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Abstract 

A general approach is applied to study a new type of intrinsic spatially localized vibrational 

modes in a defect free nonlinear crystal lattice, i.e., discrete breathers (DBs). For that, dynamics 

of eight delocalized nonlinear vibrational modes (DNVMs) of two-dimensional triangular lattice 

is investigated in three-dimensional single crystal of hcp Ti. Molecular dynamics simulations 

are performed using two interatomic potentials (Ti_EAM and Ti_MEAM). The eight DNVMs 

modeled with Ti_EAM potential are found to be unstable and dissipate their vibrational energy 

very rapidly. The usage of Ti_MEAM interatomic potential allows to excite stable two-

dimensional (planar) DBs. These localized vibrational modes can be called DBs, since the 

frequency of atomic oscillations is above the upper edge of the phonon spectrum of Ti, and the 

atomic oscillations are localized in one spatial direction and delocalized in the other two 

directions. The lifetimes of the two-dimensional DBs are in the range of 5-14 ps, while the 

maximal lifetime of DBs excited on the basis of DNVM 7 is circa 28 ps. These DBs can 

accumulate vibrational energy, which is in the range of 0.1-0.5 eV per atom. The stable two-

dimensional DBs are characterized by a hard type of nonlinearity. A comparison with analogous 

two-dimensional DBs in fcc metals are undertaken. The obtained results make a significant 

contribution to the study of DBs in metals and will be important for understanding the influence 

of intrinsic localized vibrational modes on the physical properties of materials.  
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1. Introduction 

Considerable attention in solid-state physics is paid to the study of crystal lattice 

oscillations. Under extreme conditions, such as irradiation with high-energy particles, elevated 

temperatures, severe plastic deformation etc., the anharmonism of interatomic interactions 

should be taken into account. Many fundamental characteristics of crystals (heat capacity, 

thermal expansion, changes of the elastic constants) can be determined due to analysis of atomic 

oscillations.  

About three decades ago, it was shown that, in addition to phonon wave packets, 

nonlinear defect-free lattices are capable of supporting a fundamentally new type of vibrational 

modes, which were called intrinsic localized modes or discrete breathers (DBs), whose 

contribution to crystal physics has yet to be described. 

On the other hand, Chechin et al. developed a general method for finding exact solutions 

to nonlinear equations of atomic motion in the form of delocalized nonlinear vibrational modes 

(DNVMs) for lattices of any dimension [1-3]. This method is based on group theory applied to 

the analysis of lattice point symmetry. DNVMs are completely determined by the lattice 

symmetry and exist as exact solutions for any type of interatomic potential and any amplitude 

[1-3]. The simplest example of DNVM in a nonlinear chain of particles is the zone-boundary 

mode, where the displacement of the n-th particle from its equilibrium lattice site is described 

as 𝑢𝑛(𝑡) = (−1)𝑛𝐴 sin𝜔𝑡. If this mode has a frequency above the phonon spectrum of the 

chain, which is the case for hard-type anharmonic interactions, an approximate DB solution can 

be obtained by introducing the following localizing function with radial symmetry: 𝑢𝑛(𝑡) =
(−1)𝑛𝐴 sin𝜔𝑡 / cosh(𝛽𝑛). This approach (application of the localizing function on the 

DNVMs with the frequencies above the upper edge of the phonon spectrum) was used to find a 

number of DBs in the triangular -FPU (Fermi-Pasta-Ulam) lattice [4] and in bcc vanadium and 

niobium [5]. 

Spontaneous thermofluctuational generation is the most natural way to excite DBs in 

crystals [6-8]. An increase of the temperature results in an increase of the probability of the 

thermofluctuational excitation of a DB [8, 9], but at the same time it reduces the DB lifetime 

due to energy dissipation via interaction with neighboring atoms oscillating with larger 

amplitudes.  

