KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Domain Adaptation for Detecting Bomb Craters in Aerial Images

Geiger, Marco 1,2; Martin, Dominik ORCID iD icon 1,2; Kühl, Niklas ORCID iD icon 1,2
1 Karlsruhe Service Research Institute (KSRI), Karlsruher Institut für Technologie (KIT)
2 Institut für Wirtschaftsinformatik und Marketing (IISM), Karlsruher Institut für Technologie (KIT)

Abstract:

The aftermath of air raids can still be seen for decades after the devastating events. Unexploded ordnance (UXO) is an immense danger to human life and the environment. Through the assessment of wartime images, experts can infer the occurrence of a dud. The current manual analysis process is expensive and time-consuming, thus automated detection of bomb craters by using deep learning is a promising way to improve the UXO disposal process. However, these methods require a large amount of manually labeled training data. This work leverages domain adaptation with moon surface images to address the problem of automated bomb crater detection with deep learning under the constraint of limited training data. This paper contributes to both academia and practice (1) by providing a solution approach for automated bomb crater detection with limited training data and (2) by demonstrating the usability and associated challenges of using synthetic images for domain adaptation.


Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Karlsruhe Service Research Institute (KSRI)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 01.2023
Sprache Englisch
Identifikator ISBN: 9780998133164
ISSN: 1530-1605
KITopen-ID: 1000150929
Erschienen in 56th Hawaii International Conference on System Sciences
Veranstaltung 56th Hawaii International Conference on System Sciences (HICSS 2023), Maui, Hawaii, 03.01.2023 – 06.01.2023
Verlag IEEE Computer Society
Seiten 825-834
Serie Proceedings of the Annual Hawaii International Conference on System Sciences
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page