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Abstract

Lubrication of surfaces in relative motion is essential to avoid unnecessary energy losses
due to friction. Surface texturing is a promising way of achieving desirable properties
of lubricated contacts such as decreased friction and increased load carrying capacity.
The lack of general statements and contradictory findings are the main challenges for
widespread use of surface texturing. Ball-on-disc tribometers are used to predict properties
of real contacts in a laboratory setting. This thesis builds upon the work of Erik Hansen
that simulates such a tribometer in steady conditions to extend it to include transient
effects and a micro-texture on the ball surface. The aim of this work is to validate the
numerical predictions by comparing them to experimental results. The used equations
are derived and explained. The numerical approaches and the working principles of the
utilized algorithms are detailed. A good agreement between the simulation results and the
experimental data from the literature is found. The overall behaviour of the new solver
is also investigated. Simulations with varying spatial grid sizes with proportionally scaled
time steps and constant grid sizes with changing time step magnitudes are carried out and
analysed. It is found that coarser grids correspond to large deviations from experimental
results but the finest grids investigated were associated with long computation times, so a
compromise must be made depending on the requirements.

Kurzfassung

Die Schmierung von Oberflächen, welche sich in Relativbewegung befinden, ist sehr wichtig,
um unnötige Energieverluste wegen Reibung zu vermeiden. Das gezielte Einbringen von
Oberflächentexturen ist die Verringerung des Reibungsverlusts und die Erhöhung der Be-
lastungskapazität. Der Mangel an allgemeingültigen Aussagen und widersprüchlichen
Erkenntnisse aus der Literatur sind die Hauptherausforderungen für eine weitverbreit-
ete Nutzung von Oberflächentexturen. Kugel-Scheibe Tribometer werden benutzt, um die
Eigenschaften von realen Reibkontakten in einem Labor zu voraussagen. Diese Bachelo-
rarbeit baut auf der Arbeit von Erik Hansen auf, die ein solches Kugel-Scheibe Tribometer
in stationären Zuständen simuliert, um es für instationäre Effekte zu erweitern. Bei den
Simulationen wird eine Mikrotextur in die Kugeloberfläche eingesetzt und der Algorith-
mus entsprechend angepasst. Das Ziel dieser Arbeit ist die Validierung der numerischen
Vorhersagen durch den Vergleich mit experimentellen Ergebnissen von Literatur. Die ver-
wendeten Gleichungen werden hergeleitet und erläutert. Die numerischen Ansätze und
die Funktionsprinzipien der verwendeten Algorithmen werden detailliert beschrieben. Es
wird eine gute Übereinstimmung zwischen den Simulationsergebnissen und experimentellen
Daten aus der Literatur gefunden. Das Gesamtverhalten des neuen Solvers wird eben-
falls untersucht. Es werden Simulationen mit unterschiedlichen räumlichen Gittergrößen
mit proportional skalierten Zeitschritten und konstanten Gittergrößen mit wechselnden
Zeitschrittgrößen durchgeführt und analysiert. Es zeigt sich, dass gröbere Gitter großen
Abweichungen von den experimentellen Ergebnissen entsprechen, die untersuchten fein-
sten Gitter aber mit langen Rechenzeiten und großem Rechenaufwand verbunden waren,
so dass je nach Anforderung ein Kompromiss getroffen werden muss.
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1. Introduction

1.1. Motivation

Motion is essential to humanity and its development. From constructing the pyramids
in ancient Egypt using sledges to constructing automobiles or planes with cutting-edge
technology, mankind has always had to move certain things or to harness the energy of
motion. Therefore, friction, the resistance against motion, has been a challenge to be dealt
with throughout history. Friction causes unwanted energy losses, requiring more energy
to be provided to the system at hand. As reducing the CO2 emissions and ensuring the
sustainability of all processes are amongst the main challenges of modern society, it is
essential to study friction. The science that deals with the friction, wear and lubrication
involved in moving contacts is called tribology [1].

One can understand the relevance and importance of tribology in reducing energy losses
and therefore CO2 emissions by considering existing literature. In 2017, Holmberg and
Erdemir estimated that 20% of the global energy consumption was spent on overcoming
friction. They claimed that advances in tribology could lead to reductions of 1460 metric
tons of CO2 (MtCO2) and 3140 MtCO2 in the short and the long term respectively [2]. The
same authors estimated in an earlier paper that in a passenger vehicle (excluding braking
friction), 28% of the fuel energy is lost due friction in the drivetrain and the engine, while
only 21.5% of it is used for moving the car [3]. Even though electric vehicles would have
less friction losses due to the absence of a complex gearbox, minimizing the losses would
increase the driving range and is still valuable. The question that remains now, is how one
might realize these results.

The highest reduction in friction is observed when the lubricant forms a film between the
contacting surfaces and separates them. This phenomenon is called full film lubrication
and when the pressures inside the lubricant are high enough to cause significant elastic de-
formation of the solids, it is called elastohydrodynamic lubrication (EHL)[4]. Additionally,
frictional losses can be further reduced by using improved materials and better lubricants
with various additives and by introducing textures in the contact surfaces. These textures
can both trap debris and store additional lubricant as well as manipulate the hydrody-
namic behaviour in a favourable manner. So far the widespread industrial application of
texturing methods is not completely realized. The challenge that researches in this field
face is the high dependency of texturing parameters on operating conditions and the type
of contact. The lack of general statements about optimal texturing parameters is another
challenge for standardized use of surface texturing [5]. Therefore, it is essential to have
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2 1. Introduction

accurate theoretical models and numerical results to support ongoing experimental re-
search, especially for lubrication problems characterized by high lubricant pressures, such
as contacts found in the EHL regime.

1.2. State of the Art

Even though the usage of lubricants to reduce friction between two surfaces in relative
motion is not a new concept, only after the Industrial Revolution with increasing rota-
tional speeds beyond the ones of windmills and cart axles, a better understanding of full
film lubrication started to become necessary [1]. This began with Tower’s discovery of
the existence of an oil film of a journal bearing in 1885 and with Petrov’s conclusion that
such a film must exist after considering friction measurements from experiments in 1883
[6]. Shortly after these advancements, in 1886, Reynolds analytically derived a second-
order differential equation for the pressure in the narrow, converging gap between bearing
surfaces, creating the foundation of the following theory on full film lubrication and hy-
drodynamic bearing design [6]. This equation is called the “Reynolds equation” and is
discussed in detail in the next chapter. For elastohydrodynamic lubrication, as it requires
the simultaneous consideration of three equations, for fluid flow, for the elastic deformation
of the solids and for the effects of high pressure on the lubricant properties, no mathemat-
ical solution was found until Ertel’s work in 1945, and the publication of it by Grubin and
Vinogradava in 1949 [7, 8]. In the following decades, significant advancements were made
both in numerical considerations of the EHL problem and in experimental techniques.
This progress is excellently outlined by Spikes and the interested reader is referred to his
review of the history of EHL [7].

As for advancements in surface texturing of tribological contacts, research started getting
attention in the late 1960s [5]. Hamilton et al. discovered that micro-scale irregularities on
the surfaces of rotary-shaft face seals created hydrodynamic pressure and contributed to the
load carrying capacity. They also observed cavitation, the local creation of vapour bubbles
in the liquid lubricant due to low pressures, at the divergent part of the irregularities
they were studying [9]. Research in this field accelerated in the following years after
promising results were found by Etsion’s group [10, 11]. Despite the promising potential
of surface texturing, as Gropper et al. mention, finding optimal texturing parameters is
very challenging and contrary conclusions exist in literature due to the high dependency
of the contact behaviour on operating conditions and the situation at hand [5]. It is also
important to consider the developments in the methods used to model cavitation in micro-
textured EHL contacts. Two main approaches exist when treating cavitation phenomena,
the Reynolds model and the Elrod-Adams (EA) implementation [12] of the Jakobsson,
Floberg and Olson (JFO) model [13, 14]. The former is known to be non-mass conserving,
which is non-physical, while the latter is shown to be mass conserving. Two papers by
Giacopini et al. [15] and Bertocchi et al. [16] reformulate the cavitation condition to obtain
a more favourable system of equations and excellently demonstrate the introduction of the
mass-conserving cavitation model into the Reynolds equation. The effects of the chosen
cavitation model and the importance of a mass-conserving cavitation model for micro-
textured contacts are excellently explained by Ausas et al. [17] and the interested reader
is referred to their cited work. An extensive review of the state of research in the field of
lubrication of textured surfaces is provided by Gropper et al. in their 2016 paper [5].

In 2015, Woloszynski et al. [18] proposed a new algorithm called the Fischer-Burmeister-
Newton-Schur (FBNS) algorithm based on the JFO mass-conserving cavitation model
and its implementation by EA. They showed that this approach is significantly efficient
and the computational cost associated with considering cavitation is comparable to cases
when cavitation is ignored. This enables the analysis of transient conditions and complex
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1.3. Goals and Outline 3

geometries, as it makes it computationally feasible [18]. Erik Hansen, the supervisor of
this thesis, in the recent years has developed an algorithm in MATLAB based on the
FBNS algorithm for solving for the pressure distribution in time-independent (steady)
EHL contacts [19]1. This is the point where the work of this thesis begins.

1.3. Goals and Outline

The goals of this bachelor thesis are listed as follows:

1. extend the existing model and system of equations used for the steady solver devel-
oped by Erik Hansen to include transient effects in MATLAB,

2. introduce a micro-texture moving through the contact to obtain unsteady flow con-
ditions,

3. validate the developed model and solver by replicating experimental setups and com-
paring results with experimental data,

4. investigate the overall dependency of the solver on the quality of space and/or time
discretization of the computational domain.

In chapter 2, the theoretical considerations necessary to develop models for the phenomena
observed in time dependent (unsteady) EHL are provided. Tribological basics and lubrica-
tion regimes are explained. Governing equations of the contact are derived. Constitutive
equations, that are needed to correlate theoretical predictions of lubricant properties with
measured values, are introduced. In chapter 3, the steps taken to discretize the system
of equations and the general structure of the developed solver are discussed. Chapter 4
provides the necessary information to carry out simulations with the proposed model. The
comparison of the predicted results with the experimental measurements and the analysis
of the behaviour of the algorithm are provided and discussed within the same chapter. Fi-
nally, in chapter 5, the work done in the scope in this thesis is summarized and proposals
for further research are made.

It is important to emphasize that the already existing steady EHL code was developed
and supplied by Erik Hansen. The implementation of the necessary changes in this code
to model unsteady phenomena and a moving micro-structure as well as obtaining the data
by running the simulations was done by the author, Altay Kaçan, while the associated
development of the equations and algorithm, the setting up of the simulations and the
interpretation of the results are the outcome of discussions with Erik Hansen and are
therefore joint work.

1At the time of the writing of this thesis, a presentation made by the Erik Hansen is being cited for
information related to the supplied steady EHL solver that this thesis has been built upon. This solver
is a part of his doctoral work and will be published with his PhD thesis in the future.
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2. Theoretical Fundamentals

This chapter focuses on explaining physical phenomena behind elastohydrodynamic lubri-
cation (EHL) and the models used to describe them in this thesis. EHL is a type of fluid
film lubrication where the contacting surfaces are completely separated by the fluid and
the elastic deformation of the solids is of significant magnitude. The load is carried by
the generated pressure within the lubricant film and the friction occurs purely from the
shearing of the viscous fluid [6]. This way, the lubricant prevents solid to solid contact,
reducing friction and wear. The high pressures elastically deform the solid surfaces and
drops in pressure lower than the vapour pressure of the lubricant cause cavitation, as ex-
plained in more detail in the corresponding section. Thus, it is necessary to have models
that represent these various physical phenomena and couple them in a meaningful way.

In the beginning of this chapter, the fundamental types of contact geometries, relevant
concepts such as the friction coefficient and the various lubrication regimes are defined.
Stribeck curves are introduced to be able to clearly distinguish between lubrication regimes.
Then, the model used to describe the contact geometry and the elastic deformation of
the solids is explained. Next, the governing equations for the lubricant film are derived
from the conservation of mass and momentum. The mass-conserving cavitation model is
introduced into the equations. Expressions for the shear stresses which are essential for
describing the friction behaviour are derived. The required constitutive equations that
correlate experimental results to theoretical models are listed. And finally, all governing
equations and assumptions made to obtain them are summarized.