An n-dimensional lattice can support k-dimensional DBs (k < n), which are delocalized 

in k dimensions and localized in (n – k) dimensions. The most studied currently are zero-

dimensional DBs spatially localized in all n dimensions [10-19]. One-dimensional DBs in two-

dimensional triangular lattice are localized only in one dimension [20], so that in this case n = 2 

and k = 1. The case of n = 3 and k = 1, i.e., one-dimensional DB, in three-dimensional fcc metals 

was considered in Ref. [4]. Planar DBs (k = 2) in three-dimensional (d = 3) fcc metals were 

investigated in Ref. [21]. As it was recently found out, DBs can exist near crystal surface in 

Pt3Al intermetallic alloy [22]. It is quite probable that the DBs in free-standing graphene 

reported by Fraile et al. [10] can be obtained by imposing a localizing function on one of the 

DNVMs of hexagonal lattice, although this hypothesis needs to be verified. 

DBs have been found experimentally in atomic wave packets [23], arrays of 

superconducting Josephson junctions [24-26], periodic nonlinear electric chains [27], etc. In a 

recent theoretical work [28], the possibility of existence of DBs in a chiral helimagnet was 

discussed.  
Another mechanism of DB generation is associated with its spontaneous appearance due 

to the modulation instability of the DNVM [29-31], which leads to a spatial localization of the 

vibrational energy, i.e., formation of DBs. They slowly emit their energy in the form of small 

amplitude waves thus contributing to a transition of the system to thermal equilibrium. The 

modulational instability of various DNVMs was studied in a two-dimensional hexagonal lattice 

described by a pair potential with a quartic hard-type nonlinearity [32]. The authors found that 

if the atoms vibrate with a frequency outside the phonon spectrum of the crystal, and their 
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amplitudes are smaller than a certain threshold value, the vibrational energy is not transferred 

into the rest of the crystal in the form of small-amplitude oscillations. Due to the fact these 

DNVMs can exist for a relatively long period time without interacting with other "unperturbed" 

atoms. 

Recently, it was established that two-dimensional DBs can be excited in a (111) close-

packed atomic plane based on four out of eight one-component DNVMs in defect-free fcc metals 

(Al, Cu, Ni). Thus excited DBs are characterized by a hard type of nonlinearity, can accumulate 

vibrational energy of the order of 0.6-1.5 eV per atom and have the lifetimes in the range of 24-

47 ps [33]. As a continuation of the above cited work, Bachurina and Kudreyko demonstrated 

that two-dimensional DBs can be also excited based on one selected two-component DNVM in 

the same fcc metals [34]. Note, that one-component DNVM is named this way due to the fact 

that it is characterized by a single parameter, which is the amplitude of atomic oscillations from 

their equilibrium lattice sites. By analogy, two-component DNVM is described by two 

parameters, which determine two different atomic oscillation amplitudes within the same 

DNVM. In this case, the first group of atoms is characterized by one value of the displacement 

amplitude, while the second group – by another value. As was demonstrated in the recent 

publication [35], the same crystal lattice can support various types of DBs and therefore, 

elucidation of their effect on materials properties is an actual task. 

For a time being, the systematic study of two-dimensional DBs excited based on one- 

and two-component DNVMs was performed only for fcc metals, while similar investigations 

for metals with a different crystal lattice are absent. It will not be superfluous to say that the type 

of crystal lattice and the corresponding symmetry largely determine the properties and 

characteristics of DBs. Therefore, the main goal of the present work is to study two-dimensional 

DBs excited based on eight one-component DNVMs in a three-dimensional hcp single crystals 

of Ti with the help of molecular dynamics simulations. In order to elucidate how the choice of 

interatomic potential can influence the possibility of existence of two-dimensional DBs, all 

calculations are carried out for two different Ti potentials.  

 

2. Delocalized nonlinear vibrational modes and simulation details 

Eight one-component DNVMs in a two-dimensional triangular lattice derived by 

Chechin and Ryabov [3] are presented in Fig. 1. The x-axis is directed along the horizontal 

atomic rows, the y-axis is perpendicular to the x-axis and is along the vertical atomic rows, and 

the z-axis is perpendicular to the plane of the figure. The basal plane (0001) in hcp crystal is 

equivalent to two-dimensional triangular lattice, and therefore the DNVMs can be used as 

starting points to excite two-dimensional DBs in hcp lattice. It is worth noting that the same 

DNVMs can be used for excitation of DBs in fcc lattice, inasmuch as basal plane (0001) in hcp 

lattice is equivalent to a close-packed (111) plane in fcc crystal. At that, the atomic packing 

above and below this chosen plane in hcp and fcc lattices are certainly different.  

