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Higher-order finite element methods for the
nonlinear Helmholtz equation

Barbara Verfürth∗

Abstract. In this work, we analyze the finite element method with arbitrary but fixed polynomial degree
for the nonlinear Helmholtz equation with impedance boundary conditions. We show well-posedness and (pre-
asymptotic) error estimates of the finite element solution under a resolution condition between the wave number
k, the mesh size h and the polynomial degree p of the form “k(kh)p sufficiently small” and a so-called smallness of
the data assumption. For the latter, we prove that the logarithmic dependence in h from the case p = 1 in [H. Wu,
J. Zou, SIAM J. Numer. Anal. 56(3): 1338-1359, 2018] can be removed for p ≥ 2. We show convergence of two
different fixed-point iteration schemes. Numerical experiments illustrate our theoretical results and compare the
robustness of the iteration schemes with respect to the size of the nonlinearity and the right-hand side data.
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1. Introduction

In various situations, such as for high intensities, linear(ized) material laws are no longer accu-
rate enough and nonlinear constitutive relations have to be incorporated into the models. One
well-known example are Kerr-type materials [11] in electromagnetics, where the permittivity ε
depends on the electric field E like ε(E) = ε0 +ε2|E|2. In general, wave propagation in nonlinear
media causes a lot of new possible phenomena such as optical bistability [8].

As simplified model, we study in the following the nonlinear Helmholtz problem

−∆u− k2(1 + εχD|u|2)u = f in Ω,

∂νu+ iku = g on ∂Ω,

where D ⊂⊂ Ω is the subdomain where the nonlinearity is “active”. Detailed assumptions on the
domain and the data are given below. Problems of the above form occur in nonlinear acoustics
as well as in time-harmonic and suitably polarized nonlinear electromagnetics.

The nonlinear Helmholtz equation has been studied analytically for instance in [6]. Various
numerical approaches have been suggested as well: [1] and [24] consider layered media and study
a finite volume approach or approximate it as the steady state to a Schrödinger equation, respec-
tively. [25] focuses on different iteration schemes for the nonlinearity and uses a pseudospectral
method in space. A multiscale finite element method is proposed and analyzed for the heteroge-
neous nonlinear Helmholtz equation in [15]. The present work is inspired by [23], where the linear
(i.e., p = 1) finite element method (FEM) is studied and a priori error estimates are shown. The
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main findings of [23] are that, under a smallness of the data assumption between k, ε, f and g
as well as the resolution condition k3h2 sufficiently small, a unique finite element solution exists
and the discretization error is of the order kh + k3h2. We emphasize that both the resolution
condition as well as the a priori error estimate are similar to the well-studied linear case in the
so-called pre-asymptotic regime, cf. [5]. In a similar spirit as [23], the recent work [10] provides
a finite element error analysis of the nonlinear Helmholtz equation with perfectly matched layer
at the boundary and Newton’s method as iteration scheme.

In fact, a major ingredient in the numerical analysis of [23, 10] is the study of an auxiliary
linearized Helmholtz problem which is solved in each iteration step. The finite element error
analysis of the linear Helmholtz equation is much more mature than of its nonlinear counterpart.
Seminal results are the asymptotic hp-FEM analysis of [17, 18] and the pre-asymptotic error
analysis for arbitrary, but fixed polynomial degree of [5]. These results have been obtained for
the constant coefficient case, but recently much progress has been made for the heterogeneous
Helmholtz equation as well. In the asymptotic regime, arbitrary but fixed polynomial degree is
treated in [3] and the hp-FEM in [9, 14, 2]. Pre-asymptotic estimates for the absolute error can
be found in [19], whereas [13] studies the relative error. By the difference between “arbitrary but
fixed polynomial degree” and “hp-FEM” results, we mean that in the first case, constants may
(implicitly) depend on the polynomial degree. By now higher-order- and hp-FEM approximations
are the state of the art – in comparison to linear FEM – for the Helmholtz equation as they allow
a relaxed resolution condition of k(kh)2p sufficiently small (pre-asymptotic, fixed polynomial
degree) or kh/p sufficiently small and p & ln k (asymptotic, hp version).

Our main contribution is the rigorous a priori error analysis in the pre-asymptotic regime of
higher-order finite element methods for the nonlinear Helmholtz problem. We essentially show
that under a smallness of the data assumption similar to [23, 10], a resolution condition of k(kh)p

is sufficient for existence and uniqueness of a finite element solution and the discretization error
is of the order kh + k(kh)2p. We also rely on the numerical analysis of a linearized Helmholtz
equation, where we prove a solution splitting (into an analytic and a less oscillatory part) in
the spirit of [17, 18] and pre-asymptotic stability and error estimates. The linearized Helmholtz
equation has a non-constant, discontinuous refractive index, so that we cannot directly apply
recent results for the heterogeneous Helmholtz equation [12, 2, 19]. Instead we use a perturbation
argument that the deviation from the constant-coefficient case is sufficiently small due to the
smallness of the data assumption. Moreover, we show a discrete stability result in the L∞-norm
which causes the tighter pre-asymptotic resolution condition k(kh)p . 1 compared to the linear
case. Along this analysis, we treat two different iteration schemes: the frozen nonlinearity scheme
considered in [23] and a scheme suggested in [25]. For the latter, we provide the first proof of
linear convergence by interpreting it as a fixed-point iteration. This result fills a theoretical gap
in [25] and may be of own interest.

The paper is organized as follows. We present the setting and study the iteration schemes
in Section 2. Section 3 describes the finite element discretization and the main error estimates,
whose proofs are then presented in Section 4. Finally, we illustrate our theoretical results with
numerical experiments in Section 5, where we also compare the two iteration schemes numerically
in detail.

2. Nonlinear Helmholtz equation in the continuous setting

In this section, we formulate our model problem and discuss the solution of the nonlinear problem
via iteration schemes in the continuous setting.

Throughout this article, all our functions are complex-valued unless otherwise mentioned. For
any (sub)domain S, (·, ·)S denotes the complex L2-scalar product (with complex conjugate in
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the second argument). We use standard notation on Sobolev spaces Hs(S) and their norms.
Further, we use the following (semi)norms ‖ · ‖0,S := ‖ · ‖L2(S), | · |1,S := ‖∇ · ‖0,S , and ‖ · ‖2,S :=
‖ · ‖H2(S). As usual in the Helmholtz context, we also employ the following k-weighted norm
‖ · ‖21,k,S := | · |21,S +k2 ‖ · ‖20,S . We will omit the subdomain S in the notation of norms and scalar
products if it equals the full computational domain Ω and no confusion can arise. Last, we use
the notation a . b to indicate that there exists a generic constant C, independent of h and k
but possibly dependent on the polynomial degree p, such that a ≤ Cb.

2.1. Model problem

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded star-shaped domain with analytic boundary Γ = ∂Ω and
outer normal ν. In this work, we are interested in approximating the (weak) solution u ∈ H1(Ω)
of the following nonlinear Helmholtz problem

B(u, v) := (∇u,∇v)− (k2(1 + χDε|u|2)u, v) + i(ku, v)Γ = (f, v) + (g, v)Γ (2.1)

for all v ∈ H1(D). Here, k is the wave number, ε the Kerr coefficient, and χD denotes the
characteristic function of D. We make the following assumptions on the data throughout the
whole article.

Assumption 2.1. We assume that f ∈ L2(Ω), g ∈ H1/2(Γ) and ε ∈ R>0. Suppose that k & 1
in the sense there exists a constant k0 > 0 such that k ≥ k0 and, subsequently, all constants in
our estimates may depend on k0. Finally, we assume that D ⊂⊂ Ω is a non-empty compactly
embedded subdomain with Lipschitz boundary.

In the following, we abbreviate Cdata := ‖f‖0 +‖g‖H1/2(Γ). [23] shows that there exists θ0 such
that if

kd−2εC2
data < θ0, (2.2)

there exists a unique solution u ∈ H1(Ω) to (2.1). Further, u satisfies the following a priori
estimates

‖u‖1,k . Cdata, ‖u‖2 . kCdata, ‖u‖L∞(D) . k(d−3)/2Cdata. (2.3)

The (sufficient) condition kd−2εC2
data < θ0 for these results to hold is called a smallness of the

data assumption and it comes from a Banach fixed-point argument, see also Section 2.2 below.
While the exact condition itself does not seem to be sharp in numerical experiments, it is well
known that some condition on k, ε, f and g is required for uniqueness. Note that the power of k
in the smallness assumption depends on the stability constant for the linear Helmholtz equation
with ε = 0. Throughout this article, we assume this stability constant to be O(1), which is well
established for star-shaped domains Ω, see, e.g., [16, 4].