2.1. Tribological Basics

2.1.1. Types of Contacts

Two types of surface contacts, conformal and non-conformal, are considered in tribology.
As their respective names suggest, conformal surfaces match one another geometrically
and thus have a large area to carry the load. Non-conformal surfaces have significant
geometrical differences which cause a relatively small area to be carrying the load, gener-
ating higher pressures compared to conformal contacts for the same load. Slider or journal
bearings are examples for conformal surfaces, while gear teeth contact or roller-element
bearings correspond to non-conformal surfaces. Hamrock et al. further mention in the
first chapter of their book, that the lubrication area is usually smaller by three orders of
magnitude for non-conformal surfaces compared to conformal ones [6]. Habchi in his more
recent work, illustrates the difference clearly in Fig.2.1 [4].

5



6 2. Theoretical Fundamentals

Furthermore, surface contacts in machine elements are classified into line contacts and
point contacts. It is possible to distinguish them by considering the geometry in an un-
loaded dry contact. The contact between the inner or outer raceway and the cylindrical
or ball roller-elements of the corresponding bearings are clear examples of respectively line
and point contacts [4].

Figure 2.1.: Illustration of surfaces in conformal and non-conformal contacts. Taken from
Habchi, 2018 [4].

2.1.2. Tribometers & Friction

Tribometers are measurement devices to replicate less complex than but still represen-
tative contacts of the ones found in industry applications. They are used to investigate
friction and wear behaviour. There are two standard types of tribometers, ball-on-disc and
pin-on-disc tribometers. The contact between either the ball or the pin and the disk is ob-
served while conducting experiments. Ball-on-disc tribometers characterize non-conformal
point contacts, therefore they are associated with high hydrodynamic pressures. Since
the current work focuses on the numerical simulation of such a device, only the funda-
mentals required to define the coefficient of friction will be presented here for ball-on-disc
tribometers. For more details on the simulated setup please see section 4.1. The friction
coefficient, Cf is defined as the absolute value of the ratio of the friction force, Ff and the
applied normal load, FN [20]:

Cf =

∣∣∣∣ FfFN
∣∣∣∣. (2.1)

The friction force is typically calculated by using a torque sensor at the disk to measure
the friction moment. The measured moment then is divided by the distance of the contact
to the rotation axis of the disk to determine Ff [21].

2.1.3. Lubrication Regimes and Stribeck Curves

Richard Stribeck introduced the concept of plotting the steady state journal bearing fric-
tion against the rotational speed at different mean pressures in his 1902 paper, “Die
wesentlichen Eigenshaften der Gleit- und Rollenlager” [22]. The resulting curves are called
Stribeck curves. They are useful for determining the friction coefficient and for distinguish-
ing between different lubrication regimes. For a summary of Stribeck’s extensive work, a
relatively recent paper by Jacobson is recommended for the interested reader [23].
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2.2. Governing Equations of EHL 7

In modern literature, the dimensionless Hersey number, H, is plotted against the friction
coefficient to additionally capture the effects of mean pressure and lubricant dynamic
viscosity. It is defined as:

H =
µΩ

W
, (2.2)

where µ is the dynamic viscosity of the lubricant, W is the mean pressure and Ω is
the rotational speed in rotations per second (rps), as adapted from Hamrock et al [6]
by Codrignani [24]. A contact under low load, with a high viscosity lubricant and high
relative velocities between the surfaces corresponds to a high Hersey number and a thicker
lubricant film. The vice versa holds for low Hersey numbers [6].

Three main lubrication regimes are distinguished in literature [4, 6] as indicated below the
curve in Fig.2.2:

1. Boundary Lubrication: At low Hersey numbers a thick enough lubricant film cannot
be formed. The load is carried by the solid surfaces. Hence, the friction coefficient is
high and the behaviour of the contact is governed by the characteristics of the solid
bodies.

2. Mixed Lubrication: A steep decrease in the coefficient of friction can be observed
as the lubricant film starts to form and its thickness increases. The pressurized
lubricant flow assists in carrying the load. Therefore properties of the lubricant as
well as the solid surfaces govern this regime.

3. Full Film Lubrication: At higher Hersey numbers the lubricant is able to separate the
contacting surfaces completely and carries the contact load. The lubricant and flow
properties govern the friction coefficient. As it can be seen in Fig.2.2, the plateau
where the lowest friction values are reached correspond to the onset of this regime.

The full film lubrication regime can be further distinguished into two sub-regimes: elasto-
hydrodynamic lubication (EHL) and hydrodynamic lubrication (HL). As mentioned in the
introduction of this chapter, the EHL regime is characterized by high pressures that induce
the elastic deformation of the contacting solids. The EHL regime is usually observed in
non-conformal contacts due to the associated high pressures. Habchi points out, that the
magnitude of the elastic deformation is orders magnitude larger than the fluid film thick-
ness, so it is critical to consider its effects. The EHL regime ends as the Hersey number
keeps increasing further because the film thickness also starts to increase, reducing the
difference of the magnitudes of the film thickness and the elastic deformation [4].

2.2. Governing Equations of EHL

There are multiple interconnected equations that describe the overall behaviour of the solid
bodies and the lubricant in EHL. The contact geometry is defined by the film thickness
equation which is also influenced by the elastic deformations of the solids. The Reynolds
equation governs the flow of lubricant and the hydrodynamic pressure distribution based on
contact geometry and flow kinematics. The load balance equation ensures the fulfilment of
the force equilibrium between outside loads and the generated pressure within the contact.
In the most general case, the energy equation governs the generation of heat due to shear
inside the lubricant and its dissipation to the surroundings [4]. For the sake of keeping the
presented model simple, the energy equation is not considered by assuming an isothermal
flow. These equations are highly dependent on one another, thus provide a challenge in
modelling. The pressure distribution depends on the contact geometry and that itself
depends on the pressure distribution since it determines the elastic deformation of the
solids.

7



8 2. Theoretical Fundamentals

Figure 2.2.: A plot of the Stribeck curve showing the various lubrication regimes. Taken
from Codrignani [24] who adapted the figure from Hamrock et al. [6].

2.2.1. Preliminary Considerations

Fluid Properties & Conservation Equations

The lubricant is assumed to be a continuum to be able to carry out the following deriva-
tions, which is the typical approach of modelling fluids. This assumption is justified as long
as the considered fluid element volume does not get too small. As mentioned by Durst,
in chapter 3.2 of his cited work, orders of magnitude of 10−18m3 to 10−20m3 are sufficient
for the continuum hypothesis to hold [25]. This allows the use the conservation equations
of fluid mechanics, namely mass and momentum conservation. The interested reader is
referred to Durst and Spurk, as they provide detailed derivations of both equations [25, 26].

Using the index notation for Cartesian tensors, the mass conservation equation (alterna-
tively called, the continuity equation) can be expressed:

Dρ

Dt
+ ρ

∂ui
∂xi

= 0, (2.3)

where ρ is the density of the fluid, t is time, Dρ
Dt is the material derivative of the density

with respect to time and ∂ui
∂xi

is the divergence of the field velocity, shown using Einstein’s
summation convention. The material derivative is used for describing temporal changes in
material properties in terms of field quantities and is given as [26]:

D

Dt
=

∂

∂t
+ ui

∂

∂xi
. (2.4)

The other conservation equation is for linear momentum in i-direction, which holds for
every continuum, and can be summarized in vector notation:

ρ
Dui
Dt

= ρki +
∂σji
∂xj

, (2.5)

8



2.2. Governing Equations of EHL 9

where ki is the component of the mass body forces acting on the fluid in i-direction and
σji is the stress tensor in index notation. The product ρki gives the value of the volume
body forces acting in i-direction [26]. The first index of σ gives the direction of the normal
vector of the surface the stresses are acting on, and the second gives the direction the
stress component is acting in. The stress tensor [T] is defined as [26]:

[T] =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (2.6)

The diagonal components of the stress tensor are called the normal stresses and the non-
diagonal ones are named shearing stresses. The stress tensor is symmetric, i.e. σij = σji,
which can be shown by considering the balance of angular momentum. The stress tensor
for an arbitrary state of stress can be written in index notation as:

σij = −pδij + τij , (2.7)

where p is the pressure, δij is the Kronecker delta, which is equal to 1 whenever i = j and
equal to 0 otherwise, and τij is friction stress tensor [26].

Geometry of the Contact

The following derivations will be considering the point contact of two perfectly smooth
surfaces. It is assumed that the lubricant film is thick enough such that the microscopic
surface profiles of the surfaces have negligible influence, hence justifying the smooth sur-
face assumption. Typically, the size of the EHL contact is much smaller than the actual
geometry of the contacting solids. This allows the approximation of their geometries as
elliptic paraboloids as shown in Fig.2.3. The subscript 1 is used for the lower body and
2 for the upper body - or alternatively a and b to avoid confusion in certain cases. The
terms Rx1 and Rx2 are the respective principal radii of curvature with their centers of
curvature located at the vertical x3-axis. Further simplifications on the contact geometry
will be carried out in the following subsections when necessary [4].

Figure 2.3.: The approximated EHL point contact geometry as two elliptic paraboloids.
Adapted from Habchi [4] to include the coordinate notation used in this thesis.

9



10 2. Theoretical Fundamentals

2.2.2. Film Thickness & Linear Elasticity Equations

The Film Thickness Equation

The film thickness equation governs the total gap height, h, at a given point (x1, x2) and
time t in the contact by incorporating the non-deformed gap height, hu(x1, x2, t), and the
total elastic deformation of the solid bodies, δ = δ1 + δ2. These terms are dealt with when
the linear elasticity equations are considered. The starting point of the film thickness
equation is [4]:

h(x1, x2, t) = hu(x1, x2, t) + δ(x1, x2, t). (2.8)

The non-deformed gap height term can be further decomposed into the sum of the rigid
body displacement term, h0, and the non-deformed initial shapes of the solids, h1 and h2

[4]:

hu(x1, x2, t) = h0(t) + h1(x1, x2, t) + h2(x1, x2, t). (2.9)

h0 is defined to be the distance of the non-deformed surfaces at the contact center, so on
the x3-axis in Fig.2.3. The h1 and h2 terms can be expressed at a given time t using the
equations for elliptic paraboloids [4]:

h1(x1, x2, t) =
1

2R1,x1(t)
x2

1 +
1

2R1,x2(t)
x2

2, (2.10)

h2(x1, x2, t) =
1

2R2,x1(t)
x2

1 +
1

2R2,x2(t)
x2

2. (2.11)

In the above equations, the time dependency is typically introduced within the principal
radii of curvature terms. In the simulated configurations, the radii of curvature are not
time dependent, hence t-dependence will be omitted for h1 and h2. With the definition
of an equivalent radius of curvature for both of the bodies the sum of h1 and h2 could be
further simplified [4]:

1

Rx1
=

1

R1,x1

+
1

R2,x1

, (2.12)

1

Rx2
=

1

R1,x2

+
1

R2,x2

, (2.13)

where Rx1 and Rx2 are the equivalent radii of curvature for the respective directions.
Substituting the above equations into to the sum of Eqs.(2.10) and (2.11):

h1(x1, x2) + h2(x1, x2) =
x2

1

2Rx1
+

x2
2

2Rx2
. (2.14)

The advantage of this formulation is that the existing problem could be considered as the
equivalent contact of an elliptic paraboloid with a flat plane. The elliptic paraboloid would
have the equivalent principal radii of curvature since a flat plane is associated infinitely
large radii of curvature - its reciprocal value would be zero. This greatly simplifies the
formulation of the film thickness equation and the linear elasticity equations as it will be
presented in the following [4].

Finally, including the possible effects of surface texturing on the gap height with the terms
S1(x1, x2, t) and S2(x1, x2, t), included in S = S1 + S2, the film thickness equation is
obtained [4]:

10



2.2. Governing Equations of EHL 11

h(x1, x2, t) = h0(t) +
x2

1

2Rx1
+

x2
2

2Rx2
+ δ(x1, x2, t) + S(x1, x2, t). (2.15)

For more details on how this derivation is carried out, Habchi provides clear and detailed
explanations on the matter in chapter 1.2.3 of his often cited work [4] in this thesis.
Next, the elastic deformation term in Eq.(2.15) which is governed by the linear elasticity
equations of the solids will be discussed.

Elastic Deformation of the Solids

In the model utilized in this current work, the equivalent contact problem of an elastic
elliptic paraboloid and rigid plane is considered. This means that after obtaining an
equivalent elastic modulus, the analysis of the elastic elliptic paraboloid deforming under
pressure load is sufficient to solve for the elastic deformation in the lubrication gap. This
is advantageous since the linear elasticity equations have to be solved for only one of
the bodies instead of both. This section gives a brief overview of the approach, since
the elastic deformation computations were already implemented in the steady MATLAB
code that the current work was built upon. The time dependence of the terms involved
in the derivation are omitted for visual reasons and it has no influence on the process.
Nonetheless, it is introduced at the end of this section.

