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Abstract
For unsaturated soils, Terzaghi’s effective stress r ¼ rtot � u has been generalized by Bishop to the form rB ¼ rtot � vu.

Factor v, for example vðSÞ � S, takes into account the degree of saturation S. However, rB is unable to characterize

strength and deformation of soil unless applied with suction. A new stress rE ¼ rtot � vEu with vEðS; nÞ is proposed. It is

likewise insufficient if applied without suction, but it has (at least) a clear physical meaning: rE represents contact forces

between grains in the static equilibrium in the same manner as the effective stress does in saturated soils. All grains must be

entirely surrounded by free or capillary water.
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1 Introduction

For constitutive modeling of unsaturated soils, a somewhat

modified definition of the Bishop stress is proposed. In the

literature, several alternatives to Bishop stress rB have

been proposed, see [3] p. 17 for a list. The novel stress rE

is a macroscopic description of the grain-to-grain forces.

Similar to the original Bishop stress rB, the new rE alone is

insufficient [5] for a constitutive description of unsaturated

soil, unless an explicit dependence on water suction is

introduced. Larger suction, for example, stiffens the

unsaturated soil during virgin compression at a given rB,

and decrease in suction may cause irreversible deforma-

tions (collapse), see the Barcelona Basic Model1 (BBM)

[1] for a constitutive description of these effects.

There is no convincing reason to treat rB as the ’’ef-

fective stress’’ because rB cannot be employed without

suction. The advantage of rE is that it has a sound physical

and microscopic basis. This is in contrast with rB that was

originally used in modeling of strength and deformation

alone (without suction). Furthermore, rE, unlike rB, satis-

fies the geostatic equilibrium with buoyant weight c0.

Grain-to-grain forces FK
i from all contact points K on

the border S surrounding a representative material element

of volume V can be used to determine the effective stress

(denoted as r and not r0 here). The effective stress tensor is

represented in the index notation by the average value of

dyadic products

rij ¼ � 1

V

X

K

F
ðKÞ
i x

ðKÞ
j ; ð1Þ

where x
ðKÞ
j refers to the position of the contact point K. The

positive compression sign convention is employed. The

relationship (1) is often employed in the DEM postpro-

cessing. Similarly, the average divergency of stress is
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with the effective traction ti and corresponds to the re-

sulting contact force per unit volume. The formulae above

are commonly used for saturated soils. Here, they will be

adopted to define the effective stress for unsaturated soils.

This is preferable to ambiguous2 and non-objective
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1 A reformulation of the BBM using rE would be useful, but it is

beyond the scope of this brief technical note.
2 Although Khalili and Khabbaz [6] managed to describe strength of

unsaturated soils using a single stress variable (with a suitable v), it

does not seem feasible to describe the full spectrum of constitutive

behavior.
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definitions based on estimations of how well the stress

would perform, if unsaturated soils were calculated as

saturated.

2 Scope of application of rE

The degree of saturation S is used to divide the unsaturated

soils into three groups:

• 0� S\SC isolated water regions or lenses (pendular

regime)

• SC\S\SB interconnected water and air (funicular

regime)

• SB\S� 1 isolated air bubbles

with the bounds SC � 0:2 and SB � 0:8 being tentative

estimates, see [8] and Sect. 6 for microstructural consid-

erations. The novel stress rE is applicable to soils with all

grains entirely surrounded by either free or capillary (and

hence interconnected) pore water. It must be able to

transfer the hydrostatic pressure so it cannot be just a

’’film’’ water. The proposed stress rE is not suitable for the

pendular regime. The proposed stress has the same form

rE ¼ rtot � vEuwith pore pressureu ¼ uw � uatm ð3Þ

as the Bishop stress rB ¼ rtot � vðuw � uatmÞ, where uw
and uatm denote the absolute pressures in water and air. The

difference lies in factor vE 6¼ v. The new definition should

be used under static conditions and without seepage forces.

