
Citation: Flögel, D.; Bhatt, N.P.;

Hashemi, E. Infrastructure-Aided

Localization and State Estimation for

Autonomous Mobile Robots. Robotics

2022, 11, 82. https://doi.org/

10.3390/robotics11040082

Academic Editors: António Paulo

Moreira, Félix Vilariño and Pedro

Neto

Received: 11 July 2022

Accepted: 16 August 2022

Published: 18 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Infrastructure-Aided Localization and State Estimation for
Autonomous Mobile Robots
Daniel Flögel 1, Neel Pratik Bhatt 2 and Ehsan Hashemi 3,*

1 Institute for Regulation and Control Systems, Karlsruhe Institute of Technology (KIT),
76131 Karlsruhe, Germany

2 Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Ave W,
Waterloo, ON N2L 3G1, Canada

3 Mechanical Engineering Department, University of Alberta, 9211-116 Street NW,
Edmonton, AB T6G 1H9, Canada

* Correspondence: ehashemi@ualberta.ca

Abstract: A slip-aware localization framework is proposed for mobile robots experiencing wheel
slip in dynamic environments. The framework fuses infrastructure-aided visual tracking data (via
fisheye lenses) and proprioceptive sensory data from a skid-steer mobile robot to enhance accuracy
and reduce variance of the estimated states. The slip-aware localization framework includes: the
visual thread to detect and track the robot in the stereo image through computationally efficient 3D
point cloud generation using a region of interest; and the ego motion thread which uses a slip-aware
odometry mechanism to estimate the robot pose utilizing a motion model considering wheel slip.
Covariance intersection is used to fuse the pose prediction (using proprioceptive data) and the visual
thread, such that the updated estimate remains consistent. As confirmed by experiments on a skid-
steer mobile robot, the designed localization framework addresses state estimation challenges for
indoor/outdoor autonomous mobile robots which experience high-slip, uneven torque distribution
at each wheel (by the motion planner), or occlusion when observed by an infrastructure-mounted
camera. The proposed system is real-time capable and scalable to multiple robots and multiple
environmental cameras.

Keywords: indoor localization; state estimation; covariance intersection; uncertainty-aware state
observer

1. Introduction

Navigating mobile robots in dynamic environments with human presence makes
visual odometry challenging due to occlusion and dynamic features. This necessitates
multi-modal (e.g., camera, LiDAR, inertial) data fusion to identify and remove the dynamic
features for feature-based localization [1,2], address disturbance and model mismatch
challenges for LiDAR based localization [3,4], or tackle perceptually degraded condi-
tions through distributed estimation [5,6]. In this regard, multi-modal state estimation
approaches for mobile robots [7,8] are revolutionizing accurate navigation for indoor ap-
plications (e.g., warehouse robotics or service robots using on-board sensors) where the
loss of reception and low bandwidth of commercial Global Navigation Satellite Systems
(GNSS), inhibit reliable robot state measurements.

One of main challenges for the the existing multi-modal state estimators that utilize
on-board inertial measurement unit (IMU) data and visual odometry through monocu-
lar/stereo cameras is the wheel slip in the longitudinal and lateral directions. This is due
to: (i) Model uncertainties caused by the wheel force saturation in the robot dynamical
model (by various robot payloads, changing surface conditions, or harsh cornering sce-
narios) impacting estimation error and update frequency in real-time [9–11]; and (ii) The
real-time performance of state estimators for safe motion planning and controls in a scene
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with dynamic features [12,13]. Infrastructure-aided state estimation approaches which
leverage visual/radar data measured by fixed sensors and communication with the robot
are proposed in the literature to deal with perceptually degraded conditions and dynamic
features for navigation of mobile autonomous systems [14–16]. This is cost effective as it
reduces the number of on-board sensors, specially for large-scale networked robotic sys-
tems. In [17], cameras installed on the ceiling detect multiple robots with unique markers
and determine their position and heading states based on the distance to fixed markers on
the ground and known marker sizes. A stationary fisheye camera installed on the ceiling
is used in [14] for indoor robot localization, in which the pose is determined based on the
azimuth and elevation of the line of view (to the center of the segmentation). Multiple
fixed surveillance cameras are used in [18] to detect the robot and static objects to construct
a 2D map. Pose data from low-cost cameras mounted on ceiling is fused with on-board
LiDAR odometry data for robot state estimation in [19] where the fusion of camera and
odometry is performed in a map with an adaptive Monte Carlo approach. The existing
infrastructure-aided localization approaches require visual markers or free line of sight to
the robot [17,19], heavily rely on robot model, and are challenged by occluded scenes and
model uncertainties due to the wheel slip.