As usually done in literature, the solid bodies are modelled using the principles of contin-
uum mechanics. The contacting solid bodies are assumed to be perfectly smooth, homo-
geneous and isotropic, meaning that no roughness effects are considered and the material
properties do not depend on the observed position and spatial direction within the solid
[27]. Furthermore, the deformations are considered to be small enough such that the yield
stresses of the materials are not exceeded and no plastic deformation takes place. The
relatively smaller scale of the contact compared to the curvatures of the surfaces, justify
treating them as elastic half-spaces, i.e. they are completely flat and extend until infinity
in all spatial directions except positive x3-direction as depicted in Fig.2.4 [4].

Figure 2.4.: An elastic half-plane loaded by an external concentrated force F . Adapted
from Habchi [4] to include the coordinate axes notation.

11



12 2. Theoretical Fundamentals

The starting point for the derivation of the governing equations for the elastic half-space is
the consideration of the force balances of the stresses and body forces on a single element
of the solid continuum. As shown by Landau [28], the resulting equation that governs the
solid body is:

∂σij
∂xj

+ ρki = 0. (2.16)

This equation corresponds to the differential form of the momentum conservation, Eq.(2.5),
but with the material derivative of the field velocity terms set equal to zero. Since the
momentum conservation holds for any continuum, one might apply the same equation. No
inertia effects are observed as long as the solid is moving with an arbitrary but constant
velocity, making the left-hand side of the momentum conservation zero. The body forces
are neglected, so the second term in the equation above is also set to zero.

Initially an elastic half-space loaded by a normal point force, as in Fig.2.4, is considered.
The used sign convention is that positive elastic deformations and contact forces act into
the elastic half-space [29]. Substituting into Eq.(2.16) the relationship between stresses and
strains, and therefore deformation rates, given by Hooke’s law for homogeneous, isotropic
linear elastic solids, the following expression is obtained for the elastic deformation of an
arbitrary point on the half-space in the normal direction to the plane. [4, 28]:

δ(x1, x2, x3) =
F

4πµ̃

x2
3

r3
+

(λ̃+ 2µ̃)F

4πµ̃(λ̃+ µ̃)

1

r
, (2.17)

as given by Habchi [4]. In the above equation λ̃ and µ̃ are the Lamé constants. Fur-
thermore, r =

√
x2

1 + x2
2 + x2

3 is the Euclidean distance between the point of action of
the concentrated force (acting on the origin) and the point the elastic deformation, δ, is
computed at. The Lamé constants can be expressed in terms of the Youngs’s modulus, E,
and Poisson’s ratio, ν, by [4]:

λ̃ =
Eν

(1 + ν)(1− 2ν)
, (2.18)

µ̃ =
E

2(1 + ν)
. (2.19)

This is because E and ν are defined by the Lamé constants:

E :=
µ̃(3λ̃+ 2µ̃)

λ̃+ µ̃
, ν :=

λ̃

2(λ̃+ µ̃)
, (2.20)

where the second Lamé constant, µ̃, is often called the shear modulus and denoted by G
[27]. The model used in this thesis is largely inspired on the formulation of Pohrt and
Li [29]. They consider the more general case of the surface elastic deformation with the
perpendicular force acting on an arbitrary point (x′1, x

′
2):

δ(x1, x2) =
1− ν
2πG

1

s
F (x′1, x

′
2), (2.21)

which is equivalent to Eq.(2.17) computed at the surface, i.e. x3 = 0, with µ̃ substituted as

G and generalizing r as s. The equivalence is clear to see when one substitutes ν = λ̃
2(λ̃+µ̃)

into Eq.(2.21) as briefly outlined next:

12



2.2. Governing Equations of EHL 13

1− ν
2G

=
1− λ̃

2(λ̃+µ̃)

2µ̃
=

λ̃+ 2µ̃

4µ̃(λ̃+ µ̃)
. (2.22)

The Euclidean distance between the point at which the elastic deformation is computed and
where the force is applied to is similarly s =

√
(x1 − x′1)2 + (x2 − x′2)2. Pohrt continues

by adapting Eq.(2.21) for a pressure distribution, p(x′1, x
′
2), instead of a point load which

requires the introduction of an integral [29]:

δ(x1, x2) =
1− ν
2πG

∫∫
A

p(x′1, x
′
2)

s
dx′1dx′2, (2.23)

or alternatively written in terms of the Young’s modulus, using the previous definitions of
the second Lamé constant, µ̃ = G and the relation between it and E, i.e. Eq.(2.19):

δ(x1, x2) =
1− ν2

πE

∫∫
A

p(x′1, x
′
2)

s
dx′1dx′2. (2.24)

This expression is sufficient to compute the elastic deformation of an elastic half-space
under a distributed load, which is what the hydrodynamic pressure in the lubricant film
is. However, it is valid for only one body and to have a complete solution it must be
solved once for each body. The definition of an equivalent Young’s modulus , E′, allows
the consolidation of the material parameters of both the bodies into one parameter:

2

E′
:=

1− ν2
1

E1
+

1− ν2
2

E2
, (2.25)

where the subscripts of E and ν denote the body they characterize [30]. Considering that
the total elastic deformation is the sum of the individual deformations of each body for a
given position (x1, x2), i.e. δ = δ1 + δ2, the following statement can be made:

δ(x1, x2) =
1− ν2

1

πE1

∫∫
A

p(x′1, x
′
2)

s
dx′1dx′2︸ ︷︷ ︸

δ1(x1,x2)

+
1− ν2

2

πE2

∫∫
A

p(x′1, x
′
2)

s
dx′1dx′2︸ ︷︷ ︸

δ2(x1,x2)

, (2.26)

and since both area the integrals are the same, as they are computed for the same pressure
distribution and at the (x1, x2):

δ(x1, x2) =

(
1− ν2

1

πE1
+

1− ν2
2

πE2

)∫∫
A

p(x′1, x
′
2)

s
dx′1dx′2, (2.27)

which becomes with the substitution of E′ as defined in Eq.(2.25) and results in the
required form of the linear elasticity equation computed at time t:

δ(x1, x2, t) =
2

πE′

∫∫
A

p(x′1, x
′
2, t)

s
dx′1dx′2. (2.28)

13



14 2. Theoretical Fundamentals

2.2.3. The Reynolds Equation

In this section, the derivation of the Reynolds equation will be presented and the used
mass-conserving cavitation model will be implemented into the equation. The Reynolds
equation is the governing equation of the fluid film and the pressure distribution within.
The derivation shown here is largely based on the work of Hamrock et al. [6]. The starting
point of the derivation are the Navier-Stokes Equations (NSE), thus certain assumptions
are necessary. For the derivation presented here, the lubricant is assumed to behave as a
Newtonian fluid, i.e. the shear rate is linearly related to the shear stress, and the flow is
laminar [6].

An important dimensionless number used to characterize whether the flow is laminar or
turbulent is the Reynolds Number, given by:

Re =
ρ̄0u0l0
µ̄0

=
inertia

viscous
, (2.29)

where u0 is the characteristic velocity, l0 the characteristic length, ρ̄0 characteristic density
and µ̄0 the characteristic dynamic viscosity1. It could also be considered as the relative
magnitude of the inertial forces compared to the viscous forces. At low Reynolds numbers
the flow is usually laminar [6].

The material law for a Newtonian fluid can be expressed in index notation as:

σij = −pδij + λ∗ekkδij + 2µeij , (2.30)

where the newly introduced term λ∗ is a scalar function of thermodynamic state, depending
on the material and is named the second viscosity coefficient. δij is again the Kronecker
delta. The tensor eij is called the rate of deformation tensor, given by [26]:

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.31)

Furthermore, as shock waves are not of relevance, the Stokes’ hypothesis is also adopted
in the considerations of this thesis:

λ∗ = −2

3
µ, (2.32)

which is important to obtain the final form of the Navier-Stokes equations as presented in
the following [26].

Navier-Stokes Equations

For an in depth derivation of the NSE and material laws associated with Newtonian fluids,
Spurk provides detailed and clear explanations [26]. In the present work, the equations
are briefly explained, as the main focus is the Reynolds equation and the used cavitation
model. The NSE can be derived by considering the dynamic equilibrium of forces acting
on a single fluid element, which are: surface forces, body forces and inertia forces. This
is equivalent to inserting the material law for the Newtonian fluid into the momentum
conservation equation.

1The bar is introduced to avoid confusion with parameters that are defined later.

14



2.2. Governing Equations of EHL 15

ρ
Dui
Dt︸ ︷︷ ︸
(I)

= ρki︸︷︷︸
(II)

− ∂p

∂xi︸︷︷︸
(III)

− 2

3

∂

∂xi

[
µ
∂uk
∂xk

]
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
︸ ︷︷ ︸

(IV)

. (2.33)

The expression above is the Navier-Stokes equations given in index notation derived by
Spurk [26]. The same notation as the previous chapters is adopted, µ is the dynamic or
the absolute viscosity of the fluid. The term on the left-hand side is the inertial term,
it is the acceleration of a fluid element multiplied by its volume specific mass, term (II)
designates body forces, (III) represents the pressure gradient and finally the terms shown
by (IV) are the viscous or friction terms. The only body forces acting on the fluid film in
EHL is gravity and in some special cases, magnetic forces, both are usually neglected. [6].

Derivation of the Reynolds Equation

The Reynolds Equation can be derived from the Navier-Stokes equations shown in Eq.(2.33)
or directly from the conservation of mass, Eq.(2.3), as shown by Hamrock et al. In the
following, only the first option is presented. Fluid film lubrication problems belong to a
class of flow called “slow viscous motion”, meaning that in the NSE, the pressure terms
(II) and viscous terms (IV) are much larger in magnitude compared to the other terms.
Out of the viscous terms, the ones characterized by the partial derivatives in x3-direction
and velocities corresponding to the pressure gradient directions, dominate the rest of the
viscous terms, and hence, are the ones that are kept. Hamrock et al. excellently demon-
strate this by conducting an order of magnitude analysis on the various terms of the NSE
and then by examining the NSE for flow conditions in real bearings in chapter 7 of their
cited work [6].

The results of Hamrock’s order or magnitude analysis on the NSE leads to the first step
of the derivation:

∂p

∂x1
=

∂

∂x3

(
µ
∂u1

∂x3

)
, (2.34)

∂p

∂x2
=

∂

∂x3

(
µ
∂u2

∂x3

)
, (2.35)

∂p

∂x3
= 0 −→ p = f(x1, x2, t), (2.36)

where u1 and u2 are the components of the velocity vector corresponding to the coordinate
directions [6]. Recalling the flow is assumed to be isothermal, it can be seen that the
pressure is a function of only x1, x2 and time. This allows the integration of the first
two equations along the gap height direction, x3, since the respective pressure terms and
therefore their partial derivatives are independent of x3. After integrating and rearranging
the first two equations to get expressions for velocity gradients, the following is obtained:

∂u1

∂x3
=
x3

µ

∂p

∂x1
+
c1

µ
, (2.37)

∂u2

∂x3
=
x3

µ

∂p

∂x2
+
c2

µ
, (2.38)

where c1 and c2 are the integration constants [6]. It is important to mention that the
viscosity, µ, is taken to be constant across the gap height, whereas it can change in x1-
and x2-directions. Since temperature is assumed to be constant and pressure does not
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16 2. Theoretical Fundamentals

vary in x3-direction but varies in the other two directions, the assumption of a constant
viscosity distribution in the x3-direction is justified. If the isothermal flow assumption is
dropped, it is possible to consider a mean viscosity across the film that only varies with
x1 and x2 to be able to follow a similar derivation as presented here [6].