According to the results obtained in Ref. [4], DNVMs 1, 2, 4, 5 are symmetrical, while 

DNVM 3, 6, 7, 8 are asymmetrical ones. The main difference is that the symmetric modes have 

equal in absolute value maximal positive and negative displacements from the equilibrium 

lattice sites, and asymmetric ones, on the contrary, have unequal positive and negative 

displacements. As was already pointed out in our previous publication [33], initiation of atomic 

displacements along “the short” arm of asymmetrical DNVMs results in an intensive energy 

dissipation and, as a consequence, an instability of these DNVMs. Based on this, atomic 

displacements in all four asymmetrical DNVMs 3, 6, 7, 8 are initiated along “the long” arm. 

Thus, these eight DNVMs are excited in the same basal plane, and then their lifetimes, 

frequency, energy and oscillation amplitude are analyzed.  
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [35] is applied 

for molecular dynamics simulations. Two different interatomic potentials for hcp Ti are taken 

from the LAMMPS library. The first one is a many-body parametrized semi-empirical potential 

of the Finnis-Sinclair type based on the embedded atom method (EAM) (designated throughout 
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the paper for brevity as Ti_EAM) [36], and the second one combines the modified embedded-

atom method (MEAM) and the Stillinger-Weber potentials (designated as Ti_MEAM) [37]. The 

MEAM potential is a modification of the EAM potential and includes directional bonds, the 

change in the angle between them contributes to the interaction energy. The equilibrium lattice 

constants at zero temperature reproduced by the Ti_EAM interatomic potential are a = 2.967 Å 

and c/a = 1.592, and by the Ti_MEAM potential are a = 2.931 Å and c/a = 1.596.  

In order to find initial conditions at which stable DBs can exist, variation of the 

amplitudes of atomic displacements in the relatively wide range of 0.05–0.5 Å are carried out. 

Only atoms belonging to the corresponding DNVMs (marked with arrows in Fig. 1) are 

displaced, while the other atoms have zero initial displacements. At the initial moment of time, 

all atoms in the computational cell have zero velocities. The time step is 1 fs, which is small 

enough for this type of simulations. Periodic boundary conditions are applied along all the three 

coordinate directions. Molecular dynamics simulations are performed at initial temperature 

T = 0 K, and the NVE thermodynamic ensemble (constant number of atoms, volume, and 

energy) is applied. Zero temperature is used to avoid the thermal fluctuations which significantly 

disturb oscillation of DNVM atoms and thus can decrease their lifetime drastically. All 

simulations are limited to 4×104 time steps (corresponding to 40 ps of simulation time), which 

is enough for observation of the studied phenomena.  

 

 

Table 1. The lattice constants а0 (in Å) and c0/a0 at T = 0 K, the upper edge of phonon spectrum 

ω (in THz), the sizes of the three-dimensional computational cells along the x-, y- and z-

directions (in Å) and the number of atoms (N) in the cells used for calculation of eight DNVMs 

in hcp Ti for the two different interatomic potentials. 

 

metal 

 

а0 

 

c0/a0 

 

ω 

computational cell (x×y×z) N 

DNVMs 

1, 2, 4, 5 

DNVMs 

3, 6, 7, 8 

DNVMs 

1, 2, 4, 5 

DNVMs 

3, 6, 7, 8 

Ti_EAM 2.967 1.592 4.9 29.3×50.8×49.8 35.2×50.8×49.8 4000 4800 

Ti_MEAM 2.931 1.596 5.0 29.3×50.8×49.8 35.2×50.8×49.8 4000 4800 

 

 

Calculation of the phonon density of states (DOS) are carried out by means of the 

standard method implemented in LAMMPS. The Green's function molecular dynamics method 

is applied to compute the dynamical matrix based on fluctuation-dissipation theory for a group 

of atoms (for detail see Refs. [35, 38]). The Green’s function is measured every 10 time steps. 

Totally 10 million time steps at a constant temperature of 20 K using NVT thermodynamic 

ensemble (constant number of atoms, volume, and temperature) are performed. The results of 

DOS calculation for both interatomic potentials are demonstrated in Fig. 2. Thus the upper edges 

of the phonon spectrum are found to be 4.9 THz for the Ti_EAM potential and 5.0 THz for the 

Ti_MEAM potential. 