In order to compensate for the wheel longitudinal/lateral slip in robots with nonholo-
nomic constraints, kinematic- or dynamic-based slip estimation/compensation methods
have been adopted in the literature [20,21] using on-board sensory data. The dynamic-based
approaches require wheel stiffness properties and vertical forces that may change due to
various payloads and road surface conditions [22]. Kinematic-based methods, on the other
hand, use wheel odometry and inertial data to estimate the slip with upper bounded mean
square estimation error (MSE) through nonlinear or stochastic observers [12,23,24]. A high-
gain observer is designed in [25] to deal with unknown model parameters. To avoid model
complexities due to tire force nonlinearities (and the combined-slip effect), an empirical pa-
rameterized kinematic model is proposed in [26] for robot state estimation. An event-based
Kalman observer is designed in [27] to fuse IMU data and wheel odometry for heading
and speed estimation. However, the information from on-board state observers has not
been used for fusion with infrastructure sensing units to enhance reliability of the pose
estimation. In addition, the computational efficiency and accuracy are main challenges
for the existing infrastructure-mounted visual tracking and localization methods that use
low-cost wide-angle lenses.

To address computational time and accuracy challenges of the existing visual and
kinematic/dynamic model based localization methods (to be executed on embedded
systems and robot’s on-board processing units), this paper develops and experimentally
verifies a cooperative state estimator using: (i) Proprioceptive data from low-cost odometry
sensors of a skid-steer mobile robot; and (ii) Region of Interest (ROI)-based processing
and visual tracking on the 3D point clouds obtained from fixed sensing units. The main
contributions of the paper are summarized as:

• Design of a computationally efficient ROI-based pose estimator using 3D point clouds
from a stationary stereo camera with a wide-angle (fisheye) lens.

• Developing an infrastructure-aided localization framework which is scalable for large
systems with multiple robots using communication between a slip-aware onboard
observer and the stationary sensing unit.

2. Background and System Overview

The localization framework includes visual tracking through forming an ROI for
computationally enhanced processing at the edge (e.g., embedded Jetson Xavier) and a
slip-aware state observer at the robot using proprioceptive data. The visual tracking is
through a fixed low-cost stereo camera, Intel Realsense T265. As illustrated in Figure 1,
the system has independent visual tracking thread and ego motion thread.
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Figure 1. The slip-aware localization framework overview.

The state vector is defined by ξ(t) = [x(t), y(t), θ(t)]> for the proposed framework,
where the longitudinal position, lateral position, and heading of the robot in the reference
fixed frame {W} is denoted by x, y, and θ, respectively. The local robot body frame is
denoted by {b}, which is at the geometrical center of the robot and is depicted in Figure 2.
The reference coordinate system {W} is derived from {b} at time zero t0.

t=1

{W}
x y

z

{b}
x y

z

t=0

Figure 2. The mobile robot platform and the coordinates.

The visual tracking thread estimates the robot pose ξ̂v based on the captured im-
ages of the stationary stereo camera in the environment. The occlusion cases, in which
visual-based pose estimates are intermittent (or not available), will be addressed by the
Covariance Intersection (CI) fusion with the estimated states ξ̂ p from the slip-aware mo-
tion model. The updated pose by CI is then used as a corrected pose for the relative
motion prediction in the next sample time. The robot pose is a time-varying transformation
W Tb(t) =

[W Rb
W pb

0 1

]
where the rotation matrix W Rb with θ(t) is about the Z-axis of the

{W}, and the position vector W pb = [x, y, 0]> with x, y is the longitudinal and lateral robot
position in the reference frame {W}.

2.1. Visual Tracking Thread

The visual tracking thread includes frontend and backend modules as illustrated in
Figure 3. The frontend performs image processing and object detection. In the image
processing step, the stereo image pair is undistorted and rectified. The object detection
generates a boundingbox for the robot within the rectified stereo images. The area in the
images enclosed with the boundingbox is termed as region of interest. The undistorted and
rectified images, and image coordinates of the corresponding bounding box are used in the
backend to localize the robot using the 3D position of points on the robot.

Image 

Processing

Object 

Detection

Visual Tracking Thread

stereo 

images

3D Point 

Cloud

Post 

Processing
pose

Frontend Backend

Figure 3. The visual tracking thread with ROI.
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With the assumption of the pinhole model and known extrinsic parameters, the con-
straints for the projection of point clouds in {W} onto the two image planes are derived.
These constraints are described with epipolar geometry, and determine the area in the
image planes where the same point in {W} is mapped on. Figure 4 illustrates the epipolar
geometry for two non rectified images. The projection of the point m into the camera
centers C1 and C2 defines the epipolar plane which intersects the image plane P1 and P2
forming epipoles e1 and e2 for the left/right images. The homogeneous transformation
T = [R, p] ∈ SO(3) with the rotation matrix R and translation vector p between the camera
centers describes the extrinsic parameters [28].

Figure 4. Epipolar geometry for non-rectified stereo images.