A second integration of Eqs(2.37) and (2.38) in x3-direction results in:

u1 =
x2

3

2µ

∂p

∂x1
+ c1

x3

µ
+ c3, (2.39)

u2 =
x2

3

2µ

∂p

∂x2
+ c2

x3

µ
+ c4, (2.40)

where two new integration constants are obtained [6]. They could be determined by the
consideration of boundary conditions at the solid-fluid interfaces. Assuming zero slip be-
tween the solid bodies and the lubricant, the following boundary conditions are obtained2:

1. at x3 = 0, u1 = u1,a and u2 = u2,a,

2. at x3 = h, u1 = u1,b and u2 = u2,b,

where the velocity components marked with the subscript a and b correspond respectively
to the lower and upper solid body surface velocities [6]. It is important to recall that the
considered geometry is of the equivalent problem with a flat plate, a, and an elliptical
paraboloid, b. After solving for the four integration constants using the boundary condi-
tions given above, the velocities in x1- and x2-directions alongside their x3-gradients can
be expressed as:

u1 = −x3

(
h− x3

2µ

)
∂p

∂x1
+ u1,a

h− x3

h
+ u1,b

x3

h
, (2.41)

u2 = −x3

(
h− x3

2µ

)
∂p

∂x2
+ u2,a

h− x3

h
+ u2,b

x3

h
, (2.42)

∂u1

∂x3
=

(
2x3 − h

2µ

)
∂p

∂x1
−
u1,a − u1,b

h
, (2.43)

∂u2

∂x3
=

(
2x3 − h

2µ

)
∂p

∂x2
−
u2,a − u2,b

h
. (2.44)

Using these expressions, it is possible to derive equations for the volume flow rates, which
are inserted to the continuity equation to derive the Reynolds equation. It is also possible
to obtain expressions for shear stresses on the solid-fluid interface, which is presented in
section 2.2.4 [6]. The volume flow rates in both directions per unit width are defined in
terms of the corresponding velocities as:

q′x1 =

∫ h

0
u1dx3, (2.45)

q′x2 =

∫ h

0
u2dx3, (2.46)

2The designation of a for the lower body and b for the upper body is the opposite of the notation used
by Hamrock et al. [6]. This was done to be consistent with Habchi [4] and the rest of this thesis.
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2.2. Governing Equations of EHL 17

which are the velocity profiles integrated along the gap height [6]. For example, multiplying
q′x1 by an arbitrary length ∆x2 along the x2-axis would result in the volume flow rate in
x1-direction through the area defined by ∆x2 and h. Since the x1- and x2-velocities are
known from previous derivations, they can be inserted into the above equations:

q′x1 = − h3

12µ

∂p

∂x1
+
u1,a + u1,b

2
h, (2.47)

q′x2 = − h3

12µ

∂p

∂x2
+
u2,a + u2,b

2
h. (2.48)

These two equations are the superposition of volume flow rates per unit width for two well
known cases of fluid flow: Poiseuille and Couette flow. Thus, the volume flow rate of the
lubricant in EHL contacts is the superposition of the volume flow rates associated with
them, as illustrated by Fig.2.5. In Poiseuille flow, the pressure gradient causes the fluid to
flow between two flat plates. In Couette flow, the flat plates move relatively to each other,
which induces shearing of the fluid and causes it to flow [6, 26].

Figure 2.5.: The superposition of the two velocity fields that result in the EHL velocity
field, taken from Habchi [4].

It is advantageous the integrate the mass conservation equation, Eq.(2.3), along the gap
height since it results in the expressions given in Eqs(2.45) and (2.46) after some mathe-
matical manipulation. The integrated continuity equation after writing out the divergence
of the velocity vector, is [6]:

∫ h

0

(
∂ρ

∂t
+

∂

∂x1
(ρu1) +

∂

∂x2
(ρu2) +

∂

∂x3
(ρu3)

)
dx3 = 0. (2.49)

The consideration of a general rule in integration, called Leibniz integral rule [6, 31], which
is given for the ρu1 term as:

∫ h

0

∂

∂x1
[f(x1, x2, x3)] dx3 = −f(x1, x2, h)

∂h

∂x1
+

∂

∂x1

(∫ h

0
f(x1, x2, x3)dx3

)
, (2.50)

allows one to rewrite the integrals containing velocities in an advantageous way. If the
ρ is assumed to be a mean density, constant across the film height, the u1-component in
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18 2. Theoretical Fundamentals

Eq(2.49) can be calculated:∫ h

0

∂

∂x1
(ρu1)dx3 = −(ρu1)x3=h

∂h

∂x1
+

∂

∂x1

(∫ h

0
ρu1dx3

)
= −ρu1,b

∂h

∂x1
+

∂

∂x1

(
ρ

∫ h

0
u1dx3

)
,

(2.51)

where ρ is taken out from the integral since it is assumed not to depend on x3. Similarly,
the same steps are followed for the u2-component:

∫ h

0

∂

∂x2
(ρu2)dx3 = −ρu2,b

∂h

∂x2
+

∂

∂x2

(
ρ

∫ h

0
u2dx3

)
, (2.52)

and as the u3-component has the same integration variable as the partial differentiation
variable, x3, it can be directly integrated:

∫ h

0

∂

∂x3
(ρu3)dx3 = ρ(u3,b − u3,a), (2.53)

where u3,b and u3,a are the x3-velocities of the upper and lower surfaces [6].

The integrals in Eqs.(2.51) and (2.52) are precisely the definitions of the volume flow
rate per unit width in their respective directions, which were calculated in Eqs.(2.47) and
(2.48). Substituting those expressions as well as Eq.(2.53) into the x3-integrated continuity
equation, given in Eq.(2.49), results in the Reynolds equation [6]:

0 =
∂

∂x1

(
−ρh

3

12µ

∂p

∂x1

)
+

∂

∂x2

(
−ρh

3

12µ

∂p

∂x2

)
+

∂

∂x1

(
ρh(u1,a + u1,b)

2

)
+

∂

∂x2

(
ρh(u2,a + u2,b)

2

)
+ ρ(u3,b − u3,a)− ρu1,b

∂h

∂x1
− ρu2,b

∂h

∂x2
+ h

∂ρ

∂t
.

(2.54)

The first two terms above are the Poiseuille terms and characterize fluid flow rates caused
by the pressure gradients. The third and fourth expressions are the Couette terms, they
describe the fluid flow rates due to the shearing caused by the surface velocities. The last
term is called the local expansion term and the rest are named squeeze terms. Hamrock et
al. provide detailed explanations of the physical meaning of each term and the interested
reader is referred to them [6]. Next, the local expansion term is combined with the squeeze
terms. The film thickness, h, is a function of x1,x2 and t. Using the definition of the total
derivative of the gap height and recalling that h = f(x1, x2, t) as Hamrock et al. shows:

dh =
∂h

∂t
dt+

∂h

∂x1
dx1 +

∂h

∂x2
dx2, (2.55)

which can be rearranged to give:

dh

dt
=
∂h

∂t
+

∂h

∂x1

dx1

dt
+

∂h

∂x2

dx2

dt
, (2.56)
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2.2. Governing Equations of EHL 19

where it is important to notice that the total derivative of h with respect to time is equal
to the relative vertical velocity by definition, i.e. [6]:

dh

dt
= u3,b − u3,a.

Furthermore in Eq.(2.56), the derivatives of x1 and x2 on the right-hand side can be
expressed as [6]:

dx1

dt
= u1,b and

dx2

dt
= u2,b.

This is the case, since in the considered equivalent geometry, the lower body (body a) is
completely flat and upper body an elliptical paraboloid. Therefore, the lower body cannot
induce any change in the gap height by its surface velocity, only the upper body (body b)
is capable of that. This is illustrated in Fig.2.6 [6].

Figure 2.6.: A figure illustrating how the gap height changes as the non-flat upper body
(body b) moves from the dashed position to the one drawn as a full line in
either direction x1 or x2. Adapted from Hamrock et al. to have consistent
notation [6].

Substituting the previously obtained expressions, rearranging and multiplying Eq.(2.56)
by ρ to get the same expressions as the squeeze terms of Eq.(2.54) on the right-hand side
results in [6]:

ρ
∂h

∂t
= ρ

(
u3,b − u3,a − u1,b

∂h

∂x1
− u2,b

∂h

∂x2

)
︸ ︷︷ ︸

Squeeze terms in the Reynolds equation

, (2.57)

thus, the right-hand side can be substituted into the Reynolds Eq.(2.54) directly as ρ∂h∂t and

be combined with the expansion term using the product rule of differentiation as: ∂(ρh)
∂t .

This reduces Eq.(2.54) further and allows a concise formulation using vector notation:

∇ ·
(
−h

3ρ

12µ
∇p+

(
U1

U2

)
ρh

)
+
∂(ρh)

∂t
= 0, (2.58)
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where U1 and U2 are the respective mean velocities of the solid bodies in the directions
given by their index:

U1 =
u1,a + u1,b

2
, (2.59)

U2 =
u2,a + u2,b

2
, (2.60)

and the two dimensional ∇ operator, ∇ =

(
∂
∂x1
∂
∂x2

)
, denoting the gradient operator with ∇

and the divergence operator with ∇· for a vector quantity [6, 32].

Cavitation

Cavitation is a phenomenon that occurs in liquids whenever the pressure drops below the
vapour pressure of the fluid. It is the formation and the collapse of regions of vapour
bubbles within the liquid, as the liquid locally boils, since the boiling point of the liquid
drops with decreasing pressure [26]. In textured contacts, cavitation is observed and since
it creates a region of vapour, has a significant impact on the pressure distribution, and thus,
the load carrying capacity [5]. The occurance of cavitation prevents the predicted pressures
from attaining negative values, which would be non-physical otherwise. The pressure is
bounded from below by the vapour pressure which is assumed to be the cavitation pressure,
pcav. Since the hydrodynamic pressures in EHL contacts reach comparatively high values,
the vapour pressure can be neglected and the pressure can be assumed to not drop lower
than ambient pressure [30]. Many cavitation models have been proposed in literature but
as Ausas et al. show, whether the model conserves mass or not, is critical in determining
the load carrying capacity [17]. In this section, the used mass-conserving cavitation model
based on the Jakobsson, Floberg and Olson (JFO) [13, 14] model and its implementation
by Elrod and Adams (EA) [12] is presented and introduced into the Reynolds equation.
The goal is to have a similar form of the Reynolds equation as the one used by Woloszynski
et al. [18] as they use the same cavitation model as a starting point for their proposed
algorithm.

Introducing the quantity θ as cavity fraction:

θ = 1− ρ

ρl
, (2.61)

where ρ is the average density of the lubricant within the film, which may vary since the
cavitated fluid is a mixture of liquid and vapour, and ρl is the density of the non-cavitated
fluid [18]. The film region where cavitation is observed is called the non-active region,
and the region without cavitation is called the active region or full film region. The cavity
fraction can only take values between 0 and 1. It is assumed when the lubricant fully
cavitates at a given region, it has a density of zero, i.e. θ = 1. And when there is no
cavitation, the average density of the lubricant film is equal to the density of the liquid as
there is only liquid lubricant, ρl = ρ, so θ = 0 holds. The pressure within the non-active
region is assumed to be equal to pcav, while in the active region, it is assumed to be equal
to or greater than the cavitation pressure [15]. This formulation can be expressed in terms
of linear complementary and introduced into the Reynolds equation, Eq.(2.58), as shown
by Giacopini et al. [15] and Bertocchi et al. [16] with p̄ = p− pcav:

∇ ·
(
−h

3ρl
12µ
∇p̄+

(
U1

U2

)
ρlh(1− θ)

)
+
∂

∂t
(ρlh(1− θ)) = 0, (2.62)

p̄ ≥ 0, θ ≥ 0 and p̄ · θ = 0, (2.63)
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as used by Woloszynski et al. [18]. This is possible since the cavitation pressure is constant
and its influence would be cancelled out in the pressure gradient. The condition p̄ · θ = 0
ensures, when there is cavitation, so when θ 6= 0 holds, the pressure has to be equal to the
cavitation pressure, i.e. p̄ = p − pcav = 0. Eq.(2.62) is the Reynolds equation with the
mass-conserving cavitation model introduced and the relations in Eq.(2.63) are called the
cavitation conditions.

In this work, the procedure of obtaining the above equation is briefly outlined. The
Reynolds equation is mathematically manipulated by rewriting ρ = ρ + ρl − ρl and re-
arranged in a way to include θ. During the derivation, the consideration of the product:
θ ·∇p̄ and the fact that it is zero in both the active region and the non-active region allows
some terms in the equation to be neglected. The product is unknown at the boundaries
between the regions, so it is assumed be zero for simplicity. The interested reader is en-
couraged to read the aforementioned papers for further information Giacopini et al. [15]
and Bertocchi et al. [16] as the derivation in this thesis is analogous.

2.2.4. Load Balance & Shear Stress Equations

The Load Balance Equation

The load balance equation, as its name suggests, describes the equilibrium of forces over
the contact. By definition, the solid surfaces are not in contact, thus, the external load is
completely supported by the pressure generated within the lubricant film. Denoting the
domain of the contact with Ωc, the force balance in x3-direction results in:∫

Ωc

p(x1, x2, t)− p0dx1dx2 = F3(t)(= F3), (2.64)

where the external force in x3-direction is designated with F3(t) and the ambient pressure
with p0. Recall that the pressure is independent of x3 and its resultant force is much larger
than the inertia and body forces, allowing them to be neglected [4]. In the simulated setup
the force is not time dependent but it is stated as so in this section for considering the
most general case.

