measured coordinates x ′i from the
ground truth labels xi in pixel (px) δi = 1

n

∑n
i=1 ei [43].

• The measured uncertainties σD, σX and σY are calculated by
the standard deviation of the errors between the measured
coordinates and the ground truth labels in pixel (px) σi =√

1
n

∑n
i=1(ei− δi)2 [43].

• The mean absolute errors (MAEs) εD, εX and εY are cal-
culated by the mean absolute deviation of the measured
coordinates from the ground truth label in pixel (px) εi =
1
n

∑n
i=1 |ei| [44].

• The precision P= TP
TP+FP describes the ratio of correct

detections (true positives, TP) from all detections made by
the particle detector on the test dataset. Therefore, it can
be used as a measure for the ratio of false positive detec-
tions (FP) [45]. True positives are defined as detections with
an intersection over union IoU⩾ 0.5 [46], which describes
the extent of overlap between the ground truth and detection
bounding boxes.
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Figure 5. Example image from the (a) synthetic dataset compared
DA and (b) a recording from DPTV experiments [15]; contrast
enhanced and brightened for better visibility.

• The recall R= TP
TP+FN is defined as the ratio of true positive

detections (TP) to the sum of true positives and false negat-
ives (FN), i.e. the ratio of detected particles to all particles
in the test dataset [45].

• The average precision AP= 1
11

∑11
r=1max

r̃⩾r
P(r̃) provides a

combined measure for the object detection performance that
summarises the relation of precision and recall by averaging
the precision over eleven intervals of recall [46].

Recall and uncertainty have to be evaluated in respect to
each other, as they are inversely correlated, depending on a
rejection criterion. A stricter rejection criterion leads to higher
accuracy at the cost of a lower rate of detected particles
with the opposite effect for a less strict rejection criterion.
The Hough transform algorithm uses a prescribed sensitivity
parameter to determine valid detections, while the NN-based
detection algorithms use a certainty score that is retroactively
calculated for each detected particle by the NN as a rejection
criterion. The detection performance of the NN-based detec-
tion algorithm is evaluated by plotting the precision and recall
over the range of certainty thresholds in the detected particles,
which accordingly can be performed a posteriori, while the
sensitivity of the Hough algorithm has to be defined a priori.

3.1. Detection of synthetic PIs

The synthetic test dataset DA is composed by ten PIs with
revolved 1D-Gaussian intensity distribution Da, which were
synthesised as described in section 2.1. The diameter of the
synthetic PIs ranges from de = 18 pixels to de = 35 pixels and
matches the diameter distribution observed in the experiments
[15]. The generated images have a particle per pixel value of
nppp ≈ 2.8× 10−5, which results in 3.4% of overlapping PI
pairs (as per definition in figure 8). An example image from
the synthetic training dataset is shown figure 5 in direct com-
parison to a real image from DPTV experiments.

From the synthetic dataset DA nt = 40000 images were
used for training the object detection networks and ne = 1000
images were reserved for the evaluation of the detection per-
formance on unseen examples. The NN-based detection meth-
ods Faster R-CNN and RetinaNet were trained for 5 epochs

Figure 6. Comparison of the performance by the NN-based particle
detection approaches Faster R-CNN and RetinaNet, and the Hough
algorithm on Gaussian synthetic images DA.

Table 1. Measurement errors of the NN-based particle detection
methods trained and employed on synthetic DPTV data DA in
comparison to the model based Hough algorithm.

IoU⩾ 0.5 Faster R-CNN RetinaNet Hough

δD (px) 0.158 0.158 1.106
σD (px) 0.407 0.296 0.766
δX (px) 0.371 0.804 0.063
σX (px) 0.558 0.253 0.364
δY (px) 0.129 0.064 0.002
σY (px) 0.527 0.228 0.340

and were afterwards evaluated in comparison to the model-
based Hough transform on the test partition of the synthetic
dataset DA.

As can be seen in figure 6, the compared detection methods
reached a high sensitivity on the synthetic test images, with a
detection rate (recall) above 99% in combination with a low
rate of false positive detections, expressed by precision val-
ues likewise above 0.99. Figure 6, therefore, might be gen-
erally considered a successful validation of the NN approach
for DPTV particle detection. The detection performance of the
NN-based approaches Faster R-CNN and RetinaNet is found
to be minimally higher compared to the Hough transform,
whichmainly results from a better detection of overlapping PIs
as will be further evaluated in the following section. The NN-
based approaches only miss a third of the amount of particles
relative to the Hough algorithm. While the effect is less relev-
ant on simple synthetic images, it is expected to transfer and
amplify on real images that are more difficult to detect for all
methods.

As shown in table 1, the in-plane bias errors of RetinaNet
δX and δY significantly differ. This trend was observed over
all tested datasets and for different random initialisations
of the NN. Therefore the cause is suspected to stem from
within the NN architecture. However for a velocity measure-
ment in the context of particle tracking the bias error cancels
itself and for the position measurement a calibration can be
performed by an offset with the known bias error. Since such
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Figure 7. Synthetic Gaussian PI pairs at varying relative overlap.

(constant) bias does not influence the measurement accuracy
of the particle tracking in any form, the following discussions
only elaborate on the measurement uncertainty in terms of
standard deviations. RetinaNet reaches the lowest uncertainty
for the measurement of the planar position σX,Y as well as
the diameter σD of the PIs in comparison to Faster R-CNN
and the Hough algorithm. Especially for diameter determ-
inations RetinaNet shows a significant advantage, as obvi-
ous from the particularly small uncertainty compared to the
Hough algorithm. This suggests in consequence, that signific-
ant improvements in the accuracy of the depth measurement
can be realised by employing RetinaNet for particle detection.
Faster R-CNN, as well, reaches a lower uncertainty in dia-
meter determination, however combined with a higher planar
localisation uncertainty compared to the Hough algorithm. In
general synthetic images can reproduce arbitrary magnifica-
tion and reproduction scales from experimental images. How-
ever, since the PIs from Leister and Kriegseis [15] are repro-
duced in the present work, an identical reproduction scale
of 5.77 µm px−1 in planar direction and 35.3 µm px−1 in
the depth direction, as well as a MV depth of 600 µm is
consequently used to convert the uncertainties into the phys-
ical space as previously reported in [15]. Accordingly the
NNs Faster R-CNN and RetinaNet have an average in-plane
uncertainty σX,Y of 3.1 and 1.4 µm, respectively and a depth
uncertainty of σD = 14.4 and 10.4 µm, which corresponds
to a relative uncertainty of σD/h= 2.4% and σD/h= 1.7%,
respectively. This compares to an in-plane uncertainty σX,Y of
2.0 µm and a depth position uncertainty of σD = 27.0 µm or
σD/h= 4.5% for the Hough algorithm. Overall the NN-based
approaches are found to have a more balanced distribution of
uncertainty between the determination of the planar and the
out-of-plane position of the particles. In comparison to the
Hough algorithm, this finding translates into an improvement
in the accuracy of the depth coordinate measurement, which
is generally an order of magnitude lower than planar accur-
acy with conventional approaches, thus potentially alleviating
a downside of DPTV. The high detection rate in combination
with a high spatial accuracy on synthetic PIs render the NN-
based particle-detection approach a promising candidate for
improvements in DPTV. In order to estimate the efficiency in
a real-world setting, the detection performance on overlapping
PIs and degraded images is evaluated in the following.