The suction s ¼ �u ¼ uatm � uw will be indispensable in

modern constitutive models employing rE.

3 Divergency of stress in unsaturated soil

Factor vEðS; nÞ for rE will be derived from the geostatic

equilibrium in a 1D column of soil, Fig. 2. The divergency

of the total stress follows from the static equilibrium

oxr
tot ¼ c with c ¼ ð1 � nÞcs þ nScw ; ð4Þ

where x = coordinate axis that points downwards and starts

at the ground surface; rtot = vertical total stress, com-

pression positive; cs � 26:5 kN/m3 intrinsic unit weight of

grains; cw ¼ 10 kN/m3 intrinsic unit weight of water; n ¼
e=ð1 þ eÞ porosity; S = degree of saturation; c; cd ¼ ð1 �
nÞcs moist and dry unit weights

Because the capillary pore water is interconnected, its

pressure u has a vertical gradient

oxu ¼ cw ð5Þ

The interconnected water channels resemble a system of

water-filled pipes. Pascal’s law holds for such a system: in

a fluid at rest, a pressure change in one section of a fluid at

rest is transferred without loss to every portion of the fluid.

As a result, (5) can be applied also to unsaturated soils with

interconnected capillary water channels. The pore pressure

uðxÞ ¼ ðx� hcÞcw may be simply calculated using the

gradient (5) and starting from uðhcÞ ¼ 0 at the water level

x ¼ hc, where hc is the height of the capillary rise. This

relationship holds true both below ðx[ hcÞ and above

ðx\hcÞ the water table3 irrespectively of saturation, see

also [7] p. 21. The derivation of rE described in Sect. 5 is

based solely on (4) and (5). According to Terzaghi (1936):

If the voids of the soil are filled with water under a

stress u, the total principal stresses consist of two

parts. One part, u, acts in the water and in the solid in

every direction with equal intensity. It is called the

neutral stress (or pore water pressure). The balance

r ¼ rtot � u represents an excess over the neutral

stress u, and it has its seat exclusively in the solid

phase of the soil. This fraction of the total principal

stresses will be called the effective principal stresses.

Such stress should represent the contact forces between

grains. Only three types of forces act on a solid grain

surrounded by water, Fig. 1. Counting per unit volume of

soil, they are:

• The resultant of all contact forces (or �oxrE

macroscopically)

• The unit self-weight cd ¼ ð1 � nÞcs and

• The unit buoyant force b ¼ �ð1 � nÞcw (from

�oxuð1 � nÞ)
These forces must be in static equilibrium and hence

�oxr
E þ c0 ¼ 0 with c0 ¼ ð1 � nÞðcs � cwÞ ð6Þ

For isolated air bubbles entrapped between grains, the

buoyant unit weight in (6)2 may need a minor modification.

If Ub is the fraction4 of pore volume occupied by bubbles,

then (6)2 has the form

c0 ¼ ð1 � nÞðcs � cwÞ � nUbcw ; ð7Þ

The extra term �nUbcw in (7) results from the buoyancy of

air bubbles pushing the soil skeleton upwards.

In this research, the geostatic equilibrium condition (6)

is crucial. To the author’s knowledge, rB has previously

been neglected in that it violates (6), namely

3 Consider a single grain with the surface Ss and volume Vs. By the

divergency theorem, the buoyancy force vector
R
Ss
�unidS ¼R

Vs
�u;idV ¼ �qwgiVs acts on the grain. The density of the buoyant

force is bi ¼ �ð1 � nÞqwgi.
4 By definition Ub ¼ Vbubbles=Vpores, where Vbubbles is the volume of

bubbles and Vpores is the volume of pores (with water and air). If air is

present as isolated bubbles, only then Ub ¼ 1 � S holds.
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oxr
B ¼ oxðrtot � SuÞ ¼ c� Scw 6¼ c0 ð8Þ

for S\1 and assuming5 SðxÞ ¼ const.