The Shear Stress Equations

The shear stress distribution on the solid-fluid interfaces are of importance, because their
integrals are defined as the friction force felt on the contact. The solids do not contact
one another, and this results in the friction force being generated only by the shearing of
the fluid between them. As mentioned during the derivation of the Reynolds equation, the
obtained velocity gradients in x1- and x2-direction allow for the calculation of the shear
stress distribution. Recalling the velocity gradients from Eqs.(2.43) and (2.44):

∂u1

∂x3
=

(
2x3 − h

2µ

)
∂p

∂x1
−
u1,a − u1,b

h
,

∂u2

∂x3
=

(
2x3 − h

2µ

)
∂p

∂x2
−
u2,a − u2,b

h
,

which are also present in the definition of the viscous shear stresses:

τ31 = τ13 = µ

(
∂u3

∂x1
+
∂u1

∂x3

)
, (2.65)

τ32 = τ23 = µ

(
∂u3

∂x2
+
∂u2

∂x3

)
, (2.66)
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it is possible to obtain an expression for shear stresses by a simple substitution of the
known velocity gradients. The unknown velocity gradients ∂u3

∂x2
and ∂u3

∂x1
are shown to be

negligible by Hamrock et al. after an order of magnitude analysis [6]. This results in:

τ31 = τ13 = µ
∂u1

∂x3
, (2.67)

τ32 = τ23 = µ
∂u2

∂x3
. (2.68)

Substituting the respective velocity gradients given in Eqs.(2.43) and (2.44) into the equa-
tions for the shear stresses. Given in vector notation:

(
τ31

τ32

)
=

2x3 − h
2

∇p− µ

h

(
u1,a − u1,b

u2,a − u2,b

)
. (2.69)

Only the shear stresses at the solid surfaces are of interest, thus they are computed at
x3 = 0 for the lower surface and x3 = h for the upper surface, resulting in four expressions,
two for each body:

(τ31)x3=0 =

(
µ
∂u1

∂x3

)
x3=0

= −h
2

∂p

∂x1
−
µ(u1,a − u1,b)

h
, (2.70)

(−τ31)x3=h = −
(
µ
∂u1

∂x3

)
x3=h

= −h
2

∂p

∂x1
+
µ(u1,a − u1,b)

h
, (2.71)

(τ32)x3=0 =

(
µ
∂u2

∂x3

)
x3=0

= −h
2

∂p

∂x2
−
µ(u2,a − u2,b)

h
, (2.72)

(−τ32)x3=h = −
(
µ
∂u2

∂x3

)
x3=h

= −h
2

∂p

∂x2
+
µ(u2,a − u2,b)

h
, (2.73)

where the shear stresses corresponding to the opposite surfaces have opposite signs [6] and
µ is assumed to not depend on the previously defined cavity fraction, θ.

2.3. Constitutive Equations

The knowledge of accurate models to describe the measured lubricant behaviour and prop-
erties is essential for solving the EHL problem [4]. The model used in this thesis considers
a compressible, piezoviscous lubricant, which means that the density and the dynamic
viscosity, respectively, change with pressure. The temperature dependency of lubricant
properties is not relevant as temperature changes are neglected. Constitutive equations
are usually obtained by fitting models to experimental data [4].

Additionally, the lubricant begins to show non-Newtonian behaviour as shear stresses reach
high values, meaning that the viscosity has a shear dependency. Even though during the
derivation of the Reynolds equation (section 2.2.3) a Newtonian fluid was assumed, it is
an idealized model and in reality a Newtonian limit for the shear stress exists [4]. Thus, it
is necessary to model the shear dependency of the viscosity and adjust it in the Reynolds
equation.

In this section, the equations used to describe the pressure dependency of the lubricant
density and pressure-shear dependency of lubricant viscosity are presented. As mentioned
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2.3. Constitutive Equations 23

in section 2.2.4, the presence of cavitation is assumed not to influence the dynamic viscosity
of the lubricant, i.e. µ = µl. Nonetheless, µl is used in the following to keep in mind that
the constitutive equations are meant to be for the liquid lubricant. In the following, the
required material parameters are given as provided by Mourier et al. [21] as the simulations
done to validate the model are based on their experiments. More details on the specifics are
provided in chapter 4.1. The explanations as to how to couple the constitutive equations
to the previously derived equations are shown in chapter 3.

Density - Compressibility

Typically, equations linking the pressure, density and temperature of materials are called
equations of state (EoS) [4]. Venner and Bos have shown that the central film thickness
within the EHL contact is reduced proportionally to the compression of the lubricant,
demonstrating the importance of including compressibility effects in the model [33]. In
the current work, the Dowson-Higginson model is used:

ρl = ρ0
C1 + C2

p
Pa

C1 + p
Pa

, (2.74)

where ρl is the density of the lubricant at pressure p and ρ0 its density at atmospheric
pressure. C1 and C2 being constants depending on the lubricant As proposed by Dowson-
Higginson the constants are assumed to be C1 = 5.9·108 and C2 = 1.34 [34]. The pressures
are divided by their unit Pa for consistency.

Viscosity - Piezoviscosity

The piezoviscosity of the fluid refers to the pressure dependence of the viscosity. The
viscosity usually increases as pressure increases [16] and the chosen model to describe the
relationship between them is the Roelands model based on experimental results:

µl = µ0e
a, (2.75)

where µl is the dynamic viscosity of the liquid lubricant at the given pressure, µ0 its
viscosity at atmospheric pressure and a being:

a :=
(

ln
( µ0

Pa · s

)
+ 9.67

)(
−1 +

(
1 +

p

p̃0

)Z)
, (2.76)

as proposed by Roelands in his PhD work [35]. The exponent Z is defined as:

Z =
αp̃0

ln
( µ0

Pa·s
)

+ 9.67
, (2.77)

where α is the pressure viscosity index and p̃0 is the pressure coefficient defined for the
Roelands relation according to Mourier et al. [21]. The viscosity and the pressure are
divided by their respective units to have consistent notation. The values of these coeffi-
cients are provided in chapter 4.1, when the parameters for the carried out simulations are
discussed.
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24 2. Theoretical Fundamentals

Viscosity - Shear Dependence

Under very high shear stresses, the Newtonian limit of the fluid is exceeded and the fluid
starts to show non-Newtonian behaviour - the viscosity depends on the shear stresses.
There are many variants of non-Newtonian behaviour and not all are in the scope of
this work. Some fluids show a shear-thickening effect, the viscosity increases with in-
creasing shear, and some show a shear-thinning effect, increasing shear causes the vis-
cosity to decrease. Most mineral oil based lubricants exhibit shear thinning behaviour.
The shear stresses and shear rates in x1- and x2-directions are combined respectively as:
τ =

√
σ2

31 + σ2
32 and γ̇ =

√
˙γ31

2 + ˙γ32
2 [4]. Fig.2.7 illustrates the various lubricant be-

haviours mentioned so far.

The shear thinning model used in this thesis assumes a limiting shear stress value specific
for the lubricant, τmax. The shear stress that would occur in pure Couette flow, as outlined
in section 2.2.3 and in Eq.(2.5), is calculated with the current lubricant viscosity, µl and is
taken as an average value that is compared to the limiting shear stress. The Couette flow
is characterized by a linear velocity profile and a zero pressure gradient [26], hence the
velocity gradients in Eqs.(2.65) and (2.66) can be simply calculated as the relative velocity
between the bodies divided by the gap height. For a generalized shear stress, τavg, this
results in:

τavg = µl
ur
h
, (2.78)

where ur = ub − ua is the relative velocity between the bodies, h the gap height and µl
the lubricant dynamic viscosity.

The lubricant viscosity is adjusted to be the viscosity corresponding to τmax whenever
τavg > τmax. The adjusted viscosity is calculated as:

µl =
τmaxh

ur
, (2.79)

in which h is the gap height corresponding to locations where the average shear stress
exceeds the predefined maximum shear stress. Recall that the Couette shear stresses are
used as average values in this model, which allows the relatively simple formulation. The
adjusted µl is substituted to the Reynolds equation, this procedure is not done simulta-
neously and its explanation will be detailed in chapter 3. This continuous adjustment
corresponds to limiting the average shear stress within the lubricant film to never be able
to exceed the maximum shear stress as illustrated in Fig.2.7 (c). Even though the Reynolds
equation in the previous section was derived under the assumption of a Newtonian fluid,
it can still be used with the introduced shear thinning model. The shear stresses are
modelled as the product of an effective viscosity and the corresponding velocity gradient,
similar to a Newtonian fluid, thus, allowing the derived Reynolds equation to be used. All
non-Newtonian effects are considered through a change of the effective viscosity, which
corresponds to the adjusted viscosity presented in this section.
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2.4. Summary 25

Figure 2.7.: Shear stress against shear rate of different types of fluids: (a) Newtonian (b)
Shear-thinning (c) Assumed behaviour in this thesis. Inspired by Durst [25].

2.4. Summary

Now that the required equations have been obtained to model the EHL problem, a concise
summary of the equations and the assumptions to derive them are presented before moving
on to the numerical model and the solver algorithm. Summarizing the found governing
equations of EHL:

∇ ·
(
−h

3ρl
12µ
∇p̄+

(
U1

U2

)
ρlh(1− θ)

)
+
∂

∂t
(ρlh(1− θ)) = 0, (2.62 revisited)

p̄ · θ = 0 with p̄, θ ≥ 0 and p̄ = p− pcav, (2.63 revisited)

(
τ31

τ32

)
=

2x3 − h
2

∇p− µ

h

(
u1,a − u1,b

u2,a − u2,b

)
, (2.69 revisited)

h(x1, x2, t) = h0(t) +
x2

1

2Rx1
+

x2
2

2Rx2
+ δ(x1, x2, t) + S(x1, x2, t), (2.15 revisited)

δ(x1, x2, t) =
2

πE′

∫∫
A

p(x′1, x
′
2, t)

s
dx′1dx′2, (2.28 revisited)

with the definition
2

E′
:=

1− ν2
1

E1
+

1− ν2
2

E2
,

∫
Ωc

p(x1, x2, t)− p0dx1dx2 = F3. (2.64 revisited)

The first equation is the Reynolds equation including the cavity fraction that governs
the pressure distribution within the fluid for given geometries, lubricant properties and
operating conditions, the second equation describes shear stresses across the film, the
third is the film thickness equation which governs the geometry of the contact, and fourth
the linear elasticity equation that consolidates the elastic deformation of both solid bodies
in one equation. The last equation is the load balance equation which ensures that the
generated pressure within the lubricant balances the outside load in the vertical direction.
The lubricant properties are governed by the constitutive equations outlined in section 2.3.
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26 2. Theoretical Fundamentals

The assumptions that were made to obtain these equations are:

� the operating conditions are always within the EHL regime,

� the lubricant and the solid bodies are modelled using continuum mechanics,

� the equivalent geometry of a rigid elliptic paraboloid contacting an elastic flat surface
is considered,

� solids are perfectly smooth, isotropic, homogeneous and show linear elastic be-
haviour,

� no plastic deformation takes place,

� the gap height (h) is small compared to the curvatures of the surfaces, justifying the
use of elastic half-plane theory,

� the lubricant flow is laminar and isothermal and the Stokes’ hypothesis holds,

� body forces and inertial forces are negligible in the NSE, as the pressure and viscous
terms dominate,

� hydrodynamic pressure, p, liquid lubricant density, ρl, and lubricant viscosity, µ = µl
are constant throughout the film thickness, i.e. in x3-direction,

� there is no slip at the solid-fluid interface,

� u3-velocity gradients in x1- and x2-direction are negligibly small, i.e. ∂u3
∂x1

= ∂u3
∂x2

= 0.

The equations listed above combined with the constitutive equations that describe rela-
tionships between the material properties and the operating conditions form the basis of
the equation system to be solved. Since no analytical solutions exist, to solve the system,
numerical methods have to be used.
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3. The Numerical Model & The Algorithm

The Reynolds equation, similarly to other equations in fluid mechanics, such as the fun-
damental equations of mass and momentum conservation or the Navier-Stokes equations,
is only analytically solvable for a limited number of flows and under strict assumptions
[4, 36]. Furthermore, the high interdependency between the Reynolds equation and the
other governing equations that were presented, make the problem highly non-linear. The
use of numerical methods is thus essential.