Remark 2.2. For some results, the assumption g ∈ L2(Γ) instead of g ∈ H1/2(Γ) would be
sufficient. For simplicity, we omit to track this and work under Assumption 2.1 and with the
constant Cdata.

2.2. Iteration schemes

We present and discuss two iteration schemes for the nonlinear problem in the continuous setting.
Both schemes will subsequently be combined with the spatial discretization in Section 3.1 to
obtain a discrete solution in practice.

[23] considers the following fixed-point iteration based on a frozen nonlinearity approach.
Given the previous iterate u(l−1), the next iterate u(l) ∈ H1(Ω) is defined as

Blin(u(l−1);u(l), v) = (f, v) + (g, v)Γ for all v ∈ H1(Ω),

where Blin(Φ; v, w) := (∇v,∇w)− (k2(1 + χDε|Φ|2)v, w) + i(kv, w)Γ.
(2.4)
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The iteration starts from some u(0) ∈ H1(Ω) ∩ L∞(D) with sufficiently small energy norm. For
simplicity, we consider u(0) ≡ 0 throughout. Under the smallness of data assumption (2.2) with
suitably chosen θ0, the sequence {u(l)}l∈N forms a strict contraction in the sense that

‖u(l+1) − u(l)‖1,k ≤
1

2
‖u(l) − u(l−1)‖1,k ∀l ≥ 1. (2.5)

This is the main idea in the proof of existence and uniqueness of a solution u to (2.1) in [23].
Precisely, the sequence {u(l)} converges to u strongly in H1(Ω).

[25] proposes a different iteration scheme – the motivation stems from Newton’s method, but
it is neither Newton’s method itself nor any variant thereof. Given the previous iterate u(l−1),
the next iterate u(l) ∈ H1(Ω) is defined as

A(u(l−1);u(l), v) = −k2ε(|u(l−1)|2u(l−1), v)D + (f, v) + (g, v)Γ for all v ∈ H1(Ω),

where A(Φ; v, w) := (∇v,∇w)− (k2(1 + 2χDε|Φ|2)v, w) + i(kv, w)Γ.
(2.6)

Again, we let the iteration start from u(0) ≡ 0 for simplicity. [25] observes numerically that the
scheme converges with a linear rate and that it has the advantage of allowing larger values of
k, ε and the data than (2.4). To the best of our knowledge, these observations have not been
rigorously confirmed in theory. In the rest of this section, we will hence address the convergence
of (2.6) and relate it to the convergence of the frozen nonlinearity approach.

2.3. Linearized Helmholtz equation as auxiliary problem

Both iteration schemes (2.4) and (2.6) solve a linear(ized) Helmholtz problem in each step, which
we can formulate as follows. Let Φ ∈ H1(Ω) ∩ L∞(D) be given. For (2.4), find w ∈ H1(Ω) such
that

Blin(Φ;w, v) := (∇w,∇v)− k2((1 + χDε|Φ|2)w, v) + ik(w, v)Γ = (f, v) + (g, v)Γ (2.7)

for all v ∈ H1(Ω). For (2.4), find w̃ ∈ H1(Ω) such that

A(Φ; w̃, v) := (∇w̃,∇v)− k2((1 + 2χDε|Φ|2)w̃, v) + ik(w̃, v)Γ = (f̃ , v) + (g, v)Γ (2.8)

for all v ∈ H1(Ω), where f̃ = f − k2εχD|Φ|2Φ. Note that (2.7) and (2.8) are closely related in
two ways. On the one hand, A(Φ; w̃, v) = Blin(

√
2Φ;w, v) and the right-hand side is (slightly)

different. On the other hand, we can re-write (2.8) as

Blin(Φ; w̃, v) = (f, v) + (g, v)Γ + k2ε(|Φ|2(w̃ − Φ), v)D.

Consequently, we can deduce many results for (2.8) from their counterparts for (2.7). We em-
phasize that (2.7) is of Helmholtz-type, but with a variable, i.e., x-dependent, refractive index
n := 1 + χDε|Φ|2 induced by Φ. Moreover, our assumptions on ε and D imply that n is discon-
tinuous over ∂D, i.e., the interface between the nonlinear material and the linear “background”.

[23] shows that there exists a constant θ1 such that if kε‖Φ‖2L∞(D) ≤ θ1, a unique solution

w ∈ H1(Ω) to (2.7) exists and it satisfies the a priori estimates

‖w‖1,k ≤ C1Cdata, ‖w‖2 ≤ C2kCdata, ‖w‖L∞(D) ≤ C∞k(d−3)/2Cdata. (2.9)

In fact, these results on w are the crucial ingredient to establish existence, uniqueness and a
priori estimates (cf. (2.3)) for the solution u to the nonlinear problem (2.1) in [23]. By exploiting
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the correspondence between (2.7) and (2.8), we directly obtain that, if kε‖Φ‖2L∞(D) ≤ θ1/2, a

unique solution w̃ ∈ H1(Ω) to (2.8) exists. From (2.9) and (2.8), we deduce the a priori estimates

‖w̃‖1,k ≤ C1(Cdata + k2ε‖Φ‖2L∞(D)‖Φ‖0) ≤ C1

(
Cdata +

θ1

2
‖Φ‖1,k

)
(2.10)

as well as

‖w̃‖2 ≤ C2k
(
Cdata +

θ1

2
‖Φ‖1,k

)
, ‖w̃‖L∞(D) ≤ C∞k(d−3)/2

(
Cdata +

θ1

2
‖Φ‖1,k

)
. (2.11)

These estimates will play a central role in the convergence proof for (2.6) in Section 2.4 below.
In the analysis of the finite element method for the linearized Helmholtz problem in Section

3.2, we need a splitting of the continuous solution w into an H2-regular and an analytic part. The
recent results on solution splittings obtained by [14, 12] are not applicable since n may exhibit
a discontinuity across ∂D in our case, see above. Under a smallness of the data assumption,
we show that the well-known solution splitting of the standard Helmholtz equation with ε = 0
already yields the desired result for (2.7) as well. We note once more that the argument then
transfers to (2.8) by the obvious modifications in the scaling of Φ and the form of f .

Proposition 2.3. There is a constant θ2 such that, if kε‖Φ‖2L∞(D) ≤ θ2, the solution w of (2.7)

can be split as w = wH2 + wA with wH2 ∈ H2(Ω) and wA analytic. Further, there exist k- and
Φ-independent constants C, γ > 0 such that

‖wA‖1,k ≤ CCdata,

‖∇p+2wA‖0 ≤ Cγpk−1 max{p, k}p+2 Cdata,

‖wH2‖2 + k‖wH2‖1,k ≤ CCdata.

The proof is presented in the appendix.

2.4. Convergence of scheme (2.6)

We now show that scheme (2.6) satisfies a contraction property and therefore, the iteration
sequence converges to the (unique) solution u of (2.1).

Proposition 2.4. Let {u(l)}l∈N0
be defined via (2.6) starting (for simplicity) from u(0) ≡ 0. If

C1C
2
∞k

d−2εC2
data ≤ q(1− q)2 (2.12)

for some q < min{ 1
6 ,

C1θ1
2 } with θ1 introduced in Section 3.2, we have for iteration scheme (2.6)

that

‖u(l+1) − u(l)‖1,k ≤
1

2
‖u(l) − u(l−1)‖1,k

and the sequence {u(l)}l converges linearly to the solution u of (2.1).