The sizes of the computational cells corresponding to various DNVMs, the number of 

atoms in them, equilibrium lattice constants at T = 0 K, and the upper edge of phonon spectrum 

for Ti_EAM and Ti_MEAM potentials are summarized in Table 1. Note that computational 

cells for asymmetrical DNVMs 3, 6, 7, 8 are different from those used for symmetrical DNVMs 

1, 2, 4, 5. This is obviously due to the different periods of the unit cells of the vibrational state 

for symmetrical and asymmetrical DNVMs. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/greens-function
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/molecular-dynamics
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DNVM 1 DNVM 2 

  
DNVM 3 DNVM 4 

  
DNVM 5 DNVM 6 

  
DNVM 7 DNVM 8 

Fig. 1. The eight one-component DNVMs in two-dimensional triangular lattice derived in 

Ref. [36]. The DNVMs 1, 2, 4, 5 are symmetrical, while the DNVM 3, 6, 7, 8 are asymmetrical. 

The red arrows show atomic displacements from the equilibrium lattice sites. The blue dashed 

lines indicate the unit cells of the vibrational state in the considered plane. At the initial moment 

of time, the length of all displacement vectors for each mode is the same and equal to A. The 

presented schemes demonstrate only the part of a basal plane inside the three-dimensional 

computational cell. 
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Fig. 2. The phonon density of states (DOS) of hcp Ti calculated with the use of the two 

interatomic potentials Ti_EAM and Ti_MEAM. The upper edges of the phonon spectrum 

reproduced by the potentials are 4.9 THz (Ti_EAM) and 5.0 THz (Ti_MEAM). 

 

 

3. Simulation results and discussion 

 In the following paragraphs the results obtained for both used interatomic potentials 

Ti_EAM and Ti_MEAM are presented and discussed separately.  

 3.1 Ti_EAM potential 

Molecular dynamics simulations demonstrate that no excitation of stable two-

dimensional DBs in hcp Ti on the basis of both symmetrical and asymmetrical DNVMs occurs. 

In order to illustrate this fact, Fig. 3a displays the time dependence of the kinetic energy of the 

ten consecutive atoms along the direction perpendicular to the close-packed plane, where 

DNVM 2 were excited at the initial amplitude of A = 0.25 Å. At that, atom numbered as 1 is 

located in the base plane, i.e., it belongs to the DNVM. It should be noted that energy dissipation 

takes place symmetrically with respect to the base plane, and therefore only the results for the 

atoms located above this plane are presented. As clearly seen in Fig. 3a, right after the onset of 

the simulation, the kinetic energy of atom 1 reduces almost linearly in time, which is associated 

with the dissipation of the vibrational energy and its transfer onto the neighboring atomic planes. 

This is confirmed by that fact that vibrational energy of atom 2 noticeably increases and is about 

of 10% of the initial energy of atom 1 and experiences characteristic irregular jumps. The 

vibrational energy of atom 3 increases, reaches a maximum, and then decreases as shown in 

Fig. 3a. Moreover, the maximum of the vibrational energy of atom 3 exactly corresponds to the 

time instant, when atom 1 transferred to the crystal all its kinetic energy, which became almost 

equal to zero. An increase in the energy of atom 3 is accompanied by the subsequent transfer of 

the vibrational energy to the neighboring atomic planes, where atoms 4-10 are located. As also 

clearly presented in Fig. 4a, atoms 4-10 are at rest until an excitation wave, which is due to the 

destruction of the DNVM 2, comes to them and increases their oscillation amplitudes 

significantly. Thus the energy dissipation occurs in the direction perpendicular to the DNVM 

plane. Since the size of the computation cell is finite along the y-axis, and periodic boundary 

conditions are used, two excitation waves reach the upper and the lower edges of the cell, enter 

the cell again from opposite sides and then continue their motion through the crystal. This is the 

reason for the appearance of the second and the third bursts of vibrational energy for atoms 1, 
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3, 5, 6, and 8, for which they are especially clearly visible. Similar results were obtained for the 

other both symmetrical and asymmetrical DNVMs presented in Fig. 1, with the difference that 

DBs decay occurred in a shorter time of approximately 1 ps, i.e., about 10 atomic oscillations.  