Firstly, the basics of the used numerical methods are briefly described, as the main focus is
the discretization of the equations and the overall solution strategy. Then, the previously
obtained system of equations are discretized and coupled with one another. After outlining
the discretization of the film thickness equation and the Reynolds equation, the algorithms
used to solve them are described. The implemented algorithm for solving the Reynolds
equation, namely the Fischer-Burmeister-Newton-Schur (FBNS) algorithm, is largely in-
spired by the work of Woloszynski et al. [18]. For solving the linear elasticity equation, the
fast Fourier transform (FFT) based boundary element formulation, introduced by Pohrt
and Li [29] is used. Then, the structure of the developed solver is presented alongside the
used boundary conditions and the chosen methods of overcoming non-linearities without
compromising accuracy. For detailed information on computational fluid mechanics, the
interested reader is referred to Ferziger [36] and for in depth explanations of the respective
algorithms to Woloszynski et al. [18] and to Pohrt and Li [29].

The provided algorithm for the steady EHL case was developed by Erik Hansen, the
supervisor of this thesis, and is the foundation of this work. The supplied steady solver,
which is based on the previously mentioned FBNS algorithm and the boundary element
formulation of Pohrt and Li, is extended to include the combined squeeze and expansion
terms in the Reynolds equation. The new terms are discretized and the system the FBNS
algorithm solves is adapted to include them. A micro-texture is introduced and moved
through the contact by the means of a time loop that marches through time. Both the
algorithm that this thesis builds upon and the newly added features are explained in detail
in the rest of this chapter.

3.1. Discretized Equations

Discretization methods are used to obtain numerical approximations around small regions
of space and/or time. Each of these small regions are discrete points and are called
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28 3. The Numerical Model & The Algorithm

computational nodes for spatial discretization. Discretizing a differential equation around
a small region allows for reasonable approximations of the equation around that region
by a system of algebraic equations, which are then solved by a computer. This approach
is particularly useful for approximating solutions for partial differential equations, which
also include the Reynolds equation [4, 36].

The solid bodies are discretized using the boundary element method, which is explained in
more detail in the following sections. The constitutive equations are calculated directly for
each computational node depending on the pressure of that grid point, this is a straight-
forward procedure and hence is not detailed in this section. In the following, the chosen
discretization and approximation methods used for the lubricant are presented. The spa-
tial discretization of the domain and the film thickness equation is adopted without any
changes from the supplied steady EHL solver. The discretization of the time derivative
term in the Reynolds equation, Eq.(2.62), is one of the tasks of this thesis and therefore
is explained in detail.

Spatial Discretization

The lubricant is discretized using a finite volume (FV) approach, which actually corre-
sponds to a finite area (FA) method as the equation of interest, the Reynolds equation,
is two dimensional. Finite volume methods are based on the principle of sub-dividing
the domain into a finite number of small control volumes (CVs) and calculating the in-
tegral forms of the equations to be solved for each CV. The values of the integrals are
approximated at CV surfaces by using interpolation methods [36].

The grid used is a Cartesian, N -by-N , regular, square grid1. The computational nodes
are defined by specifying the x1- and x2-coordinates of the boundary nodes of the domain
and the total amount of nodes in each direction. The required spacing between each node
is then calculated. A regular grid of CVs is constructed by defining a CV around each
computational node as it can be observed in Fig.3.1. The indices i, in x1-direction, and
j, in x2-direction, are used to label the nodes. The center node (i, j) is labeled as “C”.
The surrounding nodes are named in a similar manner with capital letters corresponding
to the four compass directions: north, west, south and east. The surfaces are denoted
with lower case letters corresponding to their direction relative to the center node and are
characterized by outward-pointing normal vectors [36]. An illustration of the grid and the
space discretization can be seen in Fig.3.1.

Interpolation Methods

Each variable and also the gradients of those variables that were present in the theoretical
considerations of chapter 2 are calculated for each computational node. In order to be able
to calculate the values of the integrals computed at CV boundaries, interpolation methods
are necessary, as only the values at the CV centers are known. Using a generalized variable,
φ, the utilized interpolation methods are presented next based on Fig.3.1 and the work of
Ferziger [36].

Upwind interpolation or the upwind-differencing scheme (UDS) is a method of approximat-
ing the values of φ at the boundaries as the value of the next node upstream of the surface,
hence the name. If ~u is taken to be the flow velocity pointing in positive x1-direction, and
the east boundary is considered, this approach would correspond to assigning the value at
the node that is reached when the velocity vector is “traced back” as the value at the CV
surface.

1The implementation of the code allows for Nx1 -by-Nx2 regular grids as well.
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Figure 3.1.: An illustration of the used 2D grid in the algorithm where the dashed red

square (also bold) is the (i, j)th control volume of interest. The symbols ~n
correspond to outward-pointing normal vectors of the surfaces. For the devel-
oped algorithm Nx1 = Nx2 holds. Design inspired by Ferziger [36].

The UDS can be expressed mathematically:

φe =

{
φC if (~u · ~n)e > 0;

φE if (~u · ~n)e < 0.
(3.1)

where φe is the value at the east boundary, φE and φC the values at the east and the
center nodes and “·” the scalar product between two vectors. The result of (~u · ~n)e is
positive only when the projection of the velocity vector on the east surface normal is in
the same direction as the normal. The discretization error of this scheme is of first-order,
as mentioned by Ferziger [36].

Linear interpolation or the central difference scheme (CDS) is similar to UDS but instead
of assigning the value of one of the neighbouring nodes, it considers both neighbours.
Based on the same example provided for UDS, a linear interpolation would be:

φe = φEλe + φC(1− λe), (3.2)

where λe is the linear interpolation factor for the east boundary, defined based on the grid
spacings as:

λe =
x1,e − x1,C

x1,E − x1,C
, (3.3)
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30 3. The Numerical Model & The Algorithm

where the terms on the right-hand side denote the x1-coordinates of the corresponding
nodes. This scheme is a second-order scheme as it can be seen from the Taylor series
expansion [36]. Since the grid used in the solver is equally spaced in all directions, the
linear interpolation factors are equal for all boundaries and Eq.(3.2) reduces to:

φe =
φE + φC

2
, (3.4)

As CDS assumes a linear profile between neighbouring nodes, the derivatives at the CV
surfaces can be calculated for the approximated profile and correspond to the slope of a
straight line. Continuing with the simple example outlined above:

(
∂φ

∂x1

)
e

≈ φE − φC
x1,E − x1,C

=
φE − φC

∆x1
(3.5)

where ∆x1 was introduced for shorthand notation and indicates the distance between two
nodes in the grid in x1-direction [36].

Temporal Discretization

Time also has to be discretized to be able to use numerical methods and computers for
transient problems. The time discretization is one of the main tasks of this thesis as the
supplied steady solver only considers time independent EHL configurations. The Euler
implicit method is used, as it typically provides stable results. Time is separated into
discrete intervals, ∆t, which are referred to as time steps and the discrete points in time
are called time points. As in nature, for unsteady problems, an initial condition is given
and all other following solutions are calculated step-by-step, essentially“marching”through
time. The fundamental approaches to time discretization are presented in the following.
For ease of explanation, a one dimensional initial value problem in the form of:

dφ(t)

dt
= f(t, φ(t)) ; φ(t0) = φ0, (3.6)

where φ is the time dependent variable of interest, f(t, φ(t)) an arbitrary function of time
and φ, t0 the initial time and φ0 the known value of the variable at time t0, is considered.
The approach is to find the value of φ for the next time point ∆t after t0, i.e. finding φ1

for t1 = t0 +∆t. Then, using the obtained solution for t1 as an initial condition for solving
the same problem for t2 = t1 + ∆t, the value of φ for t2, denoted by φ2, can be solved for.
This scheme can be continued arbitrarily. The adopted notation is to index time with the
corresponding subscripts and φ with superscripts to avoid confusion with indices used in
spatial discretization [36]. The explicit and implicit Euler methods can be constructed for
the nth time point, tn+1 = tn + ∆t after integrating Eq.(3.6) from tn to tn+1:

∫ tn+1

tn

dφ(t)

dt
dt = φn+1 − φn =

∫ tn+1

tn

f(t, φ(t))dt. (3.7)

Due to the time derivative in Eq.(3.6), the left-hand side can be easily integrated and
the result is exact, i.e. there is no error φn = φ(n) and φn+1 = φ(n + 1). However,
numerical approximation for the integral of f(t, φ(t)) is necessary. As it can be seen in
Fig.3.2, the difference between the explicit and implicit Euler methods lies in the method
for approximating this time integral [36].

The explicit or the forward Euler method approximates the integral on the right-hand
side of Eq.(3.7) by taking the known value of f(t, φ(t)) at time tn and assuming it to be
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Figure 3.2.: The illustration of explicit (left) and implicit (right) Euler methods to approx-
imate the time integral in Eq.(3.7). Taken from Ferziger [36]

constant until the next time point, tn+1. This allows the simple calculation of the integral,
considering φn+1 is the unknown, results in:

φn+1 = φn + f(tn, φ
n)∆t. (3.8)

The implicit or the backward Euler method uses a similar approach to approximate the
time integral but instead of using the first point in the interval, it uses the last point [36]:

φn+1 = φn + f(tn+1, φ
n+1)∆t. (3.9)

Since the second method requires the knowledge of φ(t) at an unknown point in time,
the integral cannot be calculated directly. Hence the name implicit [36]. Reformulating
Eq.(3.9) allows it to be understood intuitively as an approximation of the time derivative
of φ for a short interval of time, ∆t:

φn+1 − φn

∆t
= f(tn+1, φ

n+1). (3.10)

According to Ferziger, the implicit Euler method is unconditionally stable, it produces
bounded outputs for bounded inputs for any time point, provided that ∂f(t,φ)

∂φ < 0 holds.
It thus behaves well, even in highly non-linear problems, such as the EHL problem at
hand [36]. These properties of the implicit Euler method make it a suitable choice for the
discretization of the Reynolds equation.

3.1.1. Discretized Film Thickness Equation

Using the grid introduced in Fig.3.1 it is possible to discretize the film thickness equation,
the equation that governs the gap height of the contact. Recalling the previously presented
film thickness equation:

h(x1, x2, t) = h0(t) +
x2

1

2Rx1
+

x2
2

2Rx2
+ δ(x1, x2, t) + S(x1, x2, t). (2.15 revisited)

The terms on the right-hand side except the elastic deformation are calculated individually
for each node in the finite volume grid. The micro-texture influence term, S(x1, x2, t), is
given and thus can be calculated at a specified time point and discrete coordinates for the
whole domain. A detailed explanation of the function is to be found in section 4.1. For a
discrete point in time, tn, and for the coordinates of the considered center node, X1 and
X2, this would result in2:

2The grid point coordinates are shown with capital letters here for shorthand notation since in these
considerations only the center nodes are of interest, i.e. X1 = x1,C and X2 = x2,C .
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h(X1, X2, tn) = h0(tn) +
X2

1

2Rx1
+

X2
2

2Rx2
+ δ(X1, X2, tn) + S(X1, X2, tn), (3.11)

where all the terms except δ(X1, X2, tn) can be conveniently calculated from the position of
the node of interest and the given functions describing the contact geometry. The method
for calculating the rigid body displacement term, h0(tn), is briefly presented in section 3.2.
For the calculation of the elastic deformation term, a different approach has to be taken
to discretize the contacting solids.

The surface of the solid domain, approximated as an elastic half-space, is discretized using
the boundary element formulation of Pohrt and Li [29] and the same grid introduced in
Fig.3.1 is used. As it can be seen in Fig.3.3, it is divided into identical rectangles of size
hx = ∆x1 and hy = ∆x2, which should not be confused with the gap height terms. The
elastic deformation for such a configuration before discretization is shown in chapter 2 to
be [4, 27, 29]:

δ(x1, x2, t) =
2

πE′

∫∫
A

p(x′1, x
′
2, t)

s
dx′1dx′2. (2.28 revisited)

Figure 3.3.: Discretized elastic half-space with constant distributed load within each dis-
crete element. x, y, hx and hy are equivalent to x1, x2, ∆x1 and ∆x2 respec-
tively. Taken from Pohrt and Li [29].