3.2. Analysis of overlapping particle-image pairs

A significant potential advantage of NN-based particle
detection over conventional methods lies within the detection
of overlapping PIs due to their ability to detect partly obscured

Figure 8. Illustration of the circular intersection over union (cIoU)
for two PIs P1 and P2, which is used as the measure for the relative
overlap of two PIs.

objects. Therefore, in the following section the capability of
the NN-based approaches on overlapping PIs is investigated
through a measurement of the detection rate and localisation
accuracy for increasingly overlapping PI pairs and a compar-
ison to the conventional Hough algorithm. For this purpose
pairs of Gaussian synthetic PIs Da with increasing degrees of
relative overlap were generated, as illustrated in figure 7. The
relative overlap is measured by the circular intersection over
union (cIOU), which is introduced as a specification of the
commonly used intersection over union [46] for the context
of circular PIs. The cIoU is defined as the area of intersec-
tion I between the areas of two PIs P1 and P2, measured at the
radius of peak intensity and divided by their union area U, i.e.
cIoU= P1∩P2

P1∪P2
= I

U , as also illustrated in figure 8. The test data-
set consists of eight intervals of increasing cIoU, ranging from
cIoU= [0,0.1], containing marginally overlapping particles to
cIoU= [0.7,0.8], which included overlapping PIs that were
not separable for a human observer, as can be seen in figure 7.
Additionally, a test dataset of non-contacting PI pairs with
relative distances between 5 and 0 pixels (cIoU− c) was
included, since the results on the synthetic test dataset DA

indicated an influence of such close pairs on the detection.
Likewise, a set of test images containing PI pairs with larger
relative distance >5 pixels (cIoU− f) was included to meas-
ure the base performance of the particle detection algorithms
without overlap for comparison. Each dataset contains ne =
1000 test images, each of which is comprised of two randomly
sized PIs within the considered diameter range of de = 18–35
pixels.

The evolution of the recall for varying the overlap cIoU
is shown in figure 9(a) for the detection methods Retin-
aNet, Faster R-CNN and the Hough algorithm. As can be
seen, both NN-based detection methods are able to detect and
resolve both individual synthetic PIs in an overlapping pair at
significantly higher degrees of overlap cIoU than the Hough
transform. In particular, the adverse impact of the overlapping
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Figure 9. (a) Recall R; (b) uncertainty in diameter σD; (c) centre
point X-position σX and (d) centre point Y-position σY
determination for PI pairs at increasing overlap measured by
circular interception over union. The dashed lines indicate that only
one PI was detected.

PIs on the detection can be neglected for Faster R-CNN and
RetinaNet up to the range of cIoU = 0.3–0.4, as indicated by
recall values above 0.98. The Hough algorithm, in contrast,
already suffers from PI loss in the same cIoU-range, where on
average only one of the two PIs among the respective pairs is
identified—indicated by a recall of 0.5. It was further observed
that the detection of overlapping PIs with similar diameters
proved to be a more difficult task in comparison to pairs with
a larger difference in diameter for all methods, resulting in
both a lower detection accuracy and likewise a correspond-
ingly reduced detection rate. A potential source of error for
PIs with similar diameter could be that image features, such
as intensity gradients of the two instances are similar and thus
blend into each other, hindering a differentiation. The most
common failure mode of the NN-based methods was that only

one out of the two particles was detected, however with a relat-
ively high spatial accuracy, while the Hough algorithm on the
other hand in many cases detected a ghost particle in the inter-
section of the two particles, leading to additional large errors
in the measured position.

Figures 9(b)–(d) shows the evolution of the measurement
uncertainty for varying overlap. It should be noted that the
evaluation of the uncertainty is only meaningful in the con-
text of overlap for PI pairs with two detected PIs, i.e. recall
of >0.5, and a maximum uncertainty is accordingly reached
for this lower edge case of only one detected particle. For PI
pairs with a higher degree of overlap the PIs merge more into
each other and are therefore more likely detected as a single
particle, thus reducing the measurement error for this detec-
ted particle. Consequently, the error estimation systematic-
ally looses the context of overlap, which is indicated by the
dashed lines in figure 9. For all detection methods the uncer-
tainty increases towards higher overlap and a negative impact
from overlapping PIs is observed already at a lower degree of
overlap in comparison to the discussed impact on the detection
rate. This observation suggests a more sensible dependence of
the localisation procedure on the overlap in comparison to the
detection of the particle. As can be seen in figure 9(b) both
NN-based approaches reach a significantly higher diameter-
measurement accuracy on overlapping PIs in comparison to
the Hough transform, with Faster R-CNN achieving half the
uncertainty of the Hough algorithm in diameter determina-
tion and RetinaNet even slightly less. The planar accuracy of
RetinaNet is considerably higher in comparison to the Hough
algorithm, while Faster R-CNN reaches a comparable accur-
acy; see figures 9(c) and (d). The presented results demon-
strate that NN-based particle detection allows for a significant
increase in the accuracy of DPTV under the given condi-
tions, especially for the out-of-plane measurement and over-
lapping particles images, therefore confirming the findings of
section 3.1.

Furthermore it is shown, that a NN-based particle detec-
tion can resolve both PIs in an overlapping pair up to signific-
antly higher overlaps than the conventional Hough algorithm,
which suggests that an increased seeding density can be real-
ised with the proposed approach. A larger amount of measure-
ments from an increased seeding density would be especially
advantageous for non-stationary flows and other experimental
conditions in which ensemble averaging is not feasibly (if pos-
sible at all). In this context it is important to note that the
present cIoU-based evaluation only addresses single events of
overlap, which has to be considered for real experiments in
combination with the respectively chosen seeding densities, as
the latter determines the rate of overlapping PIs on the recor-
ded images.

3.3. Detection on synthetic images with artificially degraded
image quality

The adverse influence on the detection performance from an
inhomogeneous background intensity over the DPTV images
is evaluated on synthetic images with additionally superposed
bands of higher intensity and large-scale intensity gradients
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Figure 10. Synthetic test images containing (a) an additional
intensity gradient; (b) a stripe and (c) both adverse effects (contrast
enhanced and brightened for better visibility).

Figure 11. Recorded DPTV raw image above the grooved region of
an open wet clutch.

as illustrated in figure 10. Changes in the background intens-
ity resulting from the geometry of the MV, as observed
in the experimental images e.g. figure 11 were simulated
by randomly positioned vertical bands of higher intensity
(figure 10(a)) and the effect of reflections as well as spatially
uneven illumination over the MV (figure 10(b)) were simu-
lated by intensity gradients, while in a third experiment both
negative effects were superposed (figure 10(c)).