The position of a point in {W} is determined with the intersection of the projection ray
in 3D from the left and right image plane for the same mapped world point. The mapping
of the x,y and z coordinate of a point from {W} onto the left and right rectified image
(Figures 5 and 6) plane as ū = [u, v, 1]> is described as zū = Kjx̄, j ∈ {l, r} (l, r denotes
the left and right sides, respectively) where x̄ = [x, y, z, 1]> and

Kl =




f 0 cx1 0
0 f cy 0
0 0 1 0


, Kr =




f 0 cx2 b · f
0 f cy 0
0 0 1 0


 (1)

are the extended camera matrix for the left and right image planes. The images have the
same focal length in X and Y direction as well as the same principal point in Y direction;
they are geometrically shifted with the baseline b in X direction. The radial distance r
for perspective pinhole projection between the principal point and image coordinates of
incoming ray of the point m is r =

√
u2 + v2 and the angle Ψ between the principal axis

and the ray is Ψ = tan−1(r). The radial fisheye distortion factor Ψd is modeled [29] as
Ψd = Ψ(1 + k1Ψ2 + k2Ψ4 + k3Ψ6 + k4Ψ8) with the individual lens distortion parameter
ki, i ∈ {1, . . . , 4}. The distorted image coordinates u

′
and v

′
are

u
′
=

Ψd
r

u v
′
=

Ψd
r

v, (2)

which are then converted into undistorted image coordinates

u = fx(u
′
+ αv

′
) + cx, v = fyv

′
+ cy, (3)

Subsequent to this, a Yolov4 object detector [30] is used for 2D detection of the robot
in the undistorted left image. The Yolov4 model is trained on a custom collected dataset of
the robot for identification of the robot as a class label since the state-of-the-art COCO class
labels have no training data corresponding to the robot.

Remark 1. The output of the Yolov4 custom training detector at k−th step is a bounding box Bd(k)
around the robot in the image yielding the extents of the box in the horizontal and vertical directions
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of the image. This enables an ROI which will be used to extract a frustum of the point cloud
representing the robot. Point cloud processing will then be applied exclusively to the ROI-based
frustum, i.e., interior Int(Bd(k)). This bounding box-informed frustum significantly reduces the
computational cost compared to processing the point cloud as a whole.

2.2. Point Cloud Computation and Post Processing

The feature extraction is restricted to the ROI, Int(Bd(k)), and is scalable for visual
tracking in multi-robot settings. The robot is depicted inside the ROI in the left and
right image plane of the undistorted and rectified images. The aim is to find the image
coordinates ul and v (in the left image) and ur (in the right image plane) of the world
point m, as see in Figures 5 and 6.

Figure 5. Unrectified stereo images with fisheye distortion.

Figure 6. Rectified and undistorted stereo images.

For feature extraction, ORB features [31,32] were used, where the extracted features
are matched within the stereo image pair and between subsequent captured image pairs.
It is assumed that the remaining image coordinates represent the same point on the robot
platform, then, these points’ 3D coordinates are reconstructed. Based on the epipolar
geometry, the depth z = b f

ul−ur
is computed for each match with the horizontal image

coordinates ul and ur of the left and right stereo image and the baseline b, as well as
the focal length f of the camera, then the depth is used for x = ul

f z and y = vl
f z with

the vertical image coordinate vl of the left stereo image plane as illustrated in Figure 7.
The coordinates are computed for every match and transformed into {W}. All points lead
to a point cloud assumed to be derived from the surface of the robot. The point cloud is
processed with the PCL library [33,34] and a statistical outlier filter. The filter rejects points
that are further away from their neighbors compared to the average of the point cloud.
The input parameters are the number of neighbors to calculate the average distance for
a given point and a ratio to set the threshold based on the standard deviation across the
point cloud.

The 2D projection of the point cloud is used to enhance the reliability of the 3D
point clouds for navigating the robot far from the stationary sensing unit (i.e., the stereo
visual node). The Euclidean center of the 2D points (which is less sensitive to outliers) is
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considered as an estimate of the position, i.e., ξ̂ p(k) at time step tk and will be corrected
using the slip-aware motion model, which is described in the next section.

Version August 13, 2022 submitted to Robotics 6 of 16

Figure 7. Robot point cloud post processed by the statistical outlier filter. The robot is in the closest
position to the stereo camera. The outer dimension of the points is used for a Euclidean distance
based sparsity as a measure to be close to the actual geometry of the Jackal robot.
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3.1. Slip-Aware Motion Model 163

The autonomous mobile robot used to evaluate the localization approach is the skid-
steer Clearpath’s Jackal robot, which is subject to the large wheel longitudinal slip in various
cornering scenarios. The kinematic motion model in the following predicts the robot
states using the heading and wheel rotational speed in the robot body frame {b}. The
robots motion is defined based on the instantaneous center of rotation (IC) as shown in
Fig. 8, assuming that the robot is a rigid body and has a planar motion with nonholonomic
constraints. The longitudinal velocity, lateral velocity, and yaw rate are denoted by νx, νy,
and θ̇ in the body frame {b} and are expressed in terms of the left/right wheel rotational
speeds ωl , ωr as

v(t) = G(Λ)w(t) = G(Λ)

[
Reωl(t)
Reωr(t)

]
(4)

Figure 7. Robot point cloud post processed by the statistical outlier filter. The robot is in the closest
position to the stereo camera. The outer dimension of the points is used for a Euclidean distance
based sparsity as a measure to be close to the actual geometry of the Jackal robot.

For orientation estimation, a linear regressor is used for a moving horizon Nh of the
estimated states. The angle between the estimated linear function and the world frame’s
longitudinal axis is then considered as the orientation of the robot. To cope with situations
when the robot is not driving or turning with zero radius, a plausibility check is applied.
The plausibility check rejects estimates if the linear regression is too short or the distance
between the position estimates and the line is greater than a threshold.