The distributed normal load, which corresponds to the hydrodynamic pressure of the
lubricant film, is taken to be constant within each rectangle, allowing the equation above to
be discretized more conveniently. The discrete rectangles for which the elastic deformations
are calculated are identified by the indices i and j respectively in x1- and x2-direction.
The rectangle on which the considered constant distributed load is acting is denoted by
the indices i′ and j′. As shown by Pohrt and Li the discretization of the linear elasticity
equation results in:

δij = δ(X1, X2, tn) =
∑
i′

∑
j′

Kiji′j′pi
′j′(tn), (3.12)

where the notation used in this thesis has been slightly adjusted to better fit the formulation
of the cited paper [29]. The term pi

′j′(tn) denotes the assumed constant pressure for the
rectangle (i′, j′) at time tn. And δij is used instead of δ(X1, X2, tn) for shorthand notation
for the elastic deformation in normal direction at the grid point (i, j), with the positive
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direction defined as deformation in to the plane. Kiji′j′ is the influence coefficient that
determines the relative impact of the load at rectangle (i′, j′) on the elastic deformation
at (i, j) and from the linear elasticity equation, Eq.(2.28), it is found to be:

Kiji′j′ =
2

πE′

X′
2+∆x2/2∫

X′
2−∆x2/2

X′
1+∆x1/2∫

X′
1−∆x1/2

dX̂1dX̂2√
(X1 − X̂1)2 + (X2 − X̂2)2

, (3.13)

where X ′1 and X ′2 correspond to the coordinates of the center of the element with pressure
acting on it, and the variables with “ ˆ ” are introduced for correct integral notation [29].
The double summation signs in Eq.(3.12) correspond to superimposing the influences of all
grid elements on the elastic deformation at the grid location indexed by (i, j) or located
at the coordinates (X1, X2). Eq.(3.13) on the other hand, corresponds to integrating
1/s found in non-discretized form of the linear elasticity equation along the area of the
rectangle for which the influence factor is being calculated. The coefficients in front of
the integral in the linear elasticity equation, Eq.(2.28), are included in the Kiji′j′ terms.
Typically Eq.(3.13) can be expressed as a function of parameters: Kiji′j′ = Kiji′j′(i −
i′, j− j′,∆x1,∆x2) [29]. Substituting the newly obtained expression for the discretization
of the elastic deformation into Eq.(3.11) leads to the final form of the discretized film
thickness equation:

h(X1, X2, tn) = h0(tn) +
X2

1

2Rx1
+

X2
2

2Rx2
+
∑
i′

∑
j′

Kiji′j′pi
′j′(tn) + S(X1, X2, tn). (3.14)

As shown by Pohrt and Li [29], one advantage of this formulation is that Eq.(3.12) can
be interpreted as a two dimensional convolution which corresponds to element-wise mul-
tiplication in Fourier space. The elements of the kernel, the matrix that is formed by
considering Eq.(3.13) for each (i, j) in the grid, can be calculated as described by Pohrt
and Li [29]. The usage of fast Fourier transform (FFT) and its inverse (FFT−1) allows
convenient and efficient calculation of the elastic deformation. In the provided steady
EHL, it is ensured that a linear convolution is obtained. The exact procedure and the
implementation is not within the scope of this thesis, therefore, the interested reader is re-
ferred to literature [29, 37] and the implementation of this procedure in the accompanying
MATLAB scripts.

3.1.2. Discretized Reynolds Equation

The Reynolds equation with the implemented cavitation model, Eq.(2.62), is the equation
to be discretized in this section. The Poiseuille, the Couette and the combined expansion
and squeeze term are discretized using CDS, UDS and the Euler implicit method re-
spectively. In the simulated configurations, only velocities in x1-direction are considered,
causing only one Couette term to remain in the scalar equation. The discretization of the
Poiseuille and Couette terms are based on the previous version of the solver which was
implemented for steady operating conditions [19]. Reformulating the Reynolds equation
and the cavitation conditions, Eqs.(2.62) and (2.63), for the chosen configurations:

∇ ·
(
−ξp∇p̄+

(
ξu
0

)
(1− θ)

)
+
∂

∂t
(ξt(1− θ)) = 0, (3.15)

p̄ · θ = 0 with p̄, θ ≥ 0 and p̄ = p− pcav. (3.16)
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34 3. The Numerical Model & The Algorithm

where three new coefficients are introduced for shorthand notation in which U1 =
u1,a+u1,b

2
is the mean surface velocity of the two solid bodies in x1-direction:

ξp =
h3ρl
12µ

, (3.17)

ξu = U1ρlh, (3.18)

ξt = ρlh. (3.19)

For the implementation of the finite volume method, or rather the finite area method,
Eq.(3.15) has to be integrated along the area of the control volume:

∫∫
A

∇ ·
(
−ξp∇p̄+

(
ξu
0

)
(1− θ)

)
dx1dx2 +

∫∫
A

∂

∂t
(ξt(1− θ))dx1dx2 = 0. (3.20)

Using the divergence theorem of Gauß [38] the first area integral can be written as a line
integral around the control volume boundary with the divergence operator omitted:

∫∫
A

∇ ·
(
−ξp∇p̄+

(
ξu
0

)
(1− θ)

)
dx1dx2 =

∮
∂A

(−ξp∇p̄+

(
ξu
0

)
(1− θ)) · ~n dL, (3.21)

where ∂A denotes the control volume boundary composed of four lines, each corresponding
to one main compass direction. “ ·~n ” indicates the scalar product of the term in the
brackets with the outward pointing normal vectors of respective surface boundaries. Thus,
the equation becomes:

∮
∂A

(−ξp∇p̄︸ ︷︷ ︸
CDS

+

(
ξu
0

)
(1− θ)︸ ︷︷ ︸

UDS

) · ~n dL+

∫∫
A

∂

∂t
(ξt(1− θ))dx1dx2

︸ ︷︷ ︸
Euler implicit, constant over A

= 0, (3.22)

To approximate the resulting integrals in Eq.(3.22), the integrands are taken to be constant
on the respective boundaries, the time dependent term is assumed to be constant across
the whole area of the control volume and have the value as at the center node, allowing
them to be taken out of the integrals. Expressed in scalar form this results in:

−
(
−ξp

∂p̄

∂x1
+ ξu(1− θ)

)
w

∆x2 +

(
−ξp

∂p̄

∂x1
+ ξu(1− θ)

)
e

∆x2 −
(
−ξp

∂p̄

∂x2

)
s

∆x1

+

(
−ξp

∂p̄

∂x2

)
n

∆x1 +

(
∂(ξt(1− θ))

∂t

)
C

∆x1∆x2 = 0, (3.23)

where the subscripts under the parentheses refer to the values calculated at the corre-
sponding boundaries illustrated in Fig.3.1. The Couette terms in the north and sound
boundaries do not exist as the mean velocity in x2-direction is zero. Since the integrands
within the line integrals are constant, the integrals correspond to the length of the bound-
ary with the respective signs. The signs in front of the parentheses are determined by the
orientation of the normal vectors of the surfaces, if the normal vector points in the posi-
tive coordinate direction the integral gets a positive sign, and vice versa. As the values of
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3.1. Discretized Equations 35

these specific parameters and their gradients are known only at the computational nodes,
interpolation is necessary. Based on the introduced interpolation methods in section 3.1
and assuming a positive mean velocity in x1-direction, the Poiseulle and Couette terms
and their coefficients can be expressed in terms of node values as:

ξu,w = ξu,W , θw = θW , (UDS) (3.24)

ξu,e = ξu,C , θe = θC , (UDS) (3.25)

ξp,w =
ξp,C + ξp,W

2
,

(
∂p̄

∂x1

)
w

=
p̄C − p̄W

∆x1
, (CDS) (3.26)

ξp,e =
ξp,E + ξp,C

2
,

(
∂p̄

∂x1

)
e

=
p̄E − p̄C

∆x1
, (CDS) (3.27)

ξp,s =
ξp,C + ξp,S

2
,

(
∂p̄

∂x2

)
s

=
p̄C − p̄S

∆x2
, (CDS) (3.28)

ξp,n =
ξp,N + ξp,C

2
,

(
∂p̄

∂x2

)
n

=
p̄N − p̄C

∆x2
, (CDS) (3.29)

where it is important to recall that capital letters refer to the computational nodes while
the lower-case letters indicate CV surfaces and all directions are relative to the current
center node. The considerations of the Poiseuille terms and the Couette terms are adopted
from the supplied steady EHL solver without alterations [19]. For the implementation of
the Euler implicit method, one of the tasks of this thesis, the time point at which each
of the values are computed must be specified and the equation must be reorganized to
fit the form in Eq.(3.9). The first step in doing so is to substitute the pressure and the
cavity fraction interpolations from Eqs.(3.24) to (3.29) into the discretized and integrated
Reynolds equation, Eq.(3.23). Solving for the combined squeeze-expansion term after the
substitution yields:

(
∂(ξt(1− θ))

∂t

)
C

∆x1∆x2 = −ξp,w
∆x2

∆x1
(p̄C − p̄W ) + ξu,w∆x2(1− θW )

+ ξp,e
∆x2

∆x1
(p̄E − p̄C)− ξu,e∆x2(1− θC)

− ξp,s
∆x1

∆x2
(p̄C − p̄S) + ξp,u

∆x1

∆x2
(p̄N − p̄C), (3.30)

where the right-hand side corresponds to f(t, φ(t)) in Eq.(3.6), which the Euler implicit
methodology requires it to be calculated at the next time point. Introducing the time point
the variables are calculated at as superscripts, the following step is taken to transform the
above equation into an equivalent expression of Eq.(3.9):

ξn+1
t,C (1− θn+1

C )− ξnt,C(1− θnC)

∆t
=

1

∆x1∆x2

[
−ξn+1

p,w

∆x2

∆x1
(p̄n+1
C − p̄n+1

W ) + ξn+1
u,w ∆x2(1− θn+1

W )

+ ξn+1
p,e

∆x2

∆x1
(p̄n+1
E − p̄n+1

C )− ξn+1
u,e ∆x2(1− θn+1

C )

−ξn+1
p,s

∆x1

∆x2
(p̄n+1
C − p̄n+1

S ) + ξn+1
p,n

∆x1

∆x2
(p̄n+1
N − p̄n+1

C )

]
, (3.31)
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where now the right-hand side is f(tn+1, φ
n+1). The adopted notation is to show the point

in space the variable is calculated at with subscripts. The superscripts indicate the point
in time the variables are calculated at, which are not to be confused with exponents. For
example, ξn+1

t,C is the coefficient of the combined expansion-squeeze term, ξt , calculated at
the center node C at time tn+1. Reformulating the above equation to be written in terms
of the relative pressures and the cavity fractions at the corresponding nodes results in:

(
ξp,s

∆x1

∆x2

)
p̄n+1
S +

(
ξp,w

∆x2

∆x1

)
p̄n+1
W −

(
ξp,s

∆x1

∆x2
+ ξp,w

∆x2

∆x1
+ ξp,e

∆x2

∆x1
+ ξp,n

∆x1

∆x2

)
p̄n+1
C

+

(
ξp,e

∆x2

∆x1

)
p̄n+1
E +

(
ξp,n

∆x1

∆x2

)
p̄n+1
N − (ξu,w∆x2) θn+1

W

+

(
ξu,e∆x2 + ξt,C

∆x1∆x2

∆t

)
θn+1
C + ξu,w∆x2 − ξu,e∆x2 − ξt,C

∆x1∆x2

∆t

+
(
ξnt,C − ξnt,CθnC

) ∆x1∆x2

∆t
= 0, (3.32)

where the superscript n+ 1 has been omitted from the coefficients of the relative pressure
and cavity fraction terms to avoid overcrowding. Eq.(3.32) forms the basis of the dis-
cretized form of the Reynolds equation which is to be solved by the algorithm presented
in the next section. This equation is written for all of the nodes not lying on the domain
boundaries and combined with the boundary conditions to form a system of algebraic
equations consisting of N2 equations called ~G. All of the coefficients except the ones with
the superscript n are unknown and should be calculated alongside p̄ and θ for the next,
unknown time point, tn+1.

3.2. Overview of the Algorithm

In this section, the methodology of solving the discretized equations presented previously
is outlined. Firstly, the algorithm to solve the Reynolds equation coupled with the comple-
mentarity constraints is explained and then the overall structure of the solver is described.
For seeing the exact implementation of the algorithm, the interested reader is encouraged
to examine the detailed flowcharts in Appendix A and the corresponding MATLAB scripts.

Fischer-Burmeister-Newton-Schur (FBNS) Algorithm

Before considering the overall solution strategy, the FBNS algorithm used to solve the
system of equations created by the discretized Reynolds equation is presented. This al-
gorithm to solve the complementarity based formulation of the cavitation phenomena is
developed by Woloszynski et al. and is shown to be significantly more efficient than other
approaches [18].