4 Weight carried by capillary surface
tension

Let us start with a layer of saturated capillary water of

thickness hc located directly below the ground surface x ¼
0 and above the water table x ¼ hc. As shown in Fig. 2c,

the coordinate x is heading downwards. Two mathemati-

cally equivalent formulae can be used to calculate the

effective vertical stress

rðxÞ ¼rtot � u ¼ crx� cwðx� hcÞ or

rðxÞ ¼qþ c0x with q ¼ cwhc ;
ð9Þ

where cr is the unit weight of the saturated soil and c0 is the

buoyant unit weight (both are assumed constant for sim-

plicity). The surface load q consists of microscopic forces

exerted on skeleton by capillary water ’’hanging’’ on

skeleton. They are equally distributed at x ¼ 0, as shown in

Fig. 2a.

In the literature, if the capillary zone is not saturated,

S\1, (9)1 is frequently replaced by rBðxÞ ¼ rtot � vu.

However, one might also try modifying (9)2. Doing so, the

buoyant unit weight c0 remains unchanged, but the

expression for q is different. Let the degree of saturation,

S\1, be constant throughout the capillary zone for

simplicity.

The surface tension must carry not only the

At x ¼ 0, the following additional load is transferred

from the water to the skeleton

q ¼ nScwhc þ ð1 � nÞcwhc ð10Þ

Two contributions to q in (10) (both acting downwards)

are:

• The weight of capillary water nScwhc
• The reaction to buoyant force �b ¼ ð1 � nÞcwhc , see

Fig. 2b.

It turns out that the derivation of rE from Sect. 5 is in

agreement with (10) in the sense that rEð0Þ ¼ q. For sat-

urated soils, (10) and (9) produce the same q ¼ cwhc.

5 Derivation of rE from its divergency

Figure 3 shows a soil layer with a capillary zone directly

beneath the ground level.

Stress

The difference between divergencies from (4) and (6) is

oxðrtot � rEÞ ¼ c� c0 ð11Þ

Starting from the water level x ¼ hc (where u ¼ 0 and

rtot ¼ rE), this difference may be conveniently integrated

with respect to x. If the upper limit �x of integration lies in

the capillary zone 0� �x� hc then

ðrtot � rEÞ
��
�x
¼
Z �x

hc

ðc� c0Þdx ð12Þ

Application of (12) for the case of isolated air bubbles first

leads to the formula

ðrtot � rEÞ
��
�x
¼
Z �x

hc

cwdx ¼ uð�xÞ or rE ¼ rtot � u ð13Þ

which is simply obtained inserting c from (4) and c0 from

(7) with Ub ¼ 1 � S into (12). The integral
R �x
hc
cwdx ¼

cwð�x� hcÞ has been expressed by the pore water pressure

uð�xÞ\0 in (13), to demonstrate that the novel stress rE is

identical with the Terzaghi’s effective stress formula. It is

so, if pore water contains isolated air bubbles only.

Next, the funicular regime with interconnected air and

water channels (no bubbles or water lenses) is examined. If

c from (4) and c0 from (6) are substituted into (12), the

result is

ðrtot � rEÞ
��
�x
¼
Z �x

hc

ð1 � nþ nSÞcwdx ¼ ð1 � nþ nSÞavuð�xÞ ;

ð14Þ

where ðÞav
denotes the average value over the range

x 2 ð�x; hcÞ. For constant porosity and constant degree of

saturation, (14) can be simplified to

rE ¼ rtot � ð1 � nþ nSÞu for nðxÞ ¼ const;

SðxÞ ¼ const
ð15Þ

Comparing rE from (15) with the Bishop stress [2]

rB ¼ rtot � vu, one obtains

 b = -γ  (1-n)w

b γ  (1-n)sγ    =d

γ  d

airwater 

grain

Fig. 1 Unit self-weight cd ¼ ð1 � nÞcs and buoyancy b ¼ �ð1 � nÞcw
must be balanced by the macroscopic equivalent �oxrE of resultant

contact force, �oxrE þ ð1 � nÞðcs � cwÞ ¼ 0

5 The conclusion (8) remains valid for SðxÞ 6¼ const as well. A

retention curve S(s) could be used to link a variable degree of

saturation with suction s ¼ �u. All of this would be an unneeded

complexity here.
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v ¼ vE ¼ ð1 � nþ nSÞ ð16Þ