3. Infrastructure-Aided State Estimation

A kinematic model is introduced and parametrized to predict the motion in presence
of wheel skidding and slipping. A covariance intersection (CI) method is then used to
update the prediction.

3.1. Slip-Aware Motion Model

The autonomous mobile robot used to evaluate the localization approach is the
skid-steer Clearpath’s Jackal robot, which is subject to the large wheel longitudinal slip
in various cornering scenarios. The kinematic motion model in the following predicts
the robot states using the heading and wheel rotational speed in the robot body frame
{b}. The robot’s motion is defined based on the instantaneous center of rotation (IC) as
shown in Figure 8, assuming that the robot is a rigid body and has a planar motion with
nonholonomic constraints.

The longitudinal velocity, lateral velocity, and yaw rate are denoted by νx, νy, and θ̇ in
the body frame {b} and are expressed in terms of the left/right wheel rotational speeds
ωl , ωr as

v(t) = G(Λ)w(t) = G(Λ)

[
Reωl(t)
Reωr(t)

]
(4)

where v(t) = [νx(t), νy(t), θ̇(t)]>, the wheel rolling radius is denoted by Re, and G(Λ)
includes the model parameter vector Λ = [xIC, yIC,l , yIC,r, αl , αr] as follows

G(Λ) =
1
ỹ



−yIC,rαl yIC,lαr
−xICαl xICαr
−αl αr


, ỹ = yIC,l − yIC,r, (5)
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where IC, l is the instantaneous center of the front-left and rear-left tires of the robot and
IC, r denotes the instantaneous center of the front-right and rear-right tires of the robot.
In the schematic provided in Figure 8, due to nonholonomic constraints and since the
longitudinal speed on the right side (i.e., rotational speed multiplied by the effective rolling
radius Re) is larger than the robot speed vx, the instantaneous center IC, r is located on the
right side (i.e., yIC,r < 0 in the body frame).

x

y

{W}

{b}

x

y

Trajectory

Figure 8. IC-based skid steer kinematics for the motion model.

The instantaneous center is expressed in {b} as (xIC,v, yIC,v) ∈ R2, where yIC,v = νx
θ̇

[26].
The IC locations for the left and right wheels are expressed in {b} as (xIC,l , yIC,l) and
(xIC,r, yIC,r), respectively. It is assumed that the longitudinal position of ICs along the
x-axis lie all on a parallel line to the Y-axis, i.e., xIC = xIC,v = xIC,j =

νy

θ̇
, j ∈ {l, r} and

have the same angular velocity. The lateral IC locations, which are bounded variables, are
expressed as [21]:

yIC,j =
νx − Reωjαj

θ̇
, θ̇ =

Re(ωr −ωl)

yIC,l − yIC,r
(6)

where αl and αr are parameters accounting for model uncertainties (tire inflation and longi-
tudinal slip ratios at each corner of the robot) and Re is the tire rolling radius. The location
of IC is bounded, i.e., |xIC,v| < x̄ and |yIC,v| < ȳ even reached in the proximity of straight
trajectories where the numerator and denominator in (6) are of the same infinitesimal order
which leads to finite values for xIC , yIC,j.

The boundedness of yIC,v need to be guaranteed for lateral stability and minimizing
the robot’s sideslip angle in harsh turning. Using the transformation between {b} and the
world frame, the robot states in {W} are expressed as

ξ̇(t) = W Rb(t) · v(t) + $, W Rb =




cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


, (7)

where θ(t) is the robot heading and $ ∈ R3 represents model uncertainties. Then, the pa-
rameter identification process consists of two steps: gathering representative data from
on-board and infrastructure-mounted sensory data; and developing an optimization pro-
gram to find the optimal parameter vector Λ∗ through data set. The data collection consists
of typically fast maneuvers on various surfaces in different trajectories based on the opera-
tional envelope of the mobile robot maintaining the lateral stability. The lateral stability
is defined by a bounded sideslip angle |β| < β̄ where β , tan−1(

νy
νx
) on various surface

conditions. The wheel rotational speed measurement at each front-left, front-right, rear-left,
and rear-right corners of the robot is used for the motion model by compensating the slip
ratio component. The training data set (i.e., 12 different step-steer to the left and right,
18 random cornering, and 10 full/circular rotations in large and small path curvatures
in indoor settings and on various surfaces) includes Nt independent segments with the
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training horizon dt. The measured wheel speeds of each segment are used to predict the
robot speeds in the body frame using (4) and determine the robot pose in {W} using (7).
The predicted pose ξ̂ ∈ R3 and the ground truth at the end of each segment are included in
the cost function

Λ∗ = min
Λ

J(Λ), J(Λ) =
Nh

∑
i=1
||ξ − ξ̂(Λ)i||2, (8)

where ξ̂(Λ) is the ground truth and ξ(k) is the predicted state based on the linearized
slip-aware motion model in discrete times. Minimizing J results in the optimal parameter
vector Λ∗. The trained model is evaluated over different data sets with the evaluation
horizon de. In this context, the evaluation horizon represents the prediction horizon for
specific applications. The evaluation horizon is the indication of the prediction horizon
of the model in the application. Assessing variable evaluation horizons with respect to
variable training horizons is reveals the impact of different prediction horizons in the
application compared to the parameter identification process.