When Eq.(3.32) is computed for each non-boundary node within the domain and combined
with the boundary conditions, it results in a system of N2 algebraic equations for the N -
by-N grid at hand3. This system of equations can be expressed as: ~G = ~G(~p, ~θ) = ~0 where
~p and ~θ are N2-element column vectors, each row corresponding to the relative pressure,
p̄ = p−pcav, and the cavity fraction of one node respectively at time tn+1. The superscripts
for the time point that is being solved for, n+ 1, is omitted in the following for shorthand
notation. Thus, each element of ~G is either Eq.(3.32) computed at one inner node or an

3Woloszynski et al. [18] use N as the total amount of grid points. Different notation is used in this thesis
to stay consistent with the rest of the document.
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expression equivalent to the specified boundary conditions for a boundary (or outer node)
[18]. Reformulated in vector notation, this results in:

~G(~p, ~θ) = Ap~p+ B~θ + ~cG = ~0, (3.33)

where Ap and B are the corresponding N2-by-N2 coefficient matrices for the pressure
and cavity fraction terms in Eq.(3.32). The vector ~cG contains all of the known values
for the current node and the current time point, tn, as well as the p̄ and θ independent
terms. For one row of ~cG, these are the last four terms on the left-hand side of Eq.(3.32).
Furthermore, the complementarity constraints can be expressed in vectorial form for this
system of equations as: ~p T~θ = 0 and ~p, ~θ ≥ 0 [18, 15].

Woloszynski et al. propose a two-step approach. The first step is to replace the comple-
mentarity constraints by an equivalent system of equations the same size as ~G defined as
~F = ~F (~p, ~θ) = ~0. This newly defined system of equations consist of N2 Fischer-Burmeister
equations (FB) given by:

Fj = Fj(p̄j , θj) = p̄j + θj −
√
p̄2
j + θ2

j = 0 with j = 1, . . . , N2, (3.34)

where p̄j and θj correspond to the jth element of the respective relative pressure and cavity
fraction vectors. Woloszynski et al. show in detail the equivalence of the two formulations
of the complementarity constraint. The resulting system from combining ~F and ~G is now
unconstrained and has 2N2 equations in total [18].

The second step in the FBNS algorithm is to solve the obtained unconstrained system of
equations. Wolosznyski et al. argue that the resulting system is continuously differentiable
at except p̄j = θj = 0 so the Newton method can be followed to iteratively solve it. The
authors of the cited paper recommend to set p̄j or θj as a small positive number, such as the
machine epsilon ≈ 2.22 ·10−16, to avoid the method breaking down without compromising
accuracy if they are found to be zero. The iterative scheme proposed by the Newton-
Raphson method would be:

~p (k+1) = ~p (k) + α̃ · δ~p (k) and ~θ (k+1) = ~θ (k) + α̃ · δ~θ (k), (3.35)

where the superscripts above the vectors indicate the current step in the iteration process
and the terms with δ are the solution updates for the respective variables and α̃ < 1 is the
under-relaxation factor [18]. Details on this method can be found in Ferziger [36] as it is
only briefly explained in the current work. It is important to realize that all the terms in
the above equation are calculated for time tn+1 and the superscript n+ 1 is being omitted
for this section.

The solution updates would be typically calculated by using the Jacobian matrices of the
corresponding systems and solving the following:

J

[
δ~p (k)

δ~θ (k)

]
=

[
JF,p JF,θ
JG,p JG,θ

] [
δ~p (k)

δ~θ (k)

]
= −

[
~F
~G

]
at (~p (k), ~θ (k)), (3.36)

where J is the Jacobian matrix of the whole system and its sub-matrices are denoted by
JF,p = ∂ ~F/∂~p, JF,θ = ∂ ~F/∂~θ, JG,p = ∂ ~G/∂~p and so on. The terms written in bold
indicate matrices [18]. The used notation for the derivative of a vector with respect to
vector is illustrated with an example:
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JG,p =
∂ ~G

∂~p
=



∂G1
∂p̄1

∂G1
∂p̄2

. . . ∂G1
∂p̄N2

∂G2
∂p̄1

∂G2
∂p̄2

. . . ∂G2
∂p̄N2

. . . .

. . . .

. . . .
∂GN2

∂p̄1

∂GN2

∂p̄2
. . .

∂GN2

∂p̄N2


. (3.37)

Woloszynski et al. propose to the rearrange the columns of the Jacobian, J , to obtain
a more preferable system to solve for the updates and then reverse reorder the result to
obtain the solution for the updates required for the original system. They show clearly that
this approach is faster and the system matrix to solve is better conditioned, i.e. a small
change in the input results in a small change in the output, making the correct solution
easier to find. For a complete explanation of this procedure and for the demonstration
of the efficiency of this algorithm, the interested reader is referred to the 2015 paper by
Woloszynski et al. [18].

Solution Strategy

Now, the overall scheme of the developed solver, the boundary conditions and the method
for overcoming additional non-linearities are presented. The solver consists of four nested
loops. The outermost loop goes through operating conditions which are distinguished
from one another by varying upper and lower solid body velocities. The second loop
is responsible for marching through time, and is hence called the time loop. The next
loop is the secant algorithm loop to solve the load balance equation. It attempts to
validate the resultant pressure generated within the contact by comparing it to the external
imposed normal load and by iteratively adjusting h0, the rigid body displacement. For
more information about the secant algorithm, the interested reader is referred to literature
[39]. The last and the innermost loop is the iterative FBNS solver discussed in the previous
section. Within this loop, the Reynolds equation is solved and the guess of the pressure field
is passed on to the secant algorithm loop for validation. Once the load balance equation is
solved with sufficient accuracy4 for the current time point, the time loop moves on to the
next point in time. This process is illustrated in Fig.3.4, where the operating condition
loop, the time loop, the secant algorithm loop for the load balance and the FBNS loop
is denoted by (I), (II), (III) and (IV) respectively. For a more detailed flow chart of the
solver please see the Appendix A and the implementation of the MATLAB scripts.

In the first iteration of the time loop, i.e. in the first time point, the micro-texture is not
introduced into the contact so the problem is identical to the steady case. This means that
the algorithm can be used for both steady and unsteady configurations. For the steady
case, the time loop would be exited after the first iteration. The steady solution is based on
the algorithm developed by Hansen as this thesis focuses on extending his implementation
and is supervised by him [19]. The micro-texture is introduced in the immediately following
next time point at a prescribed x1-coordinate and is moved accordingly as time progresses.
The first guess for the cavity fraction across the whole domain is assumed to be 0, meaning
that there is no cavitation initially. In the first time point, the first guess of the pressure
field passed on to the FBNS algorithm is the solution of the dry contact problem of
the considered solid bodies, calculated by the algorithm published by Hansen5. For the
following time points, the cavity fraction and the pressure fields from the immediately
preceding time point are taken as first guesses.

4The thresholds are provided in the setup and thus discussed in chapter 4.1
5Which can be found in: “https://github.com/ErikHansenGit/Contact_elastic_half-space”
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Start, input: operating condition, 

algorithm settings, fluid & solid 

properties

Start operating condition loop

Initialize & compute first guesses for 

pressure and cavity fraction field

Start time loop

Compute micro-texture 

position

Iteratively call secant algorithm to 

adjust rigid body displacement (h0) 

and validate p

Iteratively call FBNS algorithm to 

calculate θ and p field 

Compute ρ and μ fields, use those to 

calculate δp and  δθ

Residual of FBNS small 

enough OR max FBNS 

iterations reached?

Residual of normal force 

small enough OR max 

secant iterations reached?

Steady calculation OR last 

time point?

Last operating condition?

yes

yes

yes

no

Move to next time point

yes

no

Move to next 

operating condition no

End, output: iteration information, p 

and θ, shear stresses, friction 

coefficient 

(I)

(II)(III)

(IV)

Figure 3.4.: Simplified flow chart of the developed solver, the loops are denoted via Roman
numerals.
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Boundary conditions for the cavity fraction and the relative pressure, ~θ and ~p, are imple-
mented into the corresponding coefficient matrices and parts of the Jacobian. Typically,
two types of boundary conditions are used in literature, Dirichlet type or Neumann type,
which mean that respectively either the variable is set to a certain value or the gradient
of the variable is predetermined at the domain boundaries [36]. For the cavity fraction,
the boundary condition is of Dirichlet type and for every node lying on the west boundary
the cavity fraction is set to be zero, i.e. θj = 0 holds, where j is the linear index of west
boundary elements. For the remaining boundaries, Neumann type boundary conditions
are used and the gradient of the cavity fraction is set to zero for the boundary nodes. As
for the relative pressure, all boundary conditions are of Dirichlet type and it is set equal
to zero as well, meaning that for the domain boundaries, p̄ = p− pcav ≈ p− p0 = 0 holds6.

The coefficients in Eq.(3.32) include the density and the viscosity of the lubricant as well
as the gap height, h, all of which are dependent on pressure and are supposed to be
calculated at tn+1. If one substitutes the pressure dependencies of these coefficients and
simultaneously attempts to solve them, the system would be highly non-linear. To avoid
this, two measures are taken. Firstly, as illustrated in Fig.3.4, the lubricant properties ρl
and µ are calculated from the relative pressure guess at the current iteration step of the
FBNS algorithm using the known constitutive relations. This eliminates the non-linearities
that would be introduced if the density and viscosity of the lubricant were simultaneously
solved for alongside the Reynolds equation. The second measure to avoid additional non-
linearities requires more in depth explanation and is better understood after investigation
of the Jacobian matrix.

If one considers the lower half of the Jacobian in Eq.(3.36) multiplied with the update
vector, i.e. the equation:

[
JG,p JG,θ

] [δ~p (k)

δ~θ (k)

]
= −~G(~p (k), ~θ (k)), (3.38)

where the right-hand side is known in vectorial form from Eq.(3.33) and in element-wise
form from Eq.(3.32) as it is calculated for the iteration step (k). It is important to remark
that the multiplication on the left-hand side is the matrix multiplication of a N2-by-
2N2 matrix and a 2N2-by-1 vector, so the dimensions are consistent. If one row of the
expression on the left-hand side is considered in a similar scalar formulation to Eq.(3.32),
the following expression is obtained for an arbitrary inner node:

(
ξp,s

∆x1

∆x2

)
δp̄n+1
S +

(
ξp,w

∆x2

∆x1

)
δp̄n+1
W −

(
ξp,s

∆x1

∆x2
+ ξp,w

∆x2

∆x1
+ ξp,e

∆x2

∆x1
+ ξp,n

∆x1

∆x2

)
δp̄n+1
C

+

(
ξp,e

∆x2

∆x1

)
δp̄n+1
E +

(
ξp,n

∆x1

∆x2

)
δp̄n+1
N − (ξu,w∆x2) δθn+1

W

+

(
ξu,e∆x2 + ξt,C

∆x1∆x2

∆t

)
δθn+1
C + ξ′u,w∆x2 − ξ′u,e∆x2 − ξ′t,C

∆x1∆x2

∆t︸ ︷︷ ︸
(?), introduce p dependence of h

= −G, (3.39)

where in the left-hand side the terms from the previous time point indicated by the super-
script n have vanished because of the differentiation operations in the Jacobian, as they
are constant for tn+1, and the right-hand side is the negative of Eq.(3.32) calculated for
the relative pressure and cavity fraction of the iteration step (k) and is called the residual.

6As mentioned previously, the pressure when the liquid cavitates, pcav, as well as the ambient pressure,
p0, are small compared to the hydrodynamic pressure, p, allowing the approximation pcav = p0 [33]

40



3.2. Overview of the Algorithm 41

The superscript (k) has been omitted from the update terms on the left-hand side as well
as the residual on the right-hand side for concise notation. The approach suggested by
Hansen [19] is to introduce the pressure dependence of the gap height terms due to the
elastic deformation into the Jacobian and then simplify the problem to make it computa-
tionally feasible. The new coefficients ξ′u,e, ξ

′
u,w and ξ′t,C in Eq.(3.39) marked by (?) are

introduced for this purpose. During the calculation of JG,p, only the coefficients multi-
plied by elements of ~p are non-zero, because the partial derivatives of all other terms with
respect to p̄ are zero. Recalling the definitions of the relevant coefficients:

ξu = U1ρlh, (3.18 revisited)

ξt = ρlh, (3.19 revisited)

where the h is to be replaced by the expression that was obtained for the discretized film
thickness equation, Eq.(3.