Proof. First step: A priori estimates for u(l). We show by induction that for all l ≥ 1, u(l) is
well-defined and satisfies

‖u(l)‖1,k ≤
1

(1− q)
C1Cdata, ‖u(l)‖2 ≤

1

(1− q)
C2kCdata,

‖u(l)‖L∞(D) ≤
1

(1− q)
C∞k

(d−3)/2Cdata.
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The case l = 1 directly follows from u(0) = 0 and (2.10)–(2.11). Let the statement be satisfied
for l. Since kε‖u(l)‖2L∞(D) ≤ C2

∞
1

(1−q)2 k
d−2εC2

data ≤ θ1/2 by the assumptions, the discussion in

Section 2.3 yields that u(l+1) is indeed well-defined. Moreover, we deduce from (2.10) that

‖u(l+1)‖1,k ≤ (C1Cdata + q‖u(l)‖1,k),

which recursively yields with q < 1 that

‖u(l+1)‖1,k ≤ C1Cdata

l∑
j=0

qj ≤ 1

(1− q)
C1Cdata.

Employing (2.11), we furthermore obtain

‖u(l+1)‖2 ≤ C2k
(
Cdata +

θ1

2
‖u(l)‖1,k

)
≤ C2kCdata(1 +

q

(1− q)
) =

1

1− q
C2kCdata,

‖u(l+1)‖L∞(D) ≤ C∞k(d−3)/2
(
Cdata +

θ1

2
‖u(l)‖1,k

)
≤ 1

1− q
C∞k

(d−3)/2Cdata,

which finishes the first step.
Second step: Contraction property. Direct calculation shows that u(l+1) − u(l) solves

A(u(l);u(l+1) − u(l), v) = k2ε(|u(l−1)|2(u(l−1) − u(l)) + (|u(l)|2 − |u(l−1)|2)u(l), v)D.

The estimates from the first step yield

‖u(l+1) − u(l)‖1,k ≤
C1

(1− q)
k2ε
(
‖u(l−1)‖2L∞(D)‖u

(l−1) − u(l)‖0

+ ‖u(l)‖L∞(D)(‖u(l)‖L∞(D) + ‖u(l−1)‖L∞(D))‖u(l) − u(l−1)‖0
)

≤ 3
C1

(1− q)2
εC2
∞k

d−2C2
data‖u(l−1) − u(l)‖1,k ≤ 3q‖u(l−1) − u(l)‖1,k,

where we used (2.12) in the last step. The assumption q < 1/6 finishes the proof.

The proposition explains the linear convergence observed in practice [25]. However, the re-
quired smallness of the data assumption is more restrictive than for the frozen nonlinearity
scheme. Precisely, following the proofs of [23], we see that the contraction property (2.5) holds
if C1C

2
∞k

d−2εC2
data ≤ θ̃0 for θ̃0 < min{ 1

4 , θ1C1}, which is more relaxed in comparison to (2.12).
Hence, Proposition 2.4 does not explain the better “robustness” of the scheme with respect to
the data observed in [25] as well as in our experiments in Section 5.

3. Nonlinear Helmholtz equation in the discrete setting

In this section, we turn to the finite element approximation of (2.1). We introduce the dis-
cretization using finite elements with higher-order polynomials in Section 3.1. We then present
the results of a priori error analysis, where we first consider the linearized problems in Section
3.2 and then the nonlinear problem in Section 3.3. All proofs are collected in Section 4 and the
appendix.
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3.1. Finite element discretization and notation

Since we assume Γ to be analytic, we will consider curved elements in order to have a conforming
discretization. We follow the typical procedure as outlined in, e.g., [17, Section 5]. We assume

that there exists a polyhedral/polygonal domain Ω̃ and a bi-Lipschitz mapping ξ : Ω̃ → Ω. Let

T̃h denote an admissible, shape regular simplicial mesh of Ω̃. We assume that the restrictions
ξ|T̃ are analytic for all T̃ ∈ T̃h. We then set Th = {ξ(T̃ ) : T ∈ T̃h} as our mesh on Ω with mesh

size h := maxT∈Th diamT . Note that for any T = ξ(T̃ ) ∈ Th, there exists an affine, bijective

mapping AT : T̂ → T̃ from the reference element T̂ (the unit simplex). Consequently, we have a

mapping FT : T̂ → T via FT = RT ◦ AT with RT = ξ|T̃ . We assume FT , RT and AT to satisfy
the smoothness and scaling assumptions of [17, Assumption 5.2].

For such a so-called quasi-uniform regular simplicial mesh Th, we denote the finite element
space of piecewise (mapped) polynomials of degree p by Vh,p, i.e.,

Vh,p := {v ∈ H1(Ω) : v|T ◦ FT ∈ Pp(T ) for all T ∈ Th},

where Pp denotes the polynomials of degree p. We now seek the discrete solution uh,p ∈ Vh,p
such that

B(uh,p, vh) = (f, vh) + (g, vh)Γ (3.1)

for all vh ∈ Vh,p. This yields a nonlinear system that we can solve via the discrete versions of
the iteration schemes (2.4) or (2.6). As usual, these discrete versions are obtained by a Galerkin
procedure, i.e., ansatz as well as test functions come from the space Vh,p. As already done in the

continuous case, we start the iterations with u
(0)
h,p ≡ 0 for simplicity.

We collect further finite element-related notation that will turn out useful in the error analysis.
Let Ph : H1(Ω)→ Vh,p be the elliptic projection as defined by [23] via

(∇vh,∇Phψ) + ik(vh, Phψ)Γ = (∇vh,∇ψ) + ik(vh, ψ)Γ for all vh ∈ Vh,p. (3.2)

This projection is well-defined and satisfies

‖ψ − Phψ‖0 . h‖ψ − Phψ‖1,k . inf
vh∈Vh,p

‖ψ − vh‖1,k. (3.3)

Ph is related to the discrete Laplace operator Lh : Vh,p → Vh,p defined via

(Lhvh, ψh) = (∇vh,∇ψh) + ik(vh, ψh)Γ for all ψh ∈ Vh,p. (3.4)

Further, following [5], we introduce discrete Hj(Ω)-norms on Vh,p. We define the discrete
operator Ah : Vh,p → Vh,p via

(Ahvh, ψh) := (∇vh,∇ψh) + (vh, ψh). (3.5)

Let
0 < λ1,h < λ2,h < . . . λdimVh,p,h

denote its eigenvalues, which are all positive, and let ϕj,h for j = 1, . . .dimVh,p be the corre-

sponding discrete eigenfunctions. For any real number j, the operator Ajh is defined via

Ajhvh =

dimVh,p∑
l=1

λjl,halϕl,h for vh =

dimVh,p∑
l=1

alϕl,h.

The discrete norms on Vh,p are then defined for any integer j via

‖vh‖j,h := ‖Aj/2h vh‖0. (3.6)

For any vh ∈ Vh,p, it holds that (see [5, Lemma 4.1, 4.2])
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1. for any integer j,
‖vh‖j,h . h−1‖vh‖j−1,h (3.7)

2. for any integer 0 ≤ j ≤ p+ 1,

‖vh‖−j,h .
j∑
l=0

hj−l‖vh‖−l.

3.2. FEM error analysis for the auxiliary problem

We can now analyze the linear auxiliary problem in the discrete setting. According to the
discussion in Section 2.3, we focus on problem (3.8) below using Blin, but note that everything
carries over to the discrete version of (2.8) by the relation of A and Blin. Let Φ ∈ L∞(D)∩H1(Ω)
be given. Define wh ∈ Vh,p as the solution of

Blin(Φ;wh, vh) = (f, vh) + (g, vh)Γ (3.8)

for all vh ∈ Vh,p.

Lemma 3.1. If kε‖Φ‖2L∞(D) ≤ min{θ1, θ2} with the constants introduced in Section 2, there

exists a constant C0 > 0 such that, if k(kh)2p ≤ C0, the finite element solution wh to the auxiliary
problem (3.8) exists, is unique and satisfies

‖w − wh‖1,k . (1 + k(kh)p) inf
vh∈Vh,p

‖w − vh‖1,k . (h+ (kh)p + k(kh)2p)Cdata, (3.9)

where the constant in . may depend on p. Further, wh is stable in the following sense

‖wh‖1,k . Cdata. (3.10)

In the proof of the above lemma, we will also establish the following L2-error estimate

‖w − wh‖0 . (h2 + h(kh)p + (kh)2p)Cdata. (3.11)

Lemma 3.1 essentially transfers [5] to a case where the coefficient n in the Helmholtz problem
is no longer constant. In contrast to the approach in [19, Sec. 2.4], we treat n as a sufficiently
small perturbation from the constant coefficient case. Therefore, some of our assumptions are
different, in particular we can allow for lower regularity in n. Further, since we do not have a
coefficient in the gradient part, i.e., A = 1, we can use Robin boundary conditions everywhere,
cf. the discussion in [19, Rem. 2.62]. Concerning the occurrence of kh as first term in (3.9), we
refer to the discussion after Theorem 3.5. For convenience, we include the proof of Lemma 3.1
(along the lines of [5]) in the appendix.