To analyse the impact of different training and evaluation horizons, the mean relative
translation/rotation errors are provided in Figures 9 and 10. The analysis reveals that
the best performance is achieved if the evaluation horizon is equal to (or less than) 0.5 m.
The error increases for larger deviation but remains bounded and lower than 5%.

Figure 9. Relative translational error εp of the motion model parameter identification for varying
training and evaluation horizons on the same ground classification (i.e., gravel or asphalt).

Figure 10. Relative angular error εθ of the motion model parameter identification for varying training
and evaluation horizons on the same ground classification (i.e., gravel or asphalt).



Robotics 2022, 11, 82 9 of 16

3.2. Pose Prediction

The prediction model in (7), with elements from (4)–(6), is linearized around the operating
point (ξp(k), w(k)) at each time step k in discrete times, where ξp(k) = [x(k), y(k), θ(k)]>

is the robot’s pose by the ego motion thread. The linear affine prediction model can be
written as:

ξ p(k + 1) = A(k)ξ p(k) + B(k)w(k) + $(k), (9)

whereas the zero-mean term $ is due to model uncertainties. The discrete-time realization
is approximated by

A(k) := φAc

tk+1,tk
≈ eAc(tk)Ts ∈ R3×3 (10)

and

B(k) :=
∫ tk+1

tk

φAc(tk+1),τ Bc(τ)dτ ≈
∫ tk+1

tk

eAc(tk)(tk+1−τ)dτBc(tk) (11)

whereas Ac, Bc are the continuous-time system and input matrices of the linearized pre-
diction model, and φAc

ti ,tj
for ti > tj is the continuous-time state transition matrix expressed

by the Peano-Baker series; the realization is assumed to not vary a lot in each interval
[tk, tk+1], which is valid for the proposed cooperative mobile robot localization model with
the sampling time Ts = 25 ms. As a result, the bound of uncertainty due to the sampling
time for discretization (in the slip-aware motion model) at the maximum speed of 1 m/s,
at which the robot may experience wheel longitudinal slip, is 25 mm. Then, the expected
state prediction from the ego motion thread is

ξ̄ p(k + 1) = A(k)ξ̄ p(k) + B(k)w̄(k), (12)

whereas ξ̄ p(k) = E{ξ p(k)} and w̄(k) = E{w(k)}; the joint covariance for x = [ξ p(k), w(k)]>

is then given by

cov(x) =
[

Qξ(k) 0
0 Qw(k)

]
= E

{[ξ p(k)− ξ̄ p(k)
w(k)− w̄(k)

][
(ξ p(k)− ξ̄ p(k))>, (w(k)− w̄(k))>

]}
. (13)

The predicted covariance is

Qξ(k + 1) = E{[ξ p(k + 1)− ξ̄ p(k + 1)][ξ p(k + 1)− ξ̄ p(k + 1)]>} (14)

in which

ξ p(k + 1)− ξ̄ p(k + 1) = A(k)[ξ p(k)− ξ̄ p(k)] + $(k). (15)

Then, by using cov(x), the predicted covariance from the slip-aware motion model
yields:

Qξ(k + 1) = A(k)Qξ(k + 1)A>(k) + B(k)Qw(k)B>(k). (16)

3.3. Augmented Localization

The visual thread and the ego motion thread communicate within the ROS framework
through WiFi for the specific mobile robot test platform. To ensure proper data synchroniza-
tion, time stamps are used to associate the visual-based localization (i.e., state estimation
of ξ̂v(k)) to the corresponding pose estimation ξ̂

p
k by the slip-aware model description.

Delay in the communication, which is less than 20 ms for the tests conducted within 10 m
of the stationary visual node (i.e., infrastructure-mounted stereo camera with the fisheye
lens), is ignored in this section for the CI fusion. This is a valid assumption considering
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the sampling time Ts = 25 ms for the pose prediction in the slip-aware motion model,
the fusion part’s sampling time (i.e., 50 ms), and the maximum robot speed of 1 m/s at
which the robot may experience wheel’s longitudinal slip. Denoting the estimation error in
the slip-aware motion model at time step k by ξ̃ p(k) = ξ p(k)− ξ̂ p(k), and the visual thread
by ξ̃v(k) = ξv(k)− ξ̂v(k), we utilize the covariance intersection method having the upper
bound of the mean square estimation error and the consistency condition.

Remark 2. The asymptotic stable state transition matrix of the error dynamics ξ̃ p in the motion
model (9), and the geometrical filters for the visual-based depth estimation guarantee that the mean
square estimation error (MSE) for the pose prediction model and the visual localization are upper
bounded, i.e., Q̃p(k) := E{ξ̃ p(k)ξ̃ p>(k)} ≤ Qp(k) and Q̃v(k) := E{ξ̃v(k)ξ̃v>(k)} ≤ Qv(k).
As a result, the error covariance Q̃v(k) and Q̃p(k) of the estimated states from the two threads
are consistent.