Since, as it turned out, attempts to excite the stable two-dimensional DBs using Ti_EAM 

potential were not successful, the possibility of such an excitation using Ti_MEAM potential 

are studied in detail in the following paragraph. It is worth noting that a similar phenomenon, 

when in the same material DBs can be excited with one potential and cannot be excited with 

another one, has already been noted earlier. For example, DBs in diamond could not be excited 

using Tersoff interatomic potential [39], while Hizhnyakov et al. [40, 41] managed to excite 

DBs employing the more advanced long-range carbon bond-order potential (LCBOP) [42]. The 

latter in contrast to the “simple” Tersoff potential, describes the orientation of bonds and 

switching-off effects in a more accurate way.  

 

 3.2 Ti_MEAM potential 

Each considered DNVM has its own amplitude range in which it can be excited. Large-

amplitude atomic oscillations are localized along one spatial z direction and delocalized along 

the two other x and y directions in three-dimensional single crystal. The studied DNVMs remain 

in the atomic plane, where they were initially excited. The amplitudes of atomic oscillations 

exponentially decrease with distance from this plane, and therefore these DNVMs can be called 

two-dimensional DBs. The latter is stable (or long-lived) two-dimensional (or in-plane excited) 

DB in the case when the following three conditions are satisfied: (1) the lifetime exceeds 5 ps 

(circa 40 oscillations); (2) the frequency of atomic oscillations is above the upper edge of the 

phonon spectrum of the crystal; (3) the frequency of atomic oscillations increases with 

increasing amplitude, i.e., corresponds to a hard type of nonlinearity, which is found to be typical 

for pure metals with different crystal lattices and is related to the screening of the ion-ion 

interaction by the conduction electrons [43, 44]. 

Stable two-dimensional DBs can be excited only on the basis of DNVMs 2 and 5-7, 

while DNVMs 1, 3, 4 and 8 fades out and dissipate their vibrational energy almost immediately 

after a few oscillation periods. The simulation results obtained for the eight DNVMs excited 

employing Ti_MEAM interatomic potential are summarized in Table 2. 

 

 

Table 2. Summary of the simulation results for eight DNVMs in hcp Ti calculated with the use 

of Ti_MEAM interatomic potential. The symmetry of DNVMs and stability of excited on their 

basis two-dimensional DBs are given. The range of initial amplitudes (in Å) at which stable (or 

long-lived) two-dimensional DB can be excited, and maximal lifetime for the used 

computational cell are also presented.  

DNVM Symmetry  Stability Amplitude range (Å) Maximal lifetime (ps) 

1 symmetrical no ‒ ‒ 

2 symmetrical yes 0.2 ≤ A ≤ 0.4 8.9 

3 symmetrical no ‒ ‒ 

4 asymmetrical no ‒ ‒ 

5 symmetrical yes 0.15 ≤ A ≤ 0.4 13.8 

6 asymmetrical yes 0.10 ≤ A ≤ 0.35 11.3 

7 asymmetrical yes 0.1 ≤ A ≤ 0.5 27.9 

8 asymmetrical no ‒ ‒ 
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Figure 4 demonstrates the dependences of the lifetime, oscillation frequency, kinetic 

energy per oscillating atom, and steady-state amplitude vs. initial oscillation amplitude for the 

stable DNVMs 2, 5-7 vs. initial amplitude A. The lifetime of the studied DNVMs is in the range 

of 5 to 14 ps. The only exception is DNVM 7 excited with the initial amplitude of A = 0.2 Å, 

which has the lifetime of 28 ps (see Fig. 4a). It should be noted that in the range of initial 

amplitudes of 0.25-0.5 Å, DNVM 3 has the lifetime less than 5 ps, i.e., it is just at the lower 

limit of the lifetime defined above, and therefore it cannot be considered as a stable DB. Despite 

the fact that the lifetime is used as a parameter for characterizing DB stability, it should be borne 

in mind that this parameter is a conditional factor, since an increase of the size of the 

computational cell results in an increase of the DB lifetime. This, for example, was recently 

discovered for a linear (rod-like) DB in fcc Ni [10]. Nevertheless, it should be pointed out that 

long-lived DBs excited in the computational cell of one size remain long-lived ones in the cells 

of the larger size. Hence, DB lifetime can be considered as a qualitative parameter when 

characterizing nonlinear vibrational modes.  

