KIT | KIT-Bibliothek | Impressum | Datenschutz

Voxel‐based finite elements with hourglass control in fast Fourier transform‐based computational homogenization

Schneider, Matti 1
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

The power of fast Fourier transform (FFT)-based methods in computational micromechanics critically depends on a seamless integration of discretization scheme and solution method. In contrast to solution methods, where options are available that are fast, robust and memory-efficient at the same time, choosing the underlying discretization scheme still requires the user to make compromises. Discretizations with trigonometric polynomials suffer from spurious oscillations in the solution fields and lead to ill-conditioned systems for complex porous materials, but come with rather accurate effective properties for finitely contrasted materials. The staggered grid discretization, a finite-volume scheme, is devoid of bulk artifacts in the solution fields and works robustly for porous materials, but does not handle anisotropic materials in a natural way. Fully integrated finite-element discretizations share the advantages of the staggered grid, but involve a higher memory footprint, require a higher computational effort due to the increased number of integration points and typically overestimate the effective properties. Most widely used is the rotated staggered grid discretization, which may also be viewed as an underintegrated trilinear finite element discretization, which does not impose restrictions on the constitutive law, has fewer artifacts than Fourier-type discretizations and leads to rather accurate effective properties. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000151059
Veröffentlicht am 11.10.2022
Originalveröffentlichung
DOI: 10.1002/nme.7114
Scopus
Zitationen: 10
Web of Science
Zitationen: 9
Dimensions
Zitationen: 11
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 30.12.2022
Sprache Englisch
Identifikator ISSN: 0029-5981, 1097-0207
KITopen-ID: 1000151059
Erschienen in International Journal for Numerical Methods in Engineering
Verlag John Wiley and Sons
Band 123
Heft 24
Seiten 6286-6313
Vorab online veröffentlicht am 08.09.2022
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page