The empirical estimates of the Bishop parameter v are

usually different from vE, and hence, they violate (6), i.e.,

oxrB 6¼ c0.
Definition (15) is not valid, unless all grains are entirely

surrounded by capillary water. The averaging of the factor

vE ¼ ð1 � nþ nSÞ is required in the case of spatial vari-

ability nðxÞ 6¼ const or SðxÞ 6¼ const , see (14). A retention

curve S(u) could be useful in this case.

6 Micro-mechanical considerations

A single water lens of diameter dL between two spherical

grains is considered, Fig. 4. The water lens glues a pair of

grains by the force

1

4
ðuatm � uwÞpd2

L þ TpdL ; ð17Þ

where T � 73 � 10�6 kN/m is the surface tension or inter-

facial (air–water) energy per unit area. The second sum-

mand of the aforesaid attractive force is an estimation

based on an infinitesimally small separation of grains dx
which is supposed to increase the interfacial surface area

by pdLdx and the interfacial energy by dE ¼ TpdLdx. As a

result, dE=dx ¼ TpdL is the force per water lens.

Under the funicular regime, Fig. 5, water is enclosed by

a single but geometrically complicated air–water mem-

brane (interface surface). The area of the membrane may

somewhat grow due to a small separation dx of soil por-

tions on opposite sides of a planar cross section. This

increase in area is expected to be much smaller than that

under pendular regime.

For example, let a cross section of a monodisperse silt

with uniform grain diameter d ¼ 0:03 mm have a simple

cubic packing with d�2 grain-to-grain contacts per unit

area. Let each contact be glued by an isolated water lens of

diameter dL ¼ 0:02 mm. For d�2 lenses with the perimeter

pdL each, the contribution of the surface tension T to the

compressive stress is

d�2 � T � p � dL
¼ ð0:03 � 10�3Þ�2 � 73 � 10�6 � 3:14 � 0:02 � 10�3

� 5 kPa

ð18Þ

Under the funicular regime, the increase in the surface of

the air–water membrane due to the separation dx is much

smaller than that of isolated water lenses. The effect of

surface tension on the effective stress is practically

insignificant.

Nonetheless, under the funicular regime, unsaturated

soils respond substantially differently from saturated soils

under comparable conditions. The presence of the air–

water membrane appears to be significant for the force

chain stability and must be considered in constitutive

models (but not as a part of the effective stress). Because

all neighboring grains (or grain aggregates) are glued

together, the pressure (grain-to-grain contact forces) due to

surface tension is qualitatively different than the the same

(in average) pressure applied directly to the soil skeleton at

the boundary of the sample. The latter pressure is

-b 

σ  (0) E

b

x 

-q 

q 

q = 

  hc

cu =  γ  (x - h )

cu(h )=0

(a)

(b)

(c)

γw

w

1

Fig. 2 Weight nScw of the capillary water but also the reaction �b to the buoyancy that acts on water downwards

u(x) 

u(0)= 

x

-h  γwc  h  γ   (1-n+Sn)wc  σ  =    

  σ  (x)    

cu(h ) = 0 
γ '

E

E

wch  [ (1-n) γ   + n S γ  ]   σ   =    = σ  s
E 

tot

Fig. 3 rE in the capillary zone x 2 ð0; hcÞ
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transferred through fewer and longer force chains that are

more prone to buckling. Hence, the presence of the air–

water membrane with surface tension has an important

supporting effect on long force chains but has little influ-

ence on the average grain-to-grain forces and consequently

on the effective stress.