The estimated states from the ego motion thread and the visual thread are then
fused using CI which is a convex combination of the covariances of the estimated states
and guarantees a consistent error covariance (i.e., Q̃ f ≤ Q f ). The CI is a geometric
interpretation of

Q̃ f = WpQ̃pW>p + WpQ̃pvW>v + WvQ̃vpW>p + WvQ̃vW>v , (17)

in which for all choices of Q̃pv, the covariance ellipses of the bound Q f at level c,

E c
Q f

:= {z ∈ R : z>Q−1
f z < c}, (18)

lies within the intersection of covarinace ellipses of Qp and Qv, i.e., E c
Q f
⊂ E c

Qp
∩ E c

Qv
.

The weights Wp, Wv will be obtained by minimizing a performance index on the bound
Q f , e.g., tr(Q f ) or det(Q f ), and consequently the covariance Q̃ f . The CI update strategy
finds Q f which encloses the intersection area E c

Qp
∩ E c

Qv
and is consistent, although no

knowledge about Qpv is available. The upper bounds of the covariance matrix elements for
visual pose estimates is set to constant values derived from the error analysis (discussed in
the next section) For the case where Q̃pv 6= 0, the covariance Q f can be given by

Q f = [Wp, Wv]

[
Qp Q̃pv
Q̃>vp Qv

]

︸ ︷︷ ︸
Q

[
W>p
W>v

]
, (19)

in which the optimal Wp, Wv that minimize tr(Q f ) is obtained from the following con-
strained optimization program

min
W

tr(Q f )

s.t.:Wp,+Wv = I, (20)

where I is the identity matrix with the proper dimension. The trace minimization program
in (20) yields (Q f )

−1 = (Q−1
p Q̃pv − I)(Qv − Q̃>pvQ−1

p Q̃pv)−1(Q̃>pvQ−1
p − I) + Q−1

p . As a
result, the fusion of the estimated states from the ego motion and the visual threads is

ξ̂ f (k) = Q f (k)
[
Wp(Qp(k))−1ξ̂ p(k)

+ (1−Wp)(Qv(k))−1ξ̂v(k)
]
,

[Q f (k)]−1 = Wp(Qp(k))−1 + (1−Wp)(Qv(k))−1, (21)

where Wp ∈ [0, 1] adjusts the assigned weights to ξ̂ p and ξ̂v minimizing the performance
index tr(Q f ) of the updated covariance.
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According to the consistency in Remark 2 and the property of CI, it holds that

E{(ξ̂ f (k)− ξ̄(k))(ξ̂ f (k)− ξ̄(k))>} ≤ Q f (k). (22)

The heading of the robot is fused once the robot is close to the camera, thus, measure-
ments are more accurate and reliable. The slip-aware observer and fusion is described in
Algorithm 1.

Algorithm 1: Augmented Slip-Aware Localization
Input : Stereo image (with fisheye lens distortion), robot’s wheel speed,

and initial estimate ξ̂ f (0)
Output : Robot position and heading states ξ̂ f (k)
while k ≥ 0 do

1. Undistortion & object Detect.
(i) Use (3) for u, v;
(ii) zū = Kjx̄ with Kj in (1) for stereo images Ij(k), j ∈ {l, r};
(iii) Bd(k)← detected bounding box by Yolov4;
2. ROI-based frustum for pointcloud (PC) processing (visual
thread)

if pi(k) ∈ Int(Bd(k)), pi(k) ∈ Il,r(k) then
(i) Extract ORB feat. { f i

j ∈ F| f i
j ∈ Int(Bd(k))};

(ii) Match features f i
l , f i

r to form the PC;
(iii) Calculate the depth and estimate ξ̂v(k) by 2D projection of PC;
(iv) Plausibility check on states over horizon Nh

else
Recheck for occlusion in long distances zi ≥ zth

end
3. Adaptive set allocation
For each wheel q ∈ S̄ , S̄ := {1, 2, 3, 4}
if |ω̇q(k)| ≥ ¯̇ω , 1

n ∑k
k−n+1 ω̇q(k) then

S p(k)← S̄ \ {q} ;
end
4. Slip-aware pose estimation
if S p(k) 6= then

(i) Form G(Λ) to estimate ξ̂ p on the discrete-time model of (7) (i.e., (9));
(ii) Use the trained model for Λ∗; MSE for the pose prediction model is

bounded, i.e., Q̃p(k) := E{ξ̃ p(k)ξ̃ p>(k)} ≤ Qp(k));
(iii) Use CI on ξ̂v(k) and ξ̂ p

Estimate ξ̂ f (k) by (21) with Q f (k)← CI(Q−1
p,v(k)); with consistency

E{(ξ̂ f (k)− ξ̄(k))(ξ̂ f (k)− ξ̄(k))T} ≤ Q f (k)
else

ξ̂ f (k)← ξ̂ f (k− 1)
end

end

4. Experiments and Discussion

The proposed infrastructure-aided localization framework is experimentally evaluated
in this section through tests with harsh turning, cornering with acceleration/deceleration,
and accelerated straight maneuvers which all include longitudinal slip at each wheel.
The reference measurement and system setup is first discussed, then the experimental
evaluations are provided. The wheel slip during harsh cornering, with nonholonomic
constraints, results is reduced pose estimation accuracy for the existing odometry-based
motion models which rely on wheel rotational speed. This has been addressed in this paper
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by the proposed slip-aware motion model (considering instantaneous centers of rotation)
and the a multi-modal data fusion with the visual thread (even with distortion challenges
imposed by low-cost fisheye lens).