DB decay occurs at a certain moment of time by the deviation of one (or several) 

oscillating atoms from a given displacement vector. The latter is associated with the loss of 

vibrational energy due to interaction with neighboring atoms and causes a cascade of 

displacements, which propagates very quickly in a given plane containing excited atoms. 

  
(a) (b) 

Fig. 3. Time dependence of the kinetic energy of the ten selected atoms along the direction 

perpendicular to the DNVM plane calculated using the two interatomic potentials (a) Ti_EAM 

and (b) Ti_MEAM. The initial amplitude A = 0.25Å is used for both interatomic potentials. 

Atom numbered as 1 belongs to the close-packed atomic plane, where symmetrical DNVM 2 

is excited, while atoms 2-10 are above this plane. 
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The dependence of the oscillation frequency of DNVMs, ω, vs. initial amplitude A is 

presented in Fig. 4b. Note that excitation of any type of DBs occurs when its frequency is above 

the upper edge of the phonon spectrum of low-amplitude oscillations of the crystal lattice, which 

is about 5 THz (see Fig. 2). Moreover, the deviation of the DB frequency from the spectrum is 

due to its dependence on the amplitude. If the DB frequency increases (decreases) with the 

amplitude, then DB exhibits a hard (soft) type of nonlinearity. As clearly seen in Fig. 4b, all 

DNVMs demonstrate a hard type of nonlinearity. In contrast to fcc metals [10, 11, 33], hcp Ti 

does not exhibit a sharp increase in the frequency of vibrational modes. For instance, in the 

range of the investigated amplitudes, the frequency of two-dimensional DB in Ti increases from 

6 to 8.5 THz, while from 9 to 18 THz in fcc Ni [33].  

Figure 4c shows the dependence of the kinetic energy of two-dimensional DBs on the 

initial amplitude. The energy increases with the increase in amplitude. In the range of low initial 

amplitudes (A ≤ 0.2 Å), the data points for different DNVMs are overlay each other, suggesting 

that in this amplitude range all considered DNVMs have similar ability to accumulate 

vibrational energy. However, at higher initial amplitudes (A > 0.2 Å), vibrational energy per 

atom in the different DNVMs differs significantly. For example, at maximal investigated 

amplitude of A = 0.5 Å, the highest vibrational energy per atom in DNVM 2 is of about 0.5 eV, 

which is approximately two times higher than that for DNVMs 6 and 7. 

The steady-state amplitude of the stable DBs excited on the basis of one-component 

DNVMs as a function of the initial amplitude is demonstrated in Fig. 4d. This steady-state 

oscillation amplitude is determined by averaging the span of DNVM atomic oscillations at a 

time of 1 ps after the onset of simulation. As seen, for all presented DBs, initial amplitude is 

always less than steady-state amplitude, which is set after several oscillations. It is due to the 

fact that DBs dissipate their vibrational energy onto neighboring atoms. This ability of different 

two-dimensional DBs to dissipate energy is very different. In the range of initial amplitudes 

from 0.2 to 0.35 Å, DBs excited on the basis of DNVMs 2, 5-7 weakly dissipate their vibrational 

energy, and therefore the points are located very close to the line a = A (see Fig. 4d). It should 

be mentioned that wrong choice of the arm of initial displacements for asymmetric DNVMs can 

result in outwardly paradoxical fact, when the steady-state amplitude is higher that the initial 

one, i.e., a > A. It is for this reason that the initial displacements of the atoms in the asymmetric 

modes are set along the “long” arm in the present study.  

Figure 3b presents the time dependence of the kinetic energy of the ten consecutive 

atoms along the direction perpendicular the plane, where DB was excited based on DNVM 2 

with the initial amplitude of A = 0.25Å, but for Ti_MEAM interatomic potential. In contrast to 

Ti_EAM (Fig. 3a), oscillations of the kinetic energy continue up to 8.9 ps, which is the lifetime 

of this two-dimensional DB. Oscillation amplitudes of the atoms 2-10 are at least one order of 

magnitude lower than that for atom 1 belonging to DNVM 2 and begin to increase only after 7 

ps. The latter is an indicator that the DB begins to disintegrate and dissipate its vibrational energy 

over the volume of the single crystal. First the energy is transferred onto the nearest atomic 

planes and then spreads to the next ones. Note again that the amplitudes of atomic oscillations 

in the adjacent rows rapidly decrease with increasing distance from the plane, where the DB was 

initially excited. For instance, the oscillation amplitude is circa 0.2 Å in the base plane and it is 