For each test case ne = 1000 synthetic test images with
each ten Gaussian PIs were produced. The performance of
the detection methods on these three test datasets is compared
for particle detectors trained on the synthetic DPTV dataset
without a variation in the background intensity DA in order to
evaluate the behaviour of NN-based detection algorithms on
degraded test data.

The robustness of all particle detection methods against
image degradation is evaluated by means of precision-recall
diagrams, as shown in figure 12. Obviously, both considered
types of raw-image imperfections lead to reduced particle-
detection performance, which becomes even more influential
by the superposition of both negative effects. Interestingly, the
behaviour of the two NN-based approaches was perceptibly
different: While Faster R-CNN is found to be the most robust
method against image degradation, with effectively unchanged
precision and recall, RetinaNet produces both false positive as

well as false negative detections in the regions of the image
with perturbations of illumination homogeneity, as seen by the
reduction in precision and recall.

For image regions, where an intensity band and gradient
overlapped, the RetinaNet algorithm is unable to detect any
particles, indicating that the NNs of RetinaNet react more
sensible to differences between test and training images in
comparison to Faster R-CNN. Synthetic image degradation
leads to a reduced precision for the detection of the Hough
algorithm, while the algorithms detection rate remains largely
unaffected. The precision is reduced by the detection of ghost
particles, mostly at the edges of the intensity bands that pro-
duce a sharp gradient in the background intensity on the image.
Furthermore, regions of superimposed intensity gradients and
stripes reveal an amplification of this effect.

For the Hough algorithm the majority of false positive
detections can be avoided by means of an a priori adjustment
of the sensitivity to a value of 0.7 from the initially chosen and
quality-approved value of 0.9 for the detection on the Gaus-
sian synthetic DPTV images without image degradation DA.
The resulting effectively maintained degree of precision and
recall for this adjustment emphasises that theHough transform
requires a fine tuning for each new test dataset, respectively for
each new experimental setup. Similarly, the amount of false
positive detections for RetinaNet can be significantly reduced
posteriori, if detections with low certainty scores are excluded
from the evaluation after the detection. This can be done at a
relatively low cost in the rate of detected particles, while allow-
ing for a significantly higher precision of the detection as can
be seen by the sharp drop in the precision-recall diagram in
figure 12.

3.4. Unsupervised image-to-image translation for training
data refinement

The detection performance of NN-based algorithms trained
solely on synthetic PI data and applied to real experimental
images is expected to be significantly lower than the perform-
ance on synthetic data, since the synthetic training images
are not representative for image features on real images [27].
Therefore, the second part of the work focuses on the idea to
generate refined synthetic data by employing NNs for image-
to-image translation on the synthetic PI datasetDa as described
in section 2.3. The three unsupervised image-to-image trans-
lation methods MUNIT [30], DRIT [32] and CycleGAN [31]
were trained on a dataset of two sets of 82.000 unpaired PIs
for each the syntheticDa and the real PI domainDb. The NNs
of all models were trained for 12 epochs, while early stopping
of the training was used to counteract degenerate results from
a mode collapse or an overfitting of the NN. The best results
were reached after 10 training epochs for MUNIT, 6 epochs
for DRIT and 3 epochs for CycleGAN.

The resulting refined synthetic PIs from the image-to-image
translation by the best version of each translation algorithm are
contrasted in figure 13. Overall the visually best results were
reached by MUNIT, which was able to reproduce small scale
image features leading to realistic synthetic representations of
real images. It can be seen that the distribution of synthetic PIs
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Figure 12. Comparison of the detection performance by the different particle detection approaches on degraded synthetic images with
gradients and stripes (axis change for RetinaNet).

Figure 13. Resulting PIs from training data refinement Dc with the unsupervised image-to-image translation methods (a)MUNIT; (b) DRIT
and (c) CycleGAN.

was transformed closer to the distribution of the real images
by the reproduction of increasingly wide edges for higher
diameters, noisy contours, distortions and intensity variations
over the circumference of the PIs. The PIs generated by DRIT
did not preserve these features as closely as MUNIT, lead-
ing to less realistic PIs. As can be seen in figure 13(c) Cycl-
eGAN suffered from mode-collapse, a well-known failure
mode of GANs, in which the generation of a singular mode is
exploited by the optimisation scheme in an effort to minimise
the objective function [47]. Based on these findings MUNIT
was selected for the generation of the training data, which is
used for the optimisation of the NN-based approaches Faster
R-CNN and RetinaNet for particle detection in the following
sections.

The radial intensity profile is a major characteristic of the
PIs, as it determines the gradient distribution of the PIs, which
is a relevant feature for particle detection. The resulting mean
intensity profiles and azimuthal standard deviations for four
characteristic diameters from the dataset of refined synthetic
PIs Dc generated with MUNIT are also added to figure 3 in
order to provide an immediate comparison to the intensity

profiles of the Gaussian synthetic images Da and real DPTV
imagesDb. The profile statistics were evaluated over a sample
of 100 PIs for each characteristic diameter and the profiles
were normalised with the maximum intensity measured over
the azimuthal distribution of the radial intensity. As can be
seen the radial profile is approximatedmore closely byMUNIT
for all characteristic diameters in comparison to the Gaussian
synthetic images. Also, the range of intensity variation over
the circumference of the PIs is modelled more closely as well
byMUNIT, which is indicated by the respective standard devi-
ations. The combination of the reproduction of small scale fea-
tures and a close approximation of the radial intensity pro-
file, therefore, candidates MUNIT a particularly promising
approach to generate refined synthetic PIs with a high visual
similarity to the real PIs observed in the DPTV experiments.

The dataset of PIs used for the training of the image trans-
lation NNs contained residual overlapping and distorted PIs
in the domain of real PIs, which was gathered by cutting out
particles from the experimental images. These outliers were
filtered out by the NNs during the image translation step, so
that within the refined synthetic dataset Dc no overlapping or
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irregular PIs were generated. This data cleaning effect may
result from the exclusion of uncommon modes by the autoen-
coders, which are part of the NN architecture in the image-to-
image translation algorithms [48].

During image translation the diameter of the individual syn-
thetic input images was not preserved in the output PIs, lead-
ing to a MAE of εD = 1.2 px in PI diameter de for the best
image-to-image translation model. However, the errors in the
planar position εX and εY were consistently low for all trans-
lation models, with a MAE lower than 0.3 px (see table A3).
It was furthermore found that a dataset imbalance in respect to
the diameter distribution of the real PIs influences the accuracy
of the diameter translation negatively by skewing the transla-
tion towards the most common value in the diameter distribu-
tion. To overcoming this adverse effect and in turn improve the
diameter-preservation accuracy during translation the training
dataset was adjusted towards an uniform abundance distribu-
tion of PI diameters. Even though the diameter deviation could
not be fully corrected, the MAE was reduced to εD = 0.8 px
with the modified dataset. The remaining MAE, therefore,
requires an additional correction step for the recalculation of
the diameter label of the generated refined synthetic PIs. The
diameter and position was measured by a sub-pixel accurate
5th order polynomial fit, that detected the intensity peak in
a 3 × 11 px kernels at 180 azimuthal positions. The uncer-
tainty of this reference measurement is expected to influence
the accuracy of the NN-based detectors trained on this data. It
can however be assumed that the NN to some degree will be
able to increase their accuracy beyond the training data accur-
acy, if (i) the label errors are zero mean and (ii) a statistically
significant number of labelled PIs is available. In this case the
optimisation of the NN over all samples could lead to a com-
pensation of the errors.