The ground truth trajectory is recorded with the optical motion capture system Vicon
Vantage V5. The test setup is composed of the Vicon system, the autonomous mobile robot
(Jackal AGV), and the stationary stereo camera T265. The T265 is fixed mounted on a tripod
at a height of 2 m and capturing the whole area where the tests are conducted. The robot
is operating under the normal path-tracking mode and starting in front of the tripod of
T265, with the speed between 0.4 and 1 m/s, and mild and harsh cornering in tight and
wide trajectories. In the proposed motion model, the wheel slip is indirectly quantified as a
kinematic model parameter.

To detect the robot and initial setup of the stereo camera in the environment, passive
markers are mounted on top of the robot and the stationary stereo camera, as shown in
Figure 11, having sufficient distance for a rotation invariant geometry which is essential to
ensure a unique pose and proper localization results using the Vicon system.

Figure 12 shows the visual point cloud of the robot detected under occlusion (by a
human/user) in a long distance.

(a)

1

2

4

3

(b)

Figure 11. The experimental setup using Vicon (a) Clearpath’s Jackal robot equipped with 16-line
LiDARs (from RoboSense or Velodyne) for motion planning and controls in dynamic environments
(b) Infrastructure-mounted low-cost stereo vision for the augmented localization through dedicated
short-range communication with the on-board state estimator.
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Figure 11. The experimental setup using Vicon (a) Clearpath’s Jackal robot equipped with 16-line
LiDARs (from RoboSense or Velodyne) for motion planning and controls in dynamic environments
(b) Infrastructure-mounted low-cost stereo vision for the augmented localization through dedicated
short-range communication with the on-board state estimator.

Figure 12. Robot point cloud with a statistical outlier filter for a detection with partial occlusion in a
dynamic environment in a far (i.e., 7.8m) range. This depicts the effect of far detection and partial
occlusion (by an object/human) on the quality and sparsity of the point cloud used for clustering
and pose estimation; with a predicted longitudinal dimension of 2m in x-direction, the point cloud
does not corresponds the robot dimension. The CI based fusion resolves partial occlusion/detection
as will be illustrated for pose estimation later in this section.

in large sample time updates or possible packet drop. Once the heading estimates are 265

corrected by CI, the localization data is accurate with the root mean square error (RMSE) 266
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effect of the fusion process in which the kinematic motion model has been corrected and 268

fused with the visual thread data. The kinematic model, a dead reckoning system, suffers 269

from fault propagation and has an higher uncertainty as well as biased position prediction. 270

Once the position is corrected with the visual localization, the corrected position and new 271

initial position for the dead reckoning system moves close to the ground truth. Increasing 272

the frequency of the update by the CI fusion will smooth the final estimates. 273

Figure 12. Robot point cloud with a statistical outlier filter for a detection with partial occlusion in a
dynamic environment in a far (i.e., 7.8 m) range. This depicts the effect of far detection and partial
occlusion (by an object/human) on the quality and sparsity of the point cloud used for clustering
and pose estimation; with a predicted longitudinal dimension of 2 m in x-direction, the point cloud
does not corresponds the robot dimension. The CI based fusion resolves partial occlusion/detection
as will be illustrated for pose estimation later in this section.



Robotics 2022, 11, 82 13 of 16

The ROI-based point cloud processing, which generates point cloud within the 2D
bounding box of the detected robot, reduced computation time up to 67% as has experi-
mentally been tested with the robot in dynamic indoor environments with human presence.
The processing time for the pose prediction based on the slip-aware motion model is almost
<5 ms. There is no exhaustive recursive algorithm associate with the motion model part.
The visual thread with the ROI-based processing takes up to 16 ms in various harsh turn
and random cornering maneuvers. The fusion part with the trace optimization program
on the visual and motion threads take up to 35 ms on the utilized embedded system in
dynamic environments with human presence.

The position estimation error by the stereo visual thread is shown in Figure 13 for a ma-
neuver with several tight cornering. The largest error of 21 cm is for the situation in which
the robot is occluded (by a human/user in a shared working indoor environment) in a far
(i.e., 7.8 m) distance. The slip-aware motion model helps CI to recover the robot pose guar-
anteeing consistency of the estimation error covariance, i.e., E{(ξ̃ f (k)[ξ̃ f (k)]>} ≤ Q f (k).
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Figure 13. Position estimation results based on Euclidean center of the point cloud from the mobile
robot. The T265 camera is located at position (0,0) facing the longitudinal x-direction. The largest
error occurs at the maximum relative position (indicated with a black ellipse) between the robot and
infrastructure-mounted stereo camera.