0.02 Å in the second one. In the third and subsequent atomic planes the oscillation amplitudes 

are already indistinguishable from zero (see Fig. 3b). Thus, atomic oscillations drastically 

decrease with the distance from the base atomic plane, i.e., they are strongly localized, and 

therefore these DNVMs can be considered as two-dimensional (planar) DBs.  
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Fig. 4. The lifetime (a), oscillation frequency (b), kinetic energy per oscillating atom (c), and 

steady-state amplitude vs. initial oscillation amplitude A calculated in hcp Ti using the 

Ti_MEAM interatomic potential. The numbers in the legend correspond to the number of one-

component DNVMs illustrated in Fig. 1, which are used for excitation of two-dimensional 

DBs. The results are presented only for stable two-dimensional DBs. The gray area in (b) 

shows the frequency region below the upper edge of the phonon spectrum of hcp Ti. The gray 

area in (d) indicates the region, where a ≤ A, demonstrating the fact that DBs always dissipate 

their initial vibrational energy. The solid lines interpolating the data points are guides to the 

eye.  

 

 

 Two symmetrical DNVMs (1 and 3) and two asymmetrical DNVMs (4 and 8) turn out 

to be unstable, while the other two symmetrical and two asymmetrical DNVMs are stable. The 

longest lifetime has DB excited based on asymmetric DNVM 7, which looks like a burst in 

Fig. 4a. From the results presented in Fig. 4, it is impossible to make an unambiguous conclusion 

that DBs excited with asymmetrical DNVMs have a longer lifetime. In contrast to asymmetrical 

modes, symmetrical DNVMs, as a rule, have higher oscillation frequencies and are more distant 

from the upper edge of the phonon spectrum (Fig. 4b). At high initial amplitudes, the highest 

vibrational energy per atom can be accumulated by the symmetrical DNVM 2, and the smallest 

asymmetrical DNVM 7. The energy values of the other DNVMs are between them. Here, it is 

also impossible to draw any conclusion about the influence of mode symmetry on the ability to 

accumulate vibrational energy. Thus, it can be concluded that long-lived DB in hcp Ti is one 



11 

 

whose atomic oscillation frequency is slightly above the upper edge of the phonon spectrum, 

and one that accumulates vibrational energy poorly. It follows from the foregoing that, based on 

the symmetry of the vibrational modes, it is impossible to say in advance which of them will 

give the most long-lived DBs. Therefore, it is necessary to investigate in each material all 

possible DNVMs allowed by the symmetry of a given crystal. 

Since at present there are no results of studying two-dimensional DBs in other hcp 

metals, let us compare the obtained results with those of the work [33], where the possibility of 

excitation of two-dimensional DBs based on the same eight one-component DNVMs in fcc 

metals (Al, Cu, Ni) was undertaken. It should be recalled that the two-dimensional triangular 

lattice for which these eight DNVMs were calculated in Ref. [33] is equivalent to a close-packed 

(111) plane in fcc crystal and (0001) plane in hcp crystal. For simplicity of visual comparison, 

the present work uses the same numbering of DNVMs as the cited above. In all studied fcc 

metals, DBs excited on the basis of DNVMs 1, 4, 6, 8 turned out to be unstable and rapidly 

decayed. That is, three DNVMs (1, 4, 8) are unsuitable for excitation of DBs in both Ti and the 

mentioned fcc metals. The lifetime of DBs for the fcc metals is characterized by a pronounced 

peak in the range of initial amplitudes from 0.15 to 0.25 Å. The same is valid for hcp Ti (see 

Fig. 4a). The most long-lived DBs in fcc metals are those excited on the basis of DNVMs 2 and 

5. They are characterized by a higher frequency and dissipate less energy, in contrast to the other 

DNVMs. In Ti, these DNVMs give rise to DBs with an average lifetime. DNVM 7 in fcc metals 

is stable, but it can accumulate larger energy, and the oscillation frequency is not much higher 

than the upper edge of the phonon spectrum. In addition, DNVM 2 in fcc metals is characterized 

by the least scattering of vibrational energy (see Fig. 4 in Ref. [33]). In Ti this is true for DNVM 

5, while DNVM 2 dissipates more energy. Thus, as can be seen from the comparison performed 

above, the general trends between two-dimensional DBs in hcp and fcc metals, although traced, 

are not completely observed. This is, of course, primarily due to the peculiarities of the crystal 

lattice of the studied metals.  