While the radial intensity distribution of singular PIs is
accurately reproduced, the absolute intensity level of the gen-
erated PIs appears to be normalised during image translation,
leading to overall brighter PIs, especially for high diamet-
ers, as can be seen in figure 13. This effect is considered to
be caused by the instance normalisation layers [49], which
are part of the CNNs of all image translation frameworks.
As such, the intensity level of the refined synthetic PIs has
been retroactively retrieved by a correction function that was
determined from the linearised evolution of the peak intensity
over the diameter observed in real PIs. The corrected transla-
tion refined synthetic PIs were then composed to a dataset of
refined synthetic DPTV images DC, which was used to train
the NN-based particle detectors with the scope of an enhanced
detection rate.

3.5. Particle detection on experimental images

The NN-based particle detection methods Faster R-CNN and
RetinaNet are compared to the Hough transform by means
of experimental recordings from DPTV experiments [15].
Moreover, the direct comparison between NN-based particle
detectors trained on refined synthetic data generated by the
proposed method and the same networks trained on real PIs
from the original DPTV recordings allows an evaluation of

the impact of synthetic training data refinement. Accordingly,
the NN-based approaches Faster R-CNN and RetinaNet are
trained as separate versions each on simple Gaussian PIs Da,
refined synthetic images from the MUNIT image-to-image-
translation Dc and real cut-out PIs Db. The training on cut-
out PIs instead of complete experimental images annotated
by an algorithm was chosen, since the unlabelled particles
in the experimental images severely impacted the training of
the NNs, as they present a large amount of false negative
examples. This effect was confirmed during preliminary test-
ing on experimental images annotated by the Hough trans-
form, which leads to a comparably low detection performance.
Consequently, a dataset DB that resembles the experimental
image dataset, but contains only labelled PIs Db was gener-
ated by cutting-out, measuring and pasting PIs from DPTV
recordings on an uniform background.

The comparison of the suitability of the respective PIs as
training data is possible, since all datasets DA, DB and DC are
fully labelled. The NNs of the particle detectors were trained
on each nt = 49000 images from the respective datasets DA,
DB and DC and reached an optimal performance after 2 train-
ing epochs. Training was repeated five times for both Faster
R-CNN and RetinaNet on each training dataset and the NNs
with the highest average precision on the real test dataset were
selected. A noticeable variation in the performance of the NN-
based particle detectors of 0.02 to 0.07 points of AP for Faster
R-CNN and 0.04 to 0.16 for RetinaNet was observed, which is
attributed to the random initialisation of the parameters within
the NNs.

The test dataset constituted manually annotated DPTV
images from the grooved region of the open wet clutch disk
used in the experiments from Leister and Kriegseis [15], for
which an example can be seen in figure 11. As no ground truth
is available for the experimental images, bounding box labels
were drawn manually on the intensity maximum at the hori-
zontal and vertical extrema of the PIs, consistent with the train-
ing dataset. This way a dataset of ne = 50 experimental record-
ings with an approximate np = 1000 labelled PIs in total was
created. The manually labelled images can be considered an
acceptable ground truth for the detection performance in terms
of precision and recall. However, they are not suitable for an
analysis of the detection accuracy, due to the introduction of
additional bias and uncertainty frommanual image annotation.
The dynamic range of the 14bit raw images was adjusted to the
range of occupied intensity values and the resulting images
were saved as 8 bit png files. These images were directly used
for evaluation of the NN-based particle detectors, while for
the detection with the Hough algorithm the images were first
further preprocessed with a global minimum subtraction.

The results of the detection by the NN-based detection
methods Faster R-CNN and RetinaNet as well as the model
based Hough algorithm are summarised in figure 14. Train-
ing of the particle detection NNs on the translation-refined
synthetic images DC (labelled with MUNIT in the diagram)
leads to a significantly higher detection performance in com-
parison to simple synthetic images DA as well as real cut-out
imagesDB. The NN-based particle detectors trained on simple
synthetic images DA yield the lowest relative performance,

12



Meas. Sci. Technol. 33 (2022) 124001 M Dreisbach et al

Figure 14. Detection performance on real DPTV images for Faster
R-CNN and RetinaNet trained on the synthetic DA,
translation-refined synthetic DC and semi-synthetic DB datasets in
comparison to the Hough algorithm.

which can be explained by a discrepancy in the image features
of the synthetic training images to the real test images. The
importance of representative training data was already repor-
ted by Barnkob et al [12] who trained a Faster R-CNN detector
for particle detection on synthetic APTV data and tested the
NNs on synthetic images with additional noise and overlaps.
Especially for RetinaNet a significant increase in the rate of
detected particles can be achieved through synthetic training
data refinement, tripling the recall from 0.152 for the NNs
trained on simple synthetic data DA to 0.456 by training Ret-
inaNet on the refined synthetic data DC. Likewise, the preci-
sion is also increased such that RetinaNet even surpasses the
benchmark Hough transform algorithm in both precision and
recall by a small margin. This significant improvement high-
lights the dependence of RetinaNet on suitable training data,
i.e. representative training images with a high similarity to the
test images. Faster R-CNN trained on synthetic images DA

already reaches a higher detection rate than the Hough trans-
form on the real test images, however at the cost of a higher
amount of false positive detections as indicated by a relatively
low precision. Training of Faster R-CNN on the refined syn-
thetic data DC, however, leads to significant gains in preci-
sion and the amount of successfully detected particles, leading
to a 47.4% higher detection rate in comparison to the Hough
transform.

Note that NNs were found to be more robust to noise in dir-
ect comparison of the NNs and the considered DPTV datasets
[15, 17], in the latter has a significantly higher SNR than the
former. In the case of a lower SNR the NNs detected a higher
amount of particles relative to the Hough algorithm.

Furthermore, translation-refined synthetic training data Dc

reveal a higher detection performance of theNN-based particle

detection methods in comparison to training images composed
of real cut-out PIs Db. In the case of Faster R-CNN this
is mainly manifested by a 9.3% improvement in precision,
while RetinaNet gains a 21.9% improvement in recall through
training on the refined dataset. The achieved improvement
underlines the high representative value of the translation-
refined PIs for real DPTV image features and indicates that
this method of training data refinement is strongly beneficial,
since it even outperforms real PI training data. This positive
effect is assumed to result from the cleaning of the training
data, since during the image-to-image translation overlapping
and distorted PIs as well as other outliers are not translated
onto the refined synthetic PIs as described in section 3.4.