Figure 14. Orientation estimation by the infrastructure-aided localization framework
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sensors and on-board data. The proposed system is composed of a visual tracking thread 277

based on a stationary low-cost fisheye stereo camera mounted in the environment and a 278

slip-aware ego motion thread that uses proprioceptive sensory data from a skid-steer mo- 279

bile robot to enhance accuracy and reduce variance of the estimated states. The position and 280

heading of the robot was estimated using the visual thread with a region of interest-based 281

3D point cloud processing which reduced the computation up to 67% in dynamic indoor 282

environments with human presence. This significantly enhances the real-time processing 283

capability of the infrastructure-mounted sensing unit for localization and tracking of multi 284

robots in indoor settings. A slip-aware kinematic model was developed for the ego motion 285

Figure 13. Position estimation results based on Euclidean center of the point cloud from the mobile
robot. The T265 camera is located at position (0,0) facing the longitudinal x-direction. The largest
error occurs at the maximum relative position (indicated with a black ellipse) between the robot and
infrastructure-mounted stereo camera.

The heading fusion result is depicted in Figure 14, where the heading prediction
by the ego motion thread (without visual thread updates) is shown in dotted lines; this
heading has large estimation error due to the harsh cornering scenarios and inaccuracies in
the position of instantaneous center for the slip-aware ego motion model. The prediction
fused with pose update from the visual thread in Figure 14 confirms better performance
even with occlusion in this perceptually degraded test. This is due to the fact that the
heading estimator (by the visual thread) employs multiple geometrical and nonholonomic
constraints for the robot motion.
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Figure 14. Orientation estimation by the infrastructure-aided localization framework.

The position fusion results are illustrated in Figure 15 which confirms improvements
in the estimation error when CI is applied using the visual thread to address uncertainties
in the slip-aware ego motion thread in such arduous scenarios. The position prediction is
fused with visual thread data, intentionally at each 200 ms to evaluate the effectiveness
in large sample time updates or possible packet drop. Once the heading estimates are
corrected by CI, the localization data is accurate with the root mean square error (RMSE)
≤17% for several tests even with intermittent CI updates. The triangular shapes show the
effect of the fusion process in which the kinematic motion model has been corrected and
fused with the visual thread data. The kinematic model, a dead reckoning system, suffers
from fault propagation and has an higher uncertainty as well as biased position prediction.
Once the position is corrected with the visual localization, the corrected position and new
initial position for the dead reckoning system moves close to the ground truth. Increasing
the frequency of the update by the CI fusion will smooth the final estimates.
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Figure 15. Position estimates by the infrastructure-aided localization; slip-aware motion model
handles occlusion and uncertainties in the point cloud computation for the robot detection in far
distances

thread to predict the robot pose, then, covariance intersection with guaranteed consistency 286

was used to update the pose prediction with visual estimates, addressing slippage and 287

occlusion for wheel odometry based state estimators and visual based localization in dy- 288

namic environments. The experimental results confirmed RMSE ≤ 17% and an average 289

position accuracy of 7cm for various tests even with intermittent (e.g., 0.2s) CI updates. The 290

real time capability of the state estimation framework was confirmed by the computation 291

time 35ms for ROI-based visual processing and the fusion (through trace minimization). 292

The future avenues include: i) Using a motion model in the visual thread to enhance the 293

consistency of the pose estimation; ii) Integrating the IMU data into the ego motion thread 294

and developing a motion model connecting wheel speeds, longitudinal slips, and robot 295

dynamics within an optimization problem constrained to the robot kinematic/dynamic 296

constrains to enhance orientation estimation. 297
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5. Conclusions

An augmented state estimation framework was proposed for localization of au-
tonomous mobile robots in dynamic environments using infrastructure-mounted visual
sensors and on-board data. The proposed system is composed of a visual tracking thread
based on a stationary low-cost fisheye stereo camera mounted in the environment and
a slip-aware ego motion thread that uses proprioceptive sensory data from a skid-steer
mobile robot to enhance accuracy and reduce variance of the estimated states. The po-
sition and heading of the robot was estimated using the visual thread with a region of
interest-based 3D point cloud processing which reduced the computation up to 67% in
dynamic indoor environments with human presence. This significantly enhances the real-
time processing capability of the infrastructure-mounted sensing unit for localization and
tracking of multi robots in indoor settings. A slip-aware kinematic model was developed
for the ego motion thread to predict the robot pose, then, covariance intersection with
guaranteed consistency was used to update the pose prediction with visual estimates,
addressing slippage and occlusion for wheel odometry based state estimators and visual
based localization in dynamic environments. The experimental results confirmed RMSE
≤17% and an average position accuracy of 7 cm for various tests even with intermittent
(e.g., 0.2 s) CI updates. The real time capability of the state estimation framework was
confirmed by the computation time 35 ms for ROI-based visual processing and the fusion
(through trace minimization). The future avenues include: (i) Using a motion model in the
visual thread to enhance the consistency of the pose estimation; (ii) Integrating the IMU
data into the ego motion thread and developing a motion model connecting wheel speeds,
longitudinal slips, and robot dynamics within an optimization problem constrained to the
robot kinematic/dynamic constrains to enhance orientation estimation.
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