7 Generalization to 3D

In Sect. 5, Eq. (15) for vE was derived for the vertical

direction only. In this section, this equation is demonstrated

to be valid also in the general case, such as horizontal

direction. Because the horizontal stress component is

statically indeterminate, the equilibrium principle cannot

be applied. Instead, a micro-mechanical argument, Fig. 6,

will be used. A unit plane cross section through a capillary

zone is considered with water under tension,

u ¼ uw � uatm\0. The forces acting on such cross section

can be calculated using the surface fractions of solid and

water. The 2D porosity, i.e., the fraction of the cross sec-

tion passing through pores, is identical as the usual porosity

n ¼ Vpores=V , according to the Delesse’s (1843) stereology

principle. This principle is supposed to apply to the degree

of saturation S as well, i.e., the fraction of the cross section

passing through water is nS. The total traction vector on the

cross section results from the following sources:

• The contact forces acting through grains only

• Pore pressure acting through the grains (with fraction

1 � n)

• Pore pressure acting directly through the pore water

(with fraction nS)

• Surface tension T (negligible for the contact forces but

critical for the stability of force chains)

Adding all portions of pore pressure to the contact forces

(and neglecting T), one obtains

ttot
i ¼ tEi � nið1 � nÞu� ninSu or

rtot
ij ¼ rEij þ ð1 � nþ SnÞudij ;

ð19Þ

where ni is the unit outer normal vector to the cross section,

tEi ¼ �rEijn
E
j is the effective stress vector (traction), and dij

is the Kronecker symbol. The expression (19) is in agree-

ment with the 1D derivation (15).

The absolute atmospheric pressure uatm acts on the cross

section:

• Though water on grains with surface fraction 1 � n

• On water with surface fraction nS

• Directly with surface fraction nð1 � SÞ
i.e., on the whole area 1 � nþ nSþ nð1 � SÞ ¼ 1 of the

cross section. However, the atmospheric pressure is

u   <   uatmw

u   atm

d

d L

s = u      - u
TT

watm

1

1

δx

Fig. 4 A grain under the pendular regime. Neighbouring grains are glued by the suction s ¼ uatm � uw and by the surface tension T

Fig. 5 A cross section of unsaturated soil in funicular regime.

Neighbouring grains aggregates are glued by the surface tension T on

the air–water membrane

1-n 1

TnS 

 (1-n) u

 u S n

n

ni

Fig. 6 Water forces on a vertical unit cross section. Pore water acts

directly through the surface nS and indirectly via grain through the

surface ð1 � nÞ
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excluded from the total net stress rtot
ij by definition, and

hence, it is absent in (19).

8 Example of an initial equilibrium

Modern constitutive models for unsaturated soils use suc-

tion s ¼ �u explicitly in combination either with the total

net stress rtot
ij or with rBij . Given rEij and u, one can use an

existing constitutive code as follows: (1) convert rEij ! rBij
(2) update rBij as usual (3) convert rBij ! rEij . It would be

more elegant to reformulate the constitutive equations

using rEij , of course.

As an example, let us consider the initial geostatic

equilibrium in a column of soil with the total depth of

H ¼ 15 m and with the water level at the depth of hc ¼ 6

m, see Fig. 3 left. The simplified fields of void ratio eðxÞ ¼
1 (which corresponds to n ¼ 0:5) and the degree of

saturation

SðxÞ ¼
0:4 for x\hc ¼ 6

1:0 for x[ 6

�
ð20Þ

are assumed. The unit weights are cd ¼ 14, cs ¼ 28,

cw ¼ 10, c0 ¼ 9, c ¼ ð1 � nÞcs þ nScw ¼ 16 and cr ¼ ð1 �
nÞcs þ ncw ¼ 19 kN/m3. The pore pressure is hydrostatic

varying linearly from - 60 kPa on the ground level to 90

kPa at the bottom. The initial stress field is in equilibrium

with the self-weight. It will be calculated analytically and

with two popular commercial software packages PLAXIS

and ABAQUS.