The presented approach to synthetic training data refine-
ment by unsupervised image-to-image translation enables the
NN-based particle detection methods to reach a significantly
higher detection performance in comparison to the simple syn-
thetic data based on model functions, measured by a combined
precision and recall on the real test images in comparison to
the simple synthetic training data. This shows that the image
feature distribution of the synthetic dataset was successfully
moved closer to the real distribution with the proposed refine-
ment approach, leading tomore representative training data for
the NNs and in turn an improved generalisation and detection
on real-world DPTV images. In consequence, this improve-
ment enabled the NN-based approaches to surpass the detec-
tion performance of the benchmark Hough algorithm for the
chosen test dataset of DPTV recordings from the experiments.

4. Discussion

As confirmed by the example of the two considered object
detection frameworks Faster R-CNN and RetinaNet, NNs are
a versatile approach for particle detection, offering the poten-
tial for improvements in both accuracy and detection rate of
DPTV.

The gain in the precision of the NN approach in combin-
ation with synthetic training data refinement underlines the
importance of suitable training data for NN-based particle
detection. The presented method for synthetic training-data
refinement allows for a fine tuning of the NNs for a particular
experimental setup by learning characteristic features of the
defocused PIs, thus significantly enhancing the performance
of the NN-based particle detectors for a particular measure-
ment setup. However, in order to improve the generalisation
capabilities of the particle detectors on testing data from dif-
ferent experimental setups, in which the features of the PI devi-
ate from the current distribution, a systematic extension of the
training distribution is mandatory.

The comparison of Faster R-CNN and RetinaNet revealed a
different dependence on the suitable training data, where Ret-
inaNet relies more on representative training data in compar-
ison to Faster R-CNN. This insight is evident from the larger
improvements in detection rate and precision from training on
refined synthetic PI data Dc (cp. figure 14). Since RetinaNet
takes advantage of a FPN [37], smaller scale image features are
considered in comparison to standard CNN feature-extraction
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approaches. While this network architecture has been shown
to be beneficial for the detection accuracy, as can also be
seen in table 1, the detector happens to be more discrimin-
ative, as indicated by the low detection rate with less rep-
resentative training data. The standard CNN based Faster R-
CNN, in contrast, demonstrates more robustness to changes in
the test images. The comparatively lower measurement accur-
acy of Faster R-CNN further underlines the importance of
small-scale image features for an accurate measurement of the
particle position.

The training procedure for the presented two-stage NN
particle detection method involves a considerable effort for
the preparation of the training datasets and additional temporal
effort due to the computationally expensive optimisation pro-
cess of the NNs during training. However, the training of the
NNs has to be performed as a pre-processing step only once
for a particular measurement setup, which is a clear long-term
advantage over the necessary adjustment of most conventional
particle detection methods for each new experimental study.
The latter e.g. involves iterative adjustments of the Hough for
an appropriate rejection criterion under varying illumination
conditions. For the NN-based detection approaches, in con-
trast, such adjustment is done a posteriori based on certainty
scores of the singular particle detections.

The computational time of the NN-based approaches is
found to be an order of magnitude higher as compared to the
Hough algorithm, i.e. 2.7 s (Faster R-CNN) and 5.52 s (Ret-
inaNet) versus 0.3 s (Hough) per image on a common laptop
computer. Since the full datasets accordingly are processed in
only a few hours and moreover automatically, this effort poses
no significant impediment. Also, during the optimisation of
the NNs image features that are relevant for the recognition
of the PIs characteristics are determined automatically, which
reduces the necessary modelling efforts significantly. There-
fore, NN-based particle detection can be quickly adapted for
new experimental conditions with little prior knowledge of the
defocused PI characteristics, thus making DPTVmore access-
ible for inexperienced users.

The advantage of NN-based particle detection over the con-
ventional Hough transform becomes more significant when
the respectively considered images diverge from the under-
lying assumptions, as emphasised by the reduced perform-
ance on real images compared to synthetic images. Aberra-
tions that are characteristic for a given measurement setup are
internalised as features during training of the NN and can,
therefore, be utilised beneficially for the detection. As was
shown in this work, NNs are also more robust to fluctuations
in illumination, which is particular advantageous for meas-
urement setups comprising illumination imperfections and/or
reflections. This potential of NN-based particle detection like-
wise holds true for aberration issues, which accordingly allows
for the application standard optical components without
loss of information—thus, in turn, increasing the availab-
ility of defocusing particle tracking for as wider range of
researchers.

5. Conclusions

The present investigation suggests that a two staged approach
based on synthetic training data refinement by unsupervised
image-to-image translation and object detection leads to sig-
nificant improvements in particle detection for DPTV.

Particularly, particle detectors trained on the refined syn-
thetic data are shown to reach a significantly higher perform-
ance in terms of combined precision and recall in compar-
ison to the same detectors trained on simple Gaussian PIs.
This improvement is an important insight, since it immedi-
ately emphasises the necessity of representative small-scale
image features in the training data for any advanced particle-
detection approaches. This requirement has been most sali-
ently shown forRetinaNet, which performs detection on higher
resolution feature maps and allows for a comparatively high
spatial accuracy. Obviously, representative small scale image
features are therefore more rigorously required for RetinaNet
in order to reach a high detection rate, since the employment of
higher resolution features is assumed to increase the detectors
specificity.

Since the accurate manual annotation of real image data is
unfeasible, further development ofmethods for synthetic train-
ing data refinement seems necessary. The above discoveries
and insights, consequently, come with the intruding conclu-
sion that further increase in particle detection accuracy can be
expected for more accurately labelled training data. That is,
an improvement of the training data refinement step towards a
better spatial conservation is required, especially for a closer
preservation of the PIs diameter. In this context it appears par-
ticularly promising to constrain the particle translation of the
general purpose image-to-image translation method MUNIT
with an additional loss term so as to force a more accurate
shape preservation. This strategy is envisioned to be realisable
by the per-pixel loss of the synthetic input and refined output
image. Another approach could be a more recent framework
for unsupervised image-to-image translation that uses an addi-
tional NN to determine the necessary degree of shape preser-
vation automatically from the training dataset [50].

The NN-based particle detection approach—especially in
case of Faster R-CNN—is shown to be robust towards illu-
mination variations in the background, a low SNR and blurry
PIs resulting e.g. from image aberration. The approach is
able to maintain a high detection rate on low quality DPTV
images, which proved to be challenging for the conventional
Hough transform [15, 17]. The proposed approach can be
employed to a new experimental setup without prior know-
ledge of the PI characteristics, since the NNs learn the rel-
evant features of the PIs in an automated procedure from the
image data and furthermore utilise image aberration in a bene-
ficial way as features for the detection. This makes the NN-
based approach versatile in respect to different experimental
conditions, as already demonstrated successfully for different
APTV [12, 21, 24], therefore increasing the availability for a
wider range of less experienced users.
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In contrast to the conventional Hough transform-based
approach the NN-based particle detection was found to
resolve overlapping PIs at substantially higher overlap and
with a significantly lower loss in accuracy in comparison
to singular PIs. These insights lead to the conclusion that
NN-based approaches provide the prospect of a significant
increase in particle seeding density in the DPTV experi-
ments. Future investigation might consequently be directed
at evaluating the new approach on DPTV experiments with
an increased particle seeding density in order to evaluate how
well the improvements on synthetic data translate to practical
experiments.

A comparison of the detection on synthetic images revealed
that the NN-based particle detection approach offers the poten-
tial for an increase inmeasurement accuracy. Especially in dia-
meter determination bothFaster R-CNN andRetinaNet reach a
higher accuracy in comparison to the Hough transform, which
results in a more homogeneous distribution in planar and out-
of-plane accuracy. The RetinaNet object detector allows for a
more significant improvement in localization accuracy, while
Faster R-CNN offers larger improvements in the detection rate
in comparison to the Hough algorithm. This insight opens up
the possibility to optimise particle detection in DPTV depend-
ing on the desired measurement properties. It it therefore con-
cluded that hybrid NN models on the basis of the two evalu-
ated detection methods Faster R-CNN and RetinaNet seem to
be the most promising approach by combining pivotal traits
into a custom NN architecture for particle detection. Con-
sequently, an adaption of the FPN to Faster R-CNN is expec-
ted to increase the accuracy of the particle detection, since
the FPN allows for the use of higher resolution features for
detection. A second promising hybrid approach is foreseen to
result from merging of NNs with conventional particle detec-
tion algorithms, in which the NN generates region proposals
for a conventional particle measurement algorithm, thus com-
bining the high detection rate of the NN based detection with
the high in-plane accuracy of conventional methods. Such a
hybrid approach might be directly realised on the basis of
Faster R-CNN and the particle position refinement step of the
Hough algorithm.

Even though NN-based particle detection approaches are
rather recent developments in comparison to established
conventional detection methods based on model functions and
cross-correlation, a competitive performance to the Hough
transform is achieved with NN-based approaches for all
presented experimental conditions. This in turn indicates fur-
ther improvements to be expected in particle tracking by
means of NNs. Such expectations—in context of the present
study—lead to the following final remarks.

A variety of general-purpose object-detection NN archi-
tectures are available and can be straight forwardly adop-
ted for particle detection. Further specialised CNNs, espe-
cially for the detection of small objects are envisioned to
offer additional potential performance gains beyond the cur-
rent approach. Promising candidates are perceptual GANs for
small object detection [51], based on the super-resolution of
small objects, feature-fused single shot detectors [52] that util-
ise additional contextual information and object detectors with
scale-dependant pooling [53].

The development of physics-informed NNs dedicated for
particle tracking seems likewise worthwhile. The temporal
information contained in the pathlines of the particles, for
instance, might be exploited by a LSTM network to guide
the training procedure and might, therefore, allow for a more
accurate measurement, by excluding nonphysical detections.

Finally, training procedures in particular for PTV have to
be further developed in order to better exploit the capability of
the NNs, which shifts the focus towards the provision of suit-
able training data for the optimisation of the NNs. Due to the
need of large datasets for training the networks, synthetic data
refinement as proposed and successfully tested in the present
work is expected to play an important role in improving the
NN-based perspective on particle detection approaches.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: https://doi.org/
10.5445/IR/1000146837.
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Appendix

Table A1. Training settings of the particle detection methods, Faster
R-CNN with InceptionV2 base network and RetinaNet with
ResNet50 base network.

Parameter Faster R-CNN RetinaNet

Optimizer SGDM SGDM
Epochs 2–5 2–5
Minibatch size 4 4
Learning rate α 0.0002 0.04
Learning rate decay None cosine
Warm up period None 2000
Momentum β 0.9 0.9
L2 regularization None 0.0004

Table A2. Training settings of the image-to-image translation
methods CycleGAN, MUNIT and DRIT.

Parameter CycleGAN MUNIT DRIT

Optimizer Adam Adam Adam
Epochs 3 10 6
Minibatch 1 1 1
lr α 0.0002 0.0001 0.0001
lr decay Stepwisea Stepwiseb Linear
β1 0.5 0.5 0.5
β2 0.999 0.999 0.999
L2 reg none 0.0001 0.0001
a Learning rate halved every 200 000 training iterations.
b Learning rate halved every 100 000 training iterations.

Table A3. MAEs in planar position and diameter during the
image-to-image translation with CycleGAN, MUNIT and DRIT.

Parameter CycleGAN MUNIT DRIT

εD (px) 1.187 1.823 0.832
εX (px) 0.187 0.159 0.286
εY (px) 0.146 0.181 0.307

ORCID iDs

Maximilian Dreisbach https://orcid.org/0000-0001-6308-
0982
Robin Leister https://orcid.org/0000-0002-0286-8183
Matthias Probst https://orcid.org/0000-0001-8729-0482
Pascal Friederich https://orcid.org/0000-0003-4465-1465
Alexander Stroh https://orcid.org/0000-0003-0850-9883
Jochen Kriegseis  https://orcid.org/0000-0002-2737-2539

References

[1] Raffel M, Willert C, Scarano F, Kähler C J, Wereley S T and
Kompenhans J 2018 Particle Image Velocimetry—A
Practical Guide (Berlin: Springer)

[2] Chang T, Watson A T and Tatterson G B 1985 Image
processing of tracer particle motions as applied to mixing

and turbulent flow—I. The technique Chem. Eng. Sci.
40 269–75

[3] Wu M, Roberts J, Kim S, Koch D and DeLisa M 2006
Collective bacterial dynamics revealed using a
three-dimensional population-scale defocused particle
tracking technique Appl. Environ. Microbiol. 72 4987–94

[4] Nishino K, Kasagi N and Hirata M 1989 Three-dimensional
particle tracking velocimetry based on automated digital
image processing J. Fluids Eng. 111 384–91

[5] Maas H G, Gruen A and Papantoniou D 1993 Particle tracking
velocimetry in three-dimensional flows Exp. Fluids
15 133–46

[6] Schanz D, Schröder A, Gesemann S, Michaelis D and
Wieneke B 2013 ‘Shake The Box’: a highly efficient and
accurate tomographic particle tracking velocimetry
(TOMO-PTV) method using prediction of particle positions
10th Int. Symp. on Particle Image Velocimetry (Delft, The
Netherlands, 1–3 July 2013) pp 1–13 (available at:
http://resolver.tudelft.nl/uuid:212b0c2d-3210-482f-b751-
91d98d5ea43d)

[7] Kao H and Verkman A 1994 Tracking of single fluorescent
particles in three dimensions: use of cylindrical optics to
encode particle position Biophys. J. 67 1291–300

[8] Willert C E and Gharib M 1992 Three-dimensional particle
imaging with a single camera Exp. Fluids 12 353–8

[9] Pereira F J A, Lu J, Castaño-Graff E and Gharib M 2007
Microscale 3D flow mapping with µ DDPIV Exp. Fluids
42 589–99

[10] Wu M, Roberts J and Buckley M 2005 Three-dimensional
fluorescent particle tracking at micron-scale using a single
camera Exp. Fluids 38 461–5