Besides the stability of wh in the energy norm, we have the following L∞-estimate, which is
important for the nonlinear case.

Lemma 3.2. If kε‖Φ‖2L∞(D) ≤ min{θ1, θ2} with the constants introduced in Section 2, there

exists a constant C1 > 0 such that, if k(kh)p ≤ C1, the solution wh of (3.8) satisfies

‖wh‖L∞(D) . | lnh|p k(d−3)/2Cdata, (3.12)

where p = 1 for p = 1 and p = 0 for p ≥ 2.

The proof follows the lines of [23, 10] using the interior L∞ estimates of [20]. The latter only
introduce an | lnh|-dependence in the case p = 1. Note that [10] recently showed that even in
the linear case, the | lnh| cna be removed if d = 2.
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Remark 3.3 (Why the resolution conditions in Lemmas 3.1 and 3.2 differ). Comparing to the
linear Helmholtz case, the resolution condition in Lemma 3.1 is the known one from [5], while
the condition in Lemma 3.2 corresponds to an older, sub-optimal condition in [26]. To get the
improved result similar to Lemma 3.1, [5] uses suitable discrete Hj-norms, cf. (3.6), and negative
Sobolev norms in the estimation of L2-scalar products (between a discrete and a projection
error). In the L∞-norm estimate, however, we do not get such L2-scalar products and therefore
cannot use this technique. This is the main reason for the tighter resolution condition in Lemma
3.2. Note that both conditions agree for p = 1.

3.3. Finite element method for the nonlinear problem

We are now prepared to analyze the higher-order finite element method for the iteration schemes
(2.4) and (2.6) applied to the nonlinear Helmholtz equation. We emphasize once more that the
analysis in [23, 10], which partly inspires our proofs, is limited to p = 1 and either iteration
scheme (2.4) or Newton’s method. We start with the convergence of the discrete schemes and,
thereby, existence and uniqueness of the solution uh,p to (3.1).

Proposition 3.4. Let
k(kh)p ≤ C1

as in Lemma 3.2. Define
σj := C̃j | lnh|2pεkd−2Cdata,

where C̃1, C̃2 associated with schemes (2.4) and (2.6), respectively, are some constants. If σj < 1,

the associated sequence {u(l)
h,p}l∈N0

⊂ Vh,p starting at u
(0)
h,p ≡ 0 converges to the unique solution

uh,p of (3.1) with rate σj, i.e.,

‖uh,p − u(l)
h,p‖1,k . σljCdata. (3.13)

Further, uh,p satisfies the stability estimates

‖uh,p‖1,k . Cdata and ‖uh,p‖L∞(D) . | lnh|pk(d−3)/2Cdata. (3.14)

We hence obtain the continuous as well as the discrete solution as limit of a sequence of
solutions to linearized Helmholtz problems. The proposition gives us the convergence of the two
iteration schemes also in the discrete setting as well as existence and uniqueness of the solution
to (3.1). Of course, this unique solution exists as soon as σj < 1 for j = 1 or j = 2. In other
words, we can choose the less restrictive condition when we consider properties of the discrete
solution to the nonlinear problem. Using the error estimates in the linear case (cf. Lemma 3.1),
we can conclude our main result on the finite element error.

Theorem 3.5. If k(kh)p ≤ C1 and | lnh|2pεkd−2Cdata ≤ θ sufficiently small, the unique finite
element solution uh,p to (3.1) satisfies the error estimate

‖u− uh,p‖1,k . (h+ (kh)p + k(kh)2p)Cdata.

Note that by combining the previous theorem and (3.13) we deduce an error estimate for

u− u(l)
h,p and any of the two schemes (2.4) or (2.6) by the triangle inequality.

Theorem 3.5 bounds the error between the exact and the discrete solution of the nonlinear
Helmholtz equation, where the dependence on k, h, and p is the same as in the linear case. We
provide a pre-asymptotic error bound with the so-called pollution term k(kh)2p. Note that the
first term kh occurs in Theorem 3.5 since we do not assume more than H2(Ω)-regularity of u.
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Nevertheless, this term can be interpreted as a higher order term in the sense that it does not
dictate the rate of convergence due to the resolution condition, cf. [19, Rem. 2.40]. As in [5] for
the linear Helmholtz equation, our result assumes a fixed polynomial degree in the sense that
the involved constants depend on p. We strongly believe that the famous hp-error analysis in the
asymptotic regime [17, 18] can be transferred to the nonlinear Helmholtz equation for sufficiently
small data as well. An hp-version of the result in Lemma 3.1 in the asymptotic regime is already
available, see [14], but to the best of our knowledge, nothing is known about an hp-version of
the L∞-estimate in Lemma 3.2. One can circumvent the application of Lemma 3.2 as in [15],
but the price to pay is a worse k-dependence in the smallness of the data assumption.

4. Proofs of the results in Section 3

In this section, we prove our main results Lemma 3.2, Proposition 3.4, and Theorem 3.5.

4.1. Proof of Lemma 3.2

Proof. We set w̃h = Phw with Ph defined in (3.2) and ηh = w̃h − wh. Further, we introduce
η ∈ H1(Ω) as the solution of

(∇η,∇v) + ik(η, v)Γ = k2((1 + χDε|Φ|2)(w − wh), v) for all v ∈ H1(Ω).

By the triangle inequality, it holds

‖wh‖L∞(D) ≤ ‖η‖L∞(D) + ‖η − ηh‖L∞(D) + ‖w − w̃h‖L∞(D) + ‖w‖L∞(D) =: T1 + T2 + T3 + T4.

First step: Estimate of T1: By elliptic regularity theory and (3.11) we deduce

‖η‖2 . k2‖wh − w‖ . (k2h2 + k(kh)p+1 + k2(kh)2p)Cdata. (4.1)

We observe that ηh satisfies

(Lhηh, vh) = k2((1 + χDε|Φ|2)(w − wh), vh) for all vh ∈ Vh,p

with Lh as defined in (3.4). Hence, ηh is the finite element approximation of η. Standard finite
element theory then yields

‖η−ηh‖0 . h2‖η‖2 . h2k2‖(1+χDε|Φ|2)(w−wh)‖0 . (k2h4+h(hk)p+2+(kh)2p+2)Cdata, (4.2)

where we used (3.11). Next, we re-write the equation for η and observe that it solves

(∇η,∇v)− k2(η, v) + ik(η, v)Γ = k2(ηh − η, v) + k2(w − w̃h, v) + k2(ε|Φ|2(w − wh), v)D.

Hence, we obtain by (2.9) together with (4.2) and (3.11) that

‖η‖L∞(D) . k(d−3)/2k2(‖ηh − η‖0 + ‖w̃h − w‖0 + k−1θ1‖wh − w‖0)

. k(d−3)/2k2
(
k2h4 + h(kh)p+2 + (kh)2p+2 + h2 + (kh)ph+ k−1h2

+ k−1h(kh)p + k−1(kh)2p
)
Cdata

= k(d−3)/2
(
kh2 + (kh)2 + (kh)4 + (kh)p+1 + k(kh)p+1

+ k(kh)p+3 + k2(kh)2p+2 + k(kh)2p
)
Cdata

. k(d−3)/2Cdata,
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where we used the resolution condition k(kh)p ≤ C1 in the last step.
Second step: Estimate of T2: Note that H1(Ω) can be continuously embedded into L6(Ω) for

d ≤ 3. Take a subdomain D1 with D ⊂ D1 and dist(∂D, ∂D1) ≈ dist(∂D1, ∂Ω) ≈ 1. Interior L∞-
error estimates [20, Thm. 5.1], interpolation estimates, interior Schauder estimates for elliptic
equations [7, Thm. 9.11], and the k-weighted Nierenberg inequality from [15, Lemma 2.3] imply

‖η − ηh‖L∞(D) . | lnh|p η − Ihη‖L∞(D1) + ‖η − ηh‖0
. | lnh|p h2−d/6‖η‖W 2,6(D1) + ‖η − ηh‖0
. | lnh|p h2−d/6(‖η‖L6(Ω) + k2‖wh − w‖L6(Ω)) + ‖η − ηh‖0
. | lnh|p h2−d/6(‖η‖2 + k1+d/3‖w − wh‖1,k) + ‖η − ηh‖0,

where Ih denotes the nodal interpolation operator. In the first step, we already showed – using
(4.2) – that k2‖η − ηh‖0 is uniformly bounded under the resolution condition k(kh)p ≤ C1.
Thereby we easily deduce that under the same resolution condition, ‖η− ηh‖0 . k−2 . k(d−3)/2.
Hence, we only need to bound h2−d/6(‖η‖2 + k1+d/3‖w − wh‖1,k) in the following. With (4.1),
we obtain

h2−d/6(‖η‖2 + k1+d/3‖w − wh‖1,k) . h2−d/6(k2‖w − wh‖0 + k1+d/3‖w − wh‖1,k)

. h2−d/6k1+d/3‖w − wh‖1,k.

Applying (3.9), we deduce

h2−d/6k1+d/3‖w − wh‖1,k . h2−d/6k1+d/3(h+ (kh)p + k(kh)2p)Cdata

. k(d−3)/2
(
(kh)2−d/6k1/2(h+ (kh)p + k(kh)2p)

)
Cdata

. k(d−3)/2Cdata,

where we used the resolution condition k(kh)p ≤ C1 and k & 1 in the last inequality. Combining
all estimates in this step, we showed

‖η − ηh‖L∞(D) . | lnh|p k(d−3)/2Cdata

under the resolution condition k(kh)p ≤ C1.
Third step: Estimate of T3: Take a subdomain D1 with D ⊂ D1 and dist(∂D, ∂D1) ≈

dist(∂D1, ∂Ω) ≈ 1 as in the previous step. We obtain with [20, Thm. 5.1], (3.3) and (2.9)

‖w − w̃h‖L∞(D) . | lnh|p ‖w‖L∞(D1) + ‖w − w̃h‖0
. | lnh|p ‖w‖L∞(D1) + h‖w‖1,k

.
(
| lnh|p k(d−3)/2 + h

)
Cdata . | lnh|p k(d−3)/2Cdata,

where we used kh . 1 and k & 1 in the last step.
Combining steps 1-3 with (3.12) for T4 yields the assertion.

4.2. Proofs from Section 3.3

Proof of Proposition 3.4. First step: Iteration scheme (2.4): As before, let for simplicity u
(0)
h,p ≡

0. From Lemma 3.1 we obtain that a unique solution u
(1)
h,p ∈ Vh,p to the discrete version of (2.4)

exists and moreover, that it satisfies due to (3.10) and Lemma 3.2

‖u(1)
h,p‖1,k . Cdata and ‖u(1)

h,p‖L∞(D) . | lnh|p k(d−3)/2Cdata.
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The latter implies that kε‖u(1)
h,p‖2L∞(D) . min{θ1, θ2} so that the assumptions of Lemma 3.1 are

satisfied. Inductively, we conclude that the whole iteration sequence (2.4) exists. Each u
(j)
h,p is

the unique solution of a linearized Helmholtz problem and satisfies the stability estimates

‖u(l)
h,p‖1,k . Cdata and ‖u(l)

h,p‖L∞(D) . | lnh|p k(d−3)/2Cdata.

Set v
(l)
h = u

(l+1)
h,p − u(l)

h,p and observe that v
(l)
h solves

Blin(u
(l)
h,p; v

(l)
h , ψh) = k2(εu

(l)
h,p(|u

(l)
h,p|

2 − |u(l−1)
h,p |

2), ψh)D for all ψh ∈ Vh,p.

As we have kε‖u(l)
h,p‖L∞ . min{θ1, θ2}, we can again apply Lemma 3.1 to obtain

‖v(l)
h ‖1,k . k2ε‖u(l)

h,p(|u
(l)
h,p|

2 − |u(l−1)
h,p |

2)‖0,D

. kε‖u(l)
h,p‖L∞(D)

(
‖u(l−1)

h,p ‖L∞(D) + ‖u(l)
h,p‖L∞(D)

)
‖v(l)
h ‖1,k

. | lnh|2p εkd−2C2
data‖v

(l)
h ‖1,k.

Hence if σ1 := C1| lnh|2pεkd−2C2
data < 1, {v(l)

h }l∈N0
forms a strictly contracting sequence or, in

other words, the iterations {u(l)
h,p}l∈N0

form a Cauchy sequence. Therefore, they converge to some
uh,p and it is easy to verify that uh,p is a solution to (3.1). Further, uh,p satisfies the stability
estimates (3.14) as they are satisfied in all iterations (see above). Following the arguments in

the estimate for v
(l)
h above, we can also conclude the uniqueness of uh,p. Finally, (3.13) for j = 1

follows as in the Banach fixed-point theorem.
Second step: Iteration scheme (2.6): We transfer the proof of Proposition 2.4 to the discrete

setting. We show by induction that for all l ≥ 1, u
(l)
h,p is well-defined and satisfies

‖u(l)
h,p‖1,k . Cdata, ‖u(l)

h,p‖L∞(D) . | lnh|p k(d−3)/2Cdata,

where the constants in . may depend on σ2.

The case l = 1 directly follows from u
(0)
h,p = 0 and (3.10) and Lemma 3.2. Let the statement be

satisfied for l. Since kε‖u(l)
h,p‖2L∞(D) . | lnh|2pkd−2εC2

data . min{θ1, θ2} by assumption, we can

deduce from Lemma 3.1 that u
(l+1)
h,p is indeed well-defined, see also the discussion in Section 2.3.

Moreover, we have

‖u(l+1)
h,p ‖1,k . (Cdata + σ2‖u(l)‖1,k)

With the assumption σ2 < 1 we obtain recursively

‖u(l+1)
h,p ‖1,k . Cdata

l∑
j=0

σj2 . Cdata.

Employing Lemma 3.2, we furthermore obtain

‖u(l+1)
h,p ‖L∞(D) . | lnh|p k(d−3)/2(Cdata + σ2‖u(l)

h,p‖1,k) . | lnh|p k(d−3)/2Cdata.

As in the first step, we define v
(l)
h := u

(l+1)
h,p − u(l)

h,p, which solves

A(u
(l)
h,p; v

(l)
h , ψh) = k2ε(−|u(l−1)

h,p |
2v

(l−1)
h + (|u(l)

h,p|
2 − |u(l−1)

h,p |
2)u

(l)
h,p, ψh)D.
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The a priori estimates for u
(l)
h,p from above yield with (3.10)

‖v(l)
h ‖1,k . k2ε

(
‖u(l−1)

h,p ‖
2
L∞(D)‖v

(l−1)
h ‖0

+ ‖u(l)
h,p‖L∞(D)(‖u

(l)
h,p‖L∞(D) + ‖u(l−1)

h,p ‖L∞(D))‖v
(l−1)
h ‖0

)
. kε| lnh|2p kd−3C2

data‖v
(l−1)
h ‖1,k.

Hence if σ2 := C2| lnh|2pεkd−2C2
data < 1, {v(l)

h }l∈N0
forms a strictly contracting sequence or,

in other words, the iterations {u(l)
h,p}l∈N0

form a Cauchy sequence. Therefore, they converge to
some uh,p, which one can easily identify as the unique solution to (3.1) from the first step. The
stability estimates (3.14) are then already known, and, finally, (3.13) for j = 2 again follows as
in the Banach fixed-point theorem.

Proof of Theorem 3.5. We proceed as in [23]. Let {u(l)}l∈N0 and {u(l)
h,p}l∈N0 be iteration se-

quences for u and uh,p, respectively. We bound the error u(l) − u(l)
h,p and at the very end, let

l → ∞. Since we eventually consider the limit, we simply work with the iteration sequences
defined according to (2.4). The adaption to (2.6) is straightforward and yields a similar result.

We define a sequence {ũ(l)
h }l∈N0

via ũ
(0)
h = u

(0)
h,p and ũ

(l)
h ∈ Vh,p solves

Blin(u(l−1); ũ
(l)
h , vh) = (f, vh) + (g, vh)Γ for all vh ∈ Vh,p.

We split the error as u(l)−u(l)
h,p = (u(l)− ũ(l)

h ) + (ũ
(l)
h −u

(l)
h,p) and estimate both terms separately.

For the first term, we obtain directly from Lemma 3.1 that

‖u(l) − ũ(l)
h ‖1,k . (h+ (kh)p + k(kh)2p)Cdata. (4.3)

It remains to estimate η
(l)
h := ũ

(l)
h − u

(l)
h,p. We observe that η

(l)
h ∈ Vh,p solves

Blin(u(j−1); η
(j)
h , vh) = k2(ε(|u(j−1)|2 − |u(j−1)

h,p |
2)u

(j)
h,p, vh)D for all vh ∈ Vh,p.

From Lemmas 3.1 and 3.2, we hence obtain

‖η(l)
h ‖1,k . k2ε‖(|u(l−1)|2 − |u(j−1)

h,p |
2)u

(l)
h,p‖0,D

. k2ε‖u(l)
h,p‖L∞(D)

(
‖u(l−1)‖L∞(D) + ‖u(l−1)

h,p ‖L∞(D)

)
‖u(l−1) − u(l−1)

h,p ‖0,D

. k2ε
(
| lnh|p k(d−3)/2Cdata

)2‖u(l−1) − u(l−1)
h,p ‖0,D

. | lnh|2p kd−2C2
data

(
‖u(l−1) − ũ(l−1)

h ‖1,k + ‖η(l−1)
h ‖1,k

)
.

If | lnh|2pkd−2εC2
data is sufficiently small, we consequently have

‖η(l)
h ‖1,k ≤

1

2
‖u(l−1) − ũ(l−1)

h ‖1,k +
1

2
‖η(l−1)
h ‖1,k.

By induction together with (4.3) and η
(0)
h = 0, we deduce

‖η(l)
h ‖1,k .

l−1∑
j=0

2l−j‖u(j) − ũ(j)
h ‖1,k . (h+ (kh)p + k(kh)2p)Cdata + 2−l‖u(0) − u(0)

h,p‖1,k.

Finally, employing the triangle inequality, (4.3) and u(0) = u
(0)
h,p ≡ 0 yields

‖u(l) − u(l)
h,p‖1,k . (h+ (kh)p + k(kh)2p)Cdata.

Letting j →∞ finishes the proof.
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Figure 5.1: Relative error in the energy norm versus mesh size for the first experiment. Top row
ε = 0.05, bottom row ε = 0.01. In each row from left to right p = 1, 2, 3.

5. Numerical experiments

In this section, we investigate the higher-order FEM for the nonlinear Helmholtz problem nu-
merically. We first focus on the discretization error in dependence on the mesh size h, the
polynomial degree p and the wave number k, where we aim to illustrate the theoretical findings
of Theorem 3.5. In the second part of the numerical experiments, we examine the convergence
of the nonlinear iteration, where we aim to analyze the dependence of the contraction factor on
k, h, p, ε and the data, cf. (3.13). We also compare the two different iteration schemes presented
in Section 2.2. For all experiments, we set Ω = B1(0) ⊂ R2 and D = B0.5(0). All simulations1

were obtained with NGSolve [21, 22].

5.1. Convergence of the discretization error

As data, we choose g ≡ 0 and

f =

10000 exp
(
− 1

1.2−
(
|x−x0|
0.05

)2) if |x−x0|
0.05 < 1,

0 else,

with x0 = (−0.55, 0). Since an analytical solution is not known, we use the finite element solution
on a mesh with h = 2−7 and polynomial degree p = 3 as reference solution for the following
error plots. We always depict relative errors in the ‖ ·‖1,k norm. Unless otherwise mentioned, we
solve the nonlinear system using the frozen nonlinearity iteration (2.4) until either the (relative)
residual is smaller than 5 · 10−7 or the maximum of 20 iterations is reached.

The results for two different values of ε are depicted in Figure 5.1. Firstly, we observe that
the (asymptotic) error behavior is not influenced by ε as expected by Theorem 3.5. Moreover,
we confirm the expected convergence rates hp for this smooth right-hand side. Similar to and as
expected from the linear case, we further observe that the plateau of error stagnation is larger

1The code to reproduce the results is available at Zenodo under DOI 10.5281/zenodo.7016963.
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k = 8 k = 16 k = 32 k = 64

p = 1 14, 560 14, 560 −− −−
(0.0379) (0.0582)

p = 2 3, 481 3, 481 14, 435 57, 801
(0.0370) (0.0405) (0.0259) (0.0287)

p = 3 7, 746 1, 788 7, 746 32, 358
(0.0214) (0.0590) (0.0265) (0.0152)

Table 5.1: Required numbers of degrees of freedom to reach a relative energy error below 0.06.
In brackets the attained relative energy error is given.

(h, p) 2−4, 2 2−4, 5 2−4, 1 2−7, 1 2−3, 2 2−6, 2
it. 15 15 15 18 15 16
res. 4.966 · 10−7 4.980 · 10−7 2.472 · 10−7 2.960 · 10−7 3.443 · 10−7 2.671 · 10−7

Table 5.2: Number of “frozen nonlinearity” iterations and final residuals for different values of h
and p.

for growing wave numbers, but this pollution effect can be reduced by increasing the polynomial
degree. We emphasize that we could always achieve a relative residual of at least 5 · 10−7 in less
than 20 iterations in the convergence regime. On the other hand, for very coarse meshes (when
the condition k(kh)2p . 1 is not met), the fixed-point iteration may not converge. We stress
that this does not contradict our theory.

To compare the error convergence for different p from another perspective, we investigate
how many degrees of freedom are required to obtain a relative energy error below a certain
tolerance, say, 0.06. As Figure 5.1 suggests that the behavior for the two different ε values is
quite similar, we fix ε = 0.01 in the following. Table 5.1 summarizes our findings, where −−
indicates that we could not achieve the desired energy error with the considered meshes. We
make two important observations. First, for fixed wave number, the required number of degrees
of freedom for the targeted accuracy decreases when we increase the polynomial degree. This
is explained by the better convergence rate and the shorter stagnation phase. Second, for the
wave number k = 8, 16, 32, we can obtain the desired accuracy with (at most) 7, 746 degrees
of freedom. For this, we need to slightly increase the polynomial degree, which is especially
visible if the results for k = 16 and k = 32 are compared. Note that we expect to reduce the
required number of degrees of freedom for k = 64 if we considered even higher order spaces with
p ≥ 4. These observations agree very well with the hp-FEM convergence analysis of the linear
case where the polynomial degree should be adapted like p & log k, see [17, 18].

5.2. Convergence of the nonlinear iteration

We now turn to the behavior of the iteration schemes and we aim to shed light on their dependence
on k, h, p, ε and the data. In our investigations, we will study (i) the number of iterations required
to reach a (relative) residual of 5 · 10−7 or (ii) the contraction factor

σ(l) :=
‖u(l)

h,p − u
(l−1)
h,p ‖1,k

‖u(l−1)
h,p − u(l−2)

h,p ‖1,k
l ≥ 2

in the l-th iteration step.
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k 8 16 32
iterations 16 7 4
residual 2.487 · 10−7 3.128 · 10−7 4.591 · 10−7

Table 5.3: Number of “frozen nonlinearity” iterations and final residuals for different values of k.

Figure 5.2: Contraction factors σj over iteration number for different values of f and the iteration
schemes (2.4) (left) and (2.6) (right).

First, we fix k = 8, ε = 0.1, g ≡ 0 and f ≡ 50 and investigate the h and p-dependence. We
give the number of iterations till convergence (as explained above) for the iteration scheme (2.4)
in Table 5.2. In the second and third column we see that the iteration scheme does not seem to
be affected by p. This is in good agreement with (3.13) in Proposition 3.4, where the contraction
factor does not contain p. In the fourth to eight column we compare the dependence on h for
p = 1 and p = 2. Each time we refine the coarse mesh three times. For p = 1, the number of
iterations increases by 3, while only by 1 for p = 2. Theoretically, we expect only a logarithmic
h-dependence of the contraction factor for p = 1, while for p ≥ 2 the convergence should be
independent of the mesh size, see Proposition 3.4. While our results cannot completely confirm
the theory, they indicate a slightly larger h-dependence for p = 1 than for p = 2.

As next step, we investigate the dependence of (2.4) on the wave number k. We fix ε, f ,
and g as above, set h = 2−6 and p = 3. Table 5.3 clearly shows a decrease of the required
iterations (until the residual is below 5 · 10−7) with growing wave number. This indicates that
the k-independent contraction factor for d = 2 in Proposition 3.4 seems to be sub-optimal. Our
results would suggest that the contraction factor may even decrease like k−1. However, we also
note that in all the experiments on the h, p and k-dependence of the nonlinear iteration so far,
the contraction factors σ(l) varied rather considerably over j in each experiment. For this reason,
we gave these results in terms of the required iterations. The results of Tables 5.2 and 5.3 are
qualitatively the same also for the iteration (2.6) and therefore omitted here.

We are mainly interested in how the convergence of the iteration depends on the L2-norm
of f and on the size of ε. We fix k = 16, h = 2−5 and p = 2 and let the schemes (2.4) and
(2.6) iterate until either the (relative) residual is below 5 · 10−7 or the maximum number of 50
iterations is reached. Recall that we choose f as a constant function on the whole domain for
this experiment. Figure 5.2 shows the contraction factors σ(l) for the iteration schemes (2.4) and
(2.6) for different values of f . We first observe that there is an initial phase with varying σ(l)

before an almost constant contraction factor is reached. This constant limit regime numerically
verifies that both iteration schemes are of linear order like a fixed-point scheme. Additionally, we
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Figure 5.3: Average contraction factors over values of f (left) and of ε (right) for the two iteration
schemes.

see that the initial phase seems to be longer for the frozen nonlinearity scheme (2.4). Comparing
the behavior across different values of f , we clearly see that the contraction factor grows with
larger f in accordance with Proposition 3.4.

To make this better visible, we plot the average value of σ across all iterations versus the
value of f in Figure 5.3 left. For small values of f , both iteration schemes perform similarly,
but for larger f , (2.6) has better contraction and convergence properties and, in that sense, is
more robust. In particular, for f ≡ 150, the frozen nonlinearity (2.4) seems to be not converging
(after 50 iterations, the relative residual is still 0.15), while the scheme (2.6) converges. In a
similar spirit, we depict the average contraction factors over different values of ε in Figure 5.3
right. Again, we see that the frozen nonlinearity is less robust than (2.6). The dependence on ε
seems in general to be more severe that the one on f . While the frozen nonlinearity converges
only for ε = 0.1, 0.2.0.4 in our example, the scheme (2.6) converges for all considered values up
to ε = 2. For ε = 1.6 and ε = 2, 50 iterations did not suffice to reach the residual of 5 · 10−7,
but the contraction factors clearly suggest that (2.6) should be able to reach that tolerance if
we allowed more iterations. In fact, we obtain a final residual of 5.4 · 10−7 for ε = 1.6 and of
2.3 · 10−6 for ε = 2.

Summarizing, we could confirm the better stability of scheme (2.6) over the frozen nonlinearity,
at least in the dependence on ε and the (right-hand side) data, cf. [25]. The theoretical cause
of this behavior is an interesting open research question. Further, our experiments indicate that
the k-dependence of the contraction factor may be relaxed from the theoretical prediction in
Proposition 3.4 and [23].

Conclusion

In this contribution, we studied the finite element method with arbitrary but fixed polynomial
degree for the nonlinear Helmholtz equation. By employing a pre-asymptotic error analysis
for a linearized Helmholtz problem with small perturbation of the wave speed, we showed well-
posedness and a priori error estimates under a smallness of the data assumption and the resolution
condition k(kh)p . 1. In the treatment of the nonlinearity, we considered two different iteration
schemes which can both be interpreted as fixed-point iterations. Our numerical experiments
confirm the theoretical estimates and, moreover, indicate that the results on the hp-FEM can be
transferred from the linear case as well. Additionally, we compared the two iteration schemes
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concerning the performance and robustness with respect to the smallness of data assumption.
The contribution leaves some interesting future research questions, namely on a true hp-FEM
analysis – our constants may depend on the polynomial degree presently – and on the different
robustness of the two iteration schemes.
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A. Proof of Proposition 2.3

Proof of Proposition 2.3. Let LΩ, LΓ, HΩ, HΓ be the high- and low-frequency filters on Ω and Γ,
respectively, as introduced in [18, Sec. 4.1.1]. For convenience, we briefly repeat the construction.
Let F be the Fourier transform on Rd and set

LRd(f) := F−1(χηkF(f)), HRd(f) = (1− LRd)(f)

for any f ∈ L2(Rd), where χηk denotes the indicator function of Bηk(0) and η is a free parameter.
For Ω, let E : L2(Ω)→ L2(Rd) be the Stein extension operator and define HΩ(f) := (Hd

RE(f))|Ω
and LΩ analogously. For Γ, let G : Hs(Γ) → H3/2+s(Ω) denote the lifting operator with
∂nG(g) = g and define HΓ(g) := ∂νHΩ(G(g)) and, analogously LΓ.

Denote by Nk, S∆
k , and Sk the solution operators for the linear, constant-coefficient Helmholtz

equation (i.e., for ε ≡ 0) as introduced in [18]. More precisely, for f ∈ L2(Ω), Nk(f) is the unique
solution to the Helmholtz equation (−∆− k2)u = f in Rd with Sommerfeld radiation condition.
For g ∈ L2(Γ), S∆

k (g) is the solution to the “good” Helmholtz equation (−∆ + k2)u = 0 in Ω
with inhomogeneous Robin boundary conditions ∂νu − iku = g on Γ. Finally, Sk(f, g) is the
solution of the standard Helmholtz equation (−∆−k2)u = f in Ω with Robin boundary condition
∂νu− iku = g on Γ.

By the linearity of (2.7), it suffices to prove Proposition 2.3 with only volume data f or
boundary data g separately. We show how the assertion follows from the well-known results in
case g = 0, the other case can be proven similar. We set wIA := Sk(LΩf, 0), wIH2 := Nk(HΩf).
Denoting g̃ := −∂nwIH2 − ikuIH2 , we further set wIIA := Sk(0, LΓg̃) and wIIH2 := S∆

k (HΓg̃). By the
definition of the solution operators, we deduce that the remainder r̃ := w−wIA−wIH2−wIIA −wIIH2

solves

−∆r̃ − k2(1 + χDε|Φ|2)r̃ = f̃ in Ω, ∂ν r̃ − ikr̃ = 0 on Γ,

with f̃ := k2(2wIIH2 + χDε|Φ|2(wIH2 + wIA + wIIH2 + wIIA )).

By the estimates for wI,IIH2 and wI,IIA from [18], we obtain

‖f̃‖0 ≤ 2k‖wIIH2‖1,k + kε‖Φ‖2L∞(D)

(
‖wIA‖1,k + ‖wIIA ‖1,k + ‖wIH2‖1,k + ‖wIIH2‖1,k

)
≤ 2q‖f‖0 + kε‖Φ‖2L∞(D)(2C‖f‖0 + 2qk−1‖f‖0),

where q can be chosen arbitrarily small by adjusting η above and C is a k- and Φ-independent
constant. Here, we implicitly used that Ω is star-shaped and, hence, the stability constant of the
Helmholtz equation with ε = 0 is of the order one, cf. [16, 4]. Clearly, we see the existence of
a constant θ2 such that, if kε‖Φ‖2L∞(D) ≤ θ2, we have ‖f̃‖0 < q̃‖f‖0 for some q̃ < 1. Iterating

this argument, we can write w as sum of series (one series of analytic functions, one series of
H2-functions) that can be bounded with the help of the geometric series.

B. Proof of Lemma 3.1

Proof of Lemma 3.1. We proceed similar to [5]. Let Ph be defined via (3.2) and write w−wh =
w − Phw + wh − Phw = ρ+ ηh. We have by (3.3) and the solution splitting for w

‖ρ‖1,k . inf
vh∈Vh,p

‖w − vh‖1,k . (h+ (kh)p)Cdata,

where we used the approximation properties of Vh,p and Proposition 2.3 in the last step. Hence,
we only have to consider ηh = wh − Phw in the following. Observe that ηh satisfies

(∇ηh,∇vh)− (k2(1 + χDε|Φ|2)ηh, vh) + ik(ηh, vh)Γ = (k2(1 + χDε|Φ|2)(Phw − w), vh)
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for all vh ∈ Vh,p.
First step: Insert vh = ηh and consider the imaginary part. We obtain with the standard

L2-projection Πh that

k‖ηh‖2Γ = ={(k2(1 + χDε|Φ|2)ρ, ηh)} ≤ k2‖Πhρ‖1−p,h‖ηh‖p−1,h + kθ2‖ρ‖0 ‖ηh‖0

As in [5, p. 792], we have ‖Πhρ‖1−p,h . hp‖ρ‖1,k. Further, (3.3) gives ‖ρ‖0 . h‖ρ‖1,k. Hence,

‖ηh‖20,Γ ≤ k2h2p−1‖ηh‖2p−1,h + θ2
2h‖ηh‖20 + h‖ρ‖21,k.

Second step: Recall the definition of Ah in (3.5). Consequently, we have

(Ahηh, vh) = (k2 + 1)(ηh, vh) + k2(ε|Φ|2ηh, vh)D + ik(ηh, vh)Γ + k2(Πhρ, vh) + k2(ε|Φ|2ρ, vh)D

for any vh ∈ Vh,p. For given 1 ≤ m ≤ p, set vh = Am−1
h ηh to obtain

‖ηh‖2m,h = (k2 + 1)‖ηh‖2m−1,h + k2(ε|Φ|2ηh, Am−1
h ηh)D + ik(ηh, A

m−1
h ηh)Γ

+ k2(A
(m−1)/2
h Πhρ,A

(m−1)/2
h ηh) + k2(ε|Φ|2ρ,Am−1

h ηh)D.

From trace inequalities (cf. [5]) and (3.7) we obtain

|(ηh, Am−1
h ηh)Γ| . ‖ηh‖0,Γ h−m+1/2‖ηh‖m−1,h

. (khp−m‖ηh‖p−1,h + θ2h
1−m‖ηh‖0 + h1−m‖ρ‖1,k)‖ηh‖m−1,h

. (k‖ηh‖m−1,h + θ2h
1−m‖ηh‖0 + h1−m‖ρ‖1,k)‖ηh‖m−1,h.

Further, we have with (3.7) that

|k2(ε|Φ|2ηh, Am−1
h ηh)D| . kθ2‖ηh‖0‖ηh‖2m−2,h . kθ2‖ηh‖0 h1−m‖ηh‖m−1,h

and

|k2(ε|Φ|2ρ,Am−1
h ηh)D| . kθ2‖ρ‖0 ‖ηh‖2m−2,h . khθ2‖ρ‖1,k h1−m‖ηh‖m−1,h.

Altogether, we have for 1 ≤ m ≤ p that

‖ηh‖2m,h . k2‖ηh‖2m−1,h + k2‖Πhρ‖m−1,h‖ηh‖m−1,h

+ (k‖ηh‖m−1,h + θ2h
1−m‖ηh‖0 + h1−m‖ρ‖1,k + θ2h

2−m‖ρ‖1,k)k‖ηh‖m−1,h,

and by Young’s inequality we obtain

‖ηh‖m,h . k‖ηh‖m−1,h + k‖Πhρ‖m−1,h + θ2h
1−m‖ηh‖0 + (θ2h

2−m + h1−m)‖ρ‖1,k.

As in [5], it holds that k‖Πhρ‖m−1,h . h1−m‖ρ‖1,k, so that we deduce

‖ηh‖m,h . k‖ηh‖m−1,h + θ2h
1−m‖ηh‖0 + (θ2h

2−m + h1−m)‖ρ‖1,k. (B.1)

Recursively, we obtain

‖ηh‖m,h . km‖ηh‖0 +

m−1∑
j=0

{
kjθ1+j

2 h1−m+j‖ηh‖0 + kj(θ1+j
2 h2−m+j + h1−m+j)‖ρ‖1,k

}
,

where we used kh . 1. Obviously, if kε‖Φ‖2L∞(D) ≤ θ2 with θ2 sufficiently small, we deduce

‖ηh‖m,h . (km + θ2h
1−m)‖ηh‖0 + h1−m‖ρ‖1,k, (B.2)
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Third step: Let z ∈ H1(Ω) be the dual solution of

−∆z − k2(1 + χDε|Φ|2)z = ηh,

∂νz − ikz = 0.

Multiplying with wh−w = ρ+ηh, we obtain with the definition of Ph and Galerkin orthogonality

(ρ+ ηh, ηh) = (∇(wh − w),∇z)− (k2(1 + χDε|Φ|2)(wh − w), z) + ik(wh − w, z)Γ

= (∇(wh − w),∇(z − Phz))− (k2(1 + χDε|Φ|2)(wh − w), z − Phz)
+ ik(wh − w, z − Phz)Γ

= (∇ρ,∇(z − Phz)) + ik(ρ, z − Phz)Γ − k2((1 + χDε|Φ|2)(ηh + ρ), z − Phz).

Hence, we deduce

‖ηh‖20 = (∇ρ,∇(z − Phz)) + ik(ρ, z − Phz)Γ − k2((1 + χDε|Φ|2)(ηh + ρ), z − Phz)− (ρ, ηh)

≤ ‖ρ‖1,k‖z − Phz‖1,k + kθ2‖ρ‖0 ‖z − Phz‖+ ‖ρ‖0 ‖ηh‖0 + kθ2‖ηh‖0 ‖z − Phz‖0
+ k2|(ηh, z − Phz)|.

Using the splitting according to Proposition 2.3 for z and the properties of Ph, we have

‖Phz − z‖1,k . (h+ (kh)p)‖ηh‖0
‖Phz − z‖0 . h(h+ (kh)p)‖ηh‖0.

Inserting these estimates as well as ‖ρ‖0 . h‖ρ‖1,k into the one for ηh, we get

‖ηh‖20 .
(
(1 + θ2)(h+ (kh)p)‖ρ‖1,k

)
‖ηh‖0 + θ2(h+ (kh)p)‖ηh‖20 + k2|(ηh, z − Phz)|.

As in [5, eq. (5.13)], we have

|(ηh, z − Phz)| = |(ηh,Πhz − Phz)|
. ‖ηh‖p−1,h‖Πhz − z + z − Phz‖1−p,h
. ‖ηh‖p−1,hh

p(h+ (kh)p)‖ηh‖0.

Finally, we arrive at

‖ηh‖0 . (1 + θ2)(h+ (hk)p)‖ρ‖1,k + θ2(h+ (kh)p)‖ηh‖0 + k2hp(h+ (kh)p)‖ηh‖p−1,h.

Obviously, if kε‖Φ‖2L∞(D) ≤ θ2 with θ2 sufficiently small,

‖ηh‖0 . (h+ (hk)p)‖ρ‖1,k + k2hp(h+ (kh)p)‖ηh‖p−1,h. (B.3)

Fourth step: By plugging (B.2) with m = p− 1 into (B.3), we deduce

‖ηh‖0 . (h+ (hk)p)‖ρ‖1,k + k2hp(h+ (kh)p)
(
(kp−1 + θ3h

2−p)‖ηh‖0 + h2−p‖ρ‖1,k
)

. (h+ (kh)p)‖ρ‖1,k + ((kh)p+1 + k(kh)2p)‖ηh‖0 + θ3(h+ (kh)p)‖ηh‖0,

where we used kh . 1 Hence, if k(kh)2p ≤ C0 sufficiently small and θ3 . 1 sufficiently small, we
have

‖ηh‖0 . (h+ (kh)p)‖ρ‖1,k . (h2 + h(kh)p + (kh)2p)Cdata

by the stability of w and Ph. Combining with (B.1) for m = 1, we also obtain the bound for
‖ηh‖1,k, which finishes the proof of (3.9).

The triangle inequality and the stability of w then also give us (3.10) as well as existence and
uniqueness of the discrete solution.
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