8.1 Analytical solution rE

According to (15) with rtot ¼ 0 and u ¼ �60 kPa on the

ground surface one obtains

rEð0Þ ¼ � ð1 � nþ nSÞu ¼ ð1 � 0:5 þ 0:5 � 0:4Þ � 60

¼ 42 and

rEðxÞ ¼rEð0Þ þ c0x ¼ 42 þ 9 � x

The stress rE increases linearly with depth x as given in

(6). This stress field is valid in the whole column, above

and below the water table.

8.2 Defining initial stress for rB = rtot - Su
ABAQUS

The initial equilibrium is calculated with the option

*SOILS using 300 CPE4P elements. According to the

manual, the geostatic initial effective6 stress field has to be

defined as

rBðxÞ ¼

rtot � Su with

rtot ¼ cx ¼ 16 � x for x\hc
rtot � u with

rtot ¼ chc þ crðx� hcÞ
¼ 19 � x� 18 for x[ hc

8
>>>><

>>>>:

wherein the pore pressure is uðxÞ ¼ �60 þ 10x kPa. A

linear interpolation between the following values can be

prescribed:

rBð0Þ ¼ 60 � 0:4 ¼ 24 and

rBð6Þ ¼ 16 � 6 ¼ 96 and

rBð15Þ ¼ ð19 � 15 � 18Þ � ð�60 þ 10 � 15Þ ¼ 177 kPa

The initial degree of saturation S(x) was defined via the

discrete nodal values. Due to the jump from S ¼ 0:4 to

S ¼ 1:0 at x ¼ 6 m, the intermediate initial value Sð6Þ ¼
0:7 was chosen. In order to enforce SðxÞ ¼ 0:4 everywhere

in the capillary zone, the following (artificial) retention

curve

SðuÞ ¼
0:4; for u\0

1; for u� 0

�
ð21Þ

was defined. Using a linear elastic material with E ¼ 10

MPa and m ¼ 0, the desired zero displacement field was

obtained from initial equilibrium using a tiny adjustment

rBð0Þ � 27:2 kPa (discretization with 30 elements) or

rBð0Þ � 24:15 (discretization with 300 elements). Above

the ground water level, the gradient oxrB ¼ 12 is larger

than c0 ¼ 9 kN/m3.

8.3 Calculation of initial stress r= rtot - u
with PLAXIS

In PLAXIS, the total unit weights c ¼ 16 and cr ¼ 19 kN/m3

need to be prescribed above and below the water surface,

respectively. The initial stress is calculated internally.

Displacements to establish the static equilibrium are all

zero as required, but the resulting ’’effective’’ stress varies

linearly according to

rðxÞ ¼ rtotðxÞ � uðxÞ ð22Þ

in the whole column. In particular, rð0Þ ¼ 60 kPa seems to

be strongly overestimated. The equilibrium condition (6) is

violated by PLAXIS. Using some sophisticated options [4],

the solution given by ABAQUS can also be reproduced by

PLAXIS.

6 According to the ABAQUS nomenclature
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9 Summary

A novel effective stress rE is defined by using vE instead of

Bishop parameter v. Regardless of the degree of saturation,

this stress represents the grain-to-grain contact forces. Such

physically based definition is beneficial for the constitutive

modeling. The new stress, unlike Bishop stress rB, is in the

geostatic equilibrium with the buoyant weight c0. The

’’effective’’ stresses from ABAQUS rB � rtot � Su or from

PLAXIS r ¼ rtot � u are not in equilibrium with c0.
However, rE is still just a definition and not a com-

prehensive constitutive model. It may become a part of a

constitutive model and contribute to its clarity. The pro-

posed rE as such cannot simulate or explain experiment

results. Existing constitutive models for unsaturated mod-

els that employ Bishop stress rB, and suction s can be

adapted or modified to work with rE and s instead. The

validity of vE requires that all grains must be surrounded by

capillary water.
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