[11] Olsen M and Adrian R 2000 Out-of-focus effects on particle
image visibility and correlation in microscopic particle
image velocimetry Exp. Fluids 29 S166–74

[12] Barnkob R, Cierpka C, Chen M, Sachs S, Mäder P and
Rossi M 2021 Defocus particle tracking: a comparison of
methods based on model functions, cross-correlation and
neural networks Meas. Sci. Technol. 32 094011

[13] Adrian R J and Yao C-S 1985 Pulsed laser technique
application to liquid and gaseous flows and the scattering
power of seed materials Appl. Opt. 24 44–52

[14] Fuchs T, Hain R and Kähler C 2016 In situ calibrated
defocusing PTV for wall-bounded measurement volumes
Meas. Sci. Technol. 27 084005

[15] Leister R and Kriegseis J 2019 3D-LIF experiments in an open
wet clutch by means of defocusing PTV 13th Int. Symp. on
Particle Image Velocimetry (ISPIV 2019) (Munich,
Germany, 22–24 July 2019) ed C J Kähler, R Hain, S
Scharnowski and T Fuchs (https://doi.org/10.5445/IR/
1000098119)

[16] Rhody H 2005 Lecture 10: Hough circle transform (Chester F.
Carlson Center For Imaging Science, Rochester Institute of
Technology) (available at: https://www.cis.rit.edu/class/
simg782/lectures/lecture_10/lec782_05_10.pdf)

[17] Leister R, Fuchs T, Mattern P and Kriegseis J 2021
Flow-structure identification in a radially grooved open wet
clutch by means of defocusing particle tracking velocimetry
Exp. Fluids 62 29

[18] Cierpka C, Segura R, Hain R and Kähler C J 2010 A simple
single camera 3C3D velocity measurement technique
without errors due to depth of correlation and spatial
averaging for microfluidics Meas. Sci. Technol. 21 045401

[19] Barnkob R, Kähler C J and Rossi M 2015 General defocusing
particle tracking Lab Chip 15 3556–60

[20] Lecun Y, Bottou L, Bengio Y and Haffner P 1998
Gradient-based learning applied to document recognition
Proc. IEEE 86 2278–324

[21] Cierpka C, König J, Chen M, Boho D and Mäder P 2019 On
the use of machine learning algorithms for the calibration of

16

https://orcid.org/0000-0001-6308-0982
https://orcid.org/0000-0001-6308-0982
https://orcid.org/0000-0001-6308-0982
https://orcid.org/0000-0002-0286-8183
https://orcid.org/0000-0002-0286-8183
https://orcid.org/0000-0001-8729-0482
https://orcid.org/0000-0001-8729-0482
https://orcid.org/0000-0003-4465-1465
https://orcid.org/0000-0003-4465-1465
https://orcid.org/0000-0003-0850-9883
https://orcid.org/0000-0003-0850-9883
https://orcid.org/0000-0002-2737-2539
https://orcid.org/0000-0002-2737-2539
https://doi.org/10.1016/0009-2509(85)80066-X
https://doi.org/10.1016/0009-2509(85)80066-X
https://doi.org/10.1128/AEM.00158-06
https://doi.org/10.1128/AEM.00158-06
https://doi.org/10.1115/1.3243657
https://doi.org/10.1115/1.3243657
https://doi.org/10.1007/BF00190953
https://doi.org/10.1007/BF00190953
http://resolver.tudelft.nl/uuid:212b0c2d-3210-482f-b751-91d98d5ea43d
http://resolver.tudelft.nl/uuid:212b0c2d-3210-482f-b751-91d98d5ea43d
https://doi.org/10.1016/S0006-3495(94)80601-0
https://doi.org/10.1016/S0006-3495(94)80601-0
https://doi.org/10.1007/BF00193880
https://doi.org/10.1007/BF00193880
https://doi.org/10.1007/s00348-007-0267-5
https://doi.org/10.1007/s00348-007-0267-5
https://doi.org/10.1007/s00348-004-0925-9
https://doi.org/10.1007/s00348-004-0925-9
https://doi.org/10.1007/s003480070018
https://doi.org/10.1007/s003480070018
https://doi.org/10.1088/1361-6501/abfef6
https://doi.org/10.1088/1361-6501/abfef6
https://doi.org/10.1364/AO.24.000044
https://doi.org/10.1364/AO.24.000044
https://doi.org/10.1088/0957-0233/27/8/084005
https://doi.org/10.1088/0957-0233/27/8/084005
https://doi.org/10.5445/IR/1000098119
https://doi.org/10.5445/IR/1000098119
https://www.cis.rit.edu/class/simg782/lectures/lecture_10/lec782_05_10.pdf
https://www.cis.rit.edu/class/simg782/lectures/lecture_10/lec782_05_10.pdf
https://doi.org/10.1007/s00348-020-03116-0
https://doi.org/10.1007/s00348-020-03116-0
https://doi.org/10.1088/0957-0233/21/4/045401
https://doi.org/10.1088/0957-0233/21/4/045401
https://doi.org/10.1039/C5LC00562K
https://doi.org/10.1039/C5LC00562K
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791


Meas. Sci. Technol. 33 (2022) 124001 M Dreisbach et al

astigmatism PTV 13th Int. Symp. on Particle Image
Velocimetry (ISPIV 2019) (Munich, Germany, 22–24 July
2019) ed C J Kähler, R Hain, S Scharnowski and T Fuchs
(available at: https://athene-forschung.unibw.de/
129121?id=129121)

[22] Ren S, He K, Girshick R and Sun J 2017 Faster R-CNN:
towards real-time object detection with region proposal
networks IEEE Trans. Pattern Anal. Mach. Intell.
39 1137–49

[23] LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature
521 436–44

[24] König J, Chen M, Rösing W, Boho D, Mäder P and Cierpka C
2020 On the use of a cascaded convolutional neural network
for three-dimensional flow measurements using astigmatic
PTV Meas. Sci. Technol. 31 074015

[25] Franchini S and Krevor S 2020 Cut, overlap and locate: a deep
learning approach for the 3D localization of particles in
astigmatic optical setups Exp. Fluids 61 140

[26] Stewart R, Andriluka M and Ng A Y 2016 End-to-end people
detection in crowded scenes 2016 IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) (Las Vegas, NV,
USA, 27–30 June 2016) pp 2325–33

[27] Shrivastava A, Pfister T, Tuzel O, Susskind J, Wang W and
Webb R 2017 Learning from simulated and unsupervised
images through adversarial training 2017 IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)
pp 2242–51

[28] Dreisbach M, Leister R, Probst M, Friederich P, Stroh A and
Kriegseis J 2022 Particle Detection by means of Neural
Networks and Synthetic Training Data Refinement in
Defocusing Particle Tracking Velocimetry (data) (https://
doi.org/10.5445/IR/1000146837)

[29] Rossi M 2020 Synthetic image generator for defocusing and
astigmatic PIV/PTV Meas. Sci. Technol. 31 017003

[30] Huang X, Liu M Y, Belongie S and Kautz J 2018 Multimodal
unsupervised image-to-image translation Computer
Vision—ECCV 2018 (Cham: Springer International
Publishing) pp 179–96

[31] Zhu J, Park T, Isola P and Efros A A 2017 Unpaired
image-to-image translation using cycle-consistent
adversarial networks 2017 IEEE Int. Conf. on Computer
Vision (ICCV) (Venice, Italy, 22–29 October) pp 2242–51

[32] Lee H Y, Tseng H Y, Huang J B, Singh M and Yang M H 2018
Diverse image-to-image translation via disentangled
representations Computer Vision – Eccv 2018, ed V Ferrari,
M Hebert, C Sminchisescu and Y Weiss (Cham: Springer
International Publishing) pp 36–52

[33] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B,
Warde-Farley D, Ozair S, Courville A and Bengio Y 2014
Generative adversarial nets Advances in Neural Information
Processing Systems vol 27 (Curran Associates, Inc.)
pp 2672–80 (available at: https://proceedings.neurips.cc/
paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-
Paper.pdf)

[34] Rumelhart D E, Hinton G E and Williams R J 1986 Learning
Internal Representations by Error Propagation (Cambridge,
MA: MIT Press) pp 318–62

[35] Lin T-Y, Goyal P, Girshick R, He K and Dollár P 2020 Focal
loss for dense object detection IEEE Trans. Pattern Anal.
Mach. Intell. 42 318–27

[36] Redmon J and Farhadi A 2018 YOLOv3: an incremental
improvement (arXiv:1804.02767)

[37] Lin T Y, Dollár P, Girshick R, He K, Hariharan B and
Belongie S 2017 Feature pyramid networks for object
detection 2017 IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) (Los Alamitos, CA: IEEE Computer
Society) pp 936–44

[38] Jiao L, Zhang F, Liu F, Yang S, Li L, Feng Z and Qu R 2019 A
survey of deep learning-based object detection IEEE Access
7 128837–68

[39] Abadi M et al 2015 TensorFlow: large-scale machine learning
on heterogeneous systems (arXiv:1603.04467)

[40] Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D,
Dollár P and Zitnick C L 2014 Microsoft COCO: common
objects in context Computer Vision–Eccv 2014 ed D Fleet,
T Pajdla, B Schiele and T Tuytelaars (Cham: Springer)
pp 740–55

[41] Qian N 1999 On the momentum term in gradient descent
learning algorithms Neural Netw. 12 145–51

[42] Kingma D and Ba J 2015 Adam: a method for stochastic
optimization 3rd Int. Conf. on Learning Representations,
Conf. Track Proc. (ICLR 2015) (San Diego, CA, USA)

[43] Bendat J S and Piersol A G 2010 Random Data: Analysis and
Measurement Procedures (Wiley Series in Probability and
Statistics) 4th edn (New York: Wiley) (available at:
www.wiley.com/en-gb/Random+Data:+Analysis+and+
Measurement+Procedures,+4th+edn-p-9780470248775

[44] Sammut C and Webb G I 2011 Encyclopedia of Machine
Learning 1st edn (New York: Springer) (https://doi.org/
10.1007/978-0-387-30164-8)

[45] Manning C D, Raghavan P and Schütze H 2008 Introduction
to Information Retrieval (Cambridge: Cambridge
University Press)

[46] Everingham M, Van Gool L, Williams C K I, Winn J and
Zisserman A 2010 The pascal visual object classes (VOC)
challenge Int. J. Comput. Vis. 88 303–38

[47] Goodfellow I 2016 Nips 2016 tutorial: generative adversarial
networks (arXiv:1701.00160)

[48] Vincent P, Larochelle H, Bengio Y and Manzagol P A 2008
Extracting and composing robust features with denoising
autoencoders Proc. 25th Int. Conf. on Machine Learning
(ICML ’08) (New York: Association for Computing
Machiner) pp 1096–103

[49] Ulyanov D, Vedaldi A and Lempitsky V S 2017 Improved
texture networks: maximizing quality and diversity in
feed-forward stylization and texture synthesis 2017 IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)
pp 4105–13

[50] Kim J, Kim M, Kang H and Lee K 2020 U-GAT-IT:
unsupervised generative attentional networks with adaptive
layer-instance normalization for image-to-image translation
(arXiv:1907.10830)

[51] Li J, Liang X, Wei Y, Xu T, Feng J and Yan S 2017 Perceptual
generative adversarial networks for small object detection
2017 IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) pp 1951–9

[52] Cao G, Xie X, Yang W, Liao Q, Shi G and Wu J 2018
Feature-fused SSD: fast detection for small objects Proc.
SPIE 10615 381–8

[53] Yang F, Choi W and Lin Y 2016 Exploit all the layers: fast and
accurate CNN object detector with scale dependent pooling
and cascaded rejection classifiers 2016 IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)
pp 2129–37

17

https://athene-forschung.unibw.de/129121?id=129121
https://athene-forschung.unibw.de/129121?id=129121
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1088/1361-6501/ab7bfd
https://doi.org/10.1088/1361-6501/ab7bfd
https://doi.org/10.1007/s00348-020-02968-w
https://doi.org/10.1007/s00348-020-02968-w
https://doi.org/10.1109/CVPR.2016.255
https://doi.org/10.1109/CVPR.2017.241
https://doi.org/10.5445/IR/1000146837
https://doi.org/10.5445/IR/1000146837
https://doi.org/10.1088/1361-6501/ab42bb
https://doi.org/10.1088/1361-6501/ab42bb
https://doi.org/10.1007/978-3-030-01219-9_11
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1007/978-3-030-01246-5_3
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.1109/ACCESS.2019.2939201
https://arxiv.org/abs/1603.04467
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
www.wiley.com/en-gb/Random+Data:+Analysis+and+Measurement+Procedures,+4th+edn-p-9780470248775
www.wiley.com/en-gb/Random+Data:+Analysis+and+Measurement+Procedures,+4th+edn-p-9780470248775
https://doi.org/10.1007/978-0-387-30164-8
https://doi.org/10.1007/978-0-387-30164-8
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://arxiv.org/abs/1701.00160
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1109/CVPR.2017.437
https://arxiv.org/abs/1907.10830
https://doi.org/10.1109/CVPR.2017.211
https://doi.org/10.1117/12.2304811
https://doi.org/10.1117/12.2304811
https://doi.org/10.1109/CVPR.2016.234

	Particle detection by means of neural networks and synthetic training data refinement in defocusing particle tracking velocimetry
	1. Introduction
	2. Methodology
	2.1. Revolved 1D-Gaussian synthetic PIs
	2.2. Semi-synthetic data through real PIs
	2.3. PI synthesis through unsupervised image-to-image translation
	2.4. Particle detection by means of NNs

	3. Data treatment and processing
	3.1. Detection of synthetic PIs
	3.2. Analysis of overlapping particle-image pairs
	3.3. Detection on synthetic images with artificially degraded image quality
	3.4. Unsupervised image-to-image translation for training data refinement
	3.5. Particle detection on experimental images

	4. Discussion
	5. Conclusions
	Appendix
	References