 The fact that the excitation of stable DBs based on the eight DNVMs does not occur 

when using the Ti_EAM interatomic potential, in contrast to the Ti_MEAM potential, can be 

explained mainly as follows. Since the Ti_MEAM potential takes into account directional bonds 

and changes in the angle between them, this means that with a slight deviation of the oscillating 

atom from the initial plane of the mode, this will lead to a change in the directional angles 

between the bonds and, accordingly, to an increase in the attraction forces of atoms located in 

the same atomic plane, that is, to increasing of interaction energy. Thus, the contribution to the 

increase in energy occurs due to a change in the density of the electron cloud and a change in 

the directional bond angles. The latter means that this atom will tend to reduce its potential 

energy, and therefore return to the original atomic plane. In the absence of a contribution from 

the directional bonds, i.e., as in the case of the Ti_EAM potential, only a change in the density 

of the electron cloud makes a contribution to the energy increase. From which it can be 

concluded that, due to its peculiarity, the Ti_MEAM potential is more suitable for modeling 

intrinsic localized modes in hcp Ti, in contrast to the Ti_EAM potential. The question of how 

these two interatomic potentials will manifest themselves in the simulation of DBs of various 

types in other metals with hcp crystal lattice remains open at present and requires further 

research. 

 

4. Conclusions 

 In the present work, a general approach was applied to find new type of DBs via 

investigation of stability of eight one-component DNVMs in three-dimensional single crystal of 

hcp Ti. Molecular dynamics simulations were performed with the use of two interatomic 

potentials (Ti_EAM and Ti_MEAM). The main findings can be formulated as follows. Both 

symmetrical and asymmetrical DNVMs modeled with Ti_EAM potential are unstable. They 

dissipate their initial vibrational energy and decay within the first 10 atomic oscillations. Stable 

two-dimensional (planar) DBs in hcp Ti were successfully excited based on four out of the eight 
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considered DNVMs (2, 5-7) using Ti_MEAM interatomic potential. Atomic oscillations of these 

DBs exponentially decrease with the distance from the excited atomic plane and are localized 

in one direction and delocalized in the other two spatial directions. DNVMs 1, 3, 4, 8 are found 

to be unstable and rapidly dissipate their vibrational energy. The lifetimes of the studied two-

dimensional DBs are in the range of 5-14 ps, with the only exception, the lifetime of DNVM 7 

is of about 28 ps. Vibrational energy that can be accumulated by oscillating atoms is of the order 

of 0.1-0.5 eV per atom. The frequency of atomic oscillation is above the upper edge of the 

phonon spectrum of Ti, which is at about 5 THz. DBs excited based on DNVMs 2, 5-7 weakly 

dissipate their vibrational energy. All observed stable two-dimensional DBs are of a hard type 

of nonlinearity, i.e., the frequency of atomic oscillations increases with the oscillation 

amplitude. At the present stage of research, it is impossible to draw an unambiguous conclusion 

about the influence of DNVM symmetry on the stability of a two-dimensional DB excited on 

its basis. The impossibility of exciting a DB using the Ti_EAM potential is explained primarily 

by its peculiarity and difference from the Ti_MEAM potential. 

 The results obtained on the possibility of exciting new types of DBs in hcp Ti make a 

significant contribution to the foundation of the theory of DBs in metals. For that it is necessary 

to have more extensive data on nonlinear vibrational modes of various dimensions in materials 

with different crystal lattices. However, this requires additional research, in particular, for hcp 

metals, for which there are currently no such studies. In addition, it seems interesting to expand 

our understanding of the possibility of exciting DBs in hcp Ti based on two-component modes, 

which is an interesting topic for a separate study. The works in this direction will help to answer 

the question on how DBs affect macroscopic properties of crystals [45, 46]. 
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