KIT | KIT-Bibliothek | Impressum | Datenschutz

Analytical Model of CVD Growth of Graphene on Cu(111) Surface

Popov, Ilya 1; Bügel, Patrick 2; Kozlowska, Mariana ORCID iD icon 2; Fink, Karin ORCID iD icon 2; Studt, Felix 1,3; Sharapa, Dmitry I. ORCID iD icon 1
1 Institut für Katalyseforschung und -technologie (IKFT), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract:

Although the CVD synthesis of graphene on Cu(111) is an industrial process of outstanding importance, its theoretical description and modeling are hampered by its multiscale nature and the large number of elementary reactions involved. In this work, we propose an analytical model of graphene nucleation and growth on Cu(111) surfaces based on the combination of kinetic nucleation theory and the DFT simulations of elementary steps. In the framework of the proposed model, the mechanism of graphene nucleation is analyzed with particular emphasis on the roles played by the two main feeding species, C and C$_{2}$. Our analysis reveals unexpected patterns of graphene growth, not typical for classical nucleation theories. In addition, we show that the proposed theory allows for the reproduction of the experimentally observed characteristics of polycrystalline graphene samples in the most computationally efficient way.


Verlagsausgabe §
DOI: 10.5445/IR/1000150906
Veröffentlicht am 23.09.2022
Originalveröffentlichung
DOI: 10.3390/nano12172963
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Katalyseforschung und -technologie (IKFT)
Institut für Nanotechnologie (INT)
Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2079-4991
KITopen-ID: 1000150906
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Nanomaterials
Verlag MDPI
Band 12
Heft 17
Seiten Art.Nr. 2963
Vorab online veröffentlicht am 27.08.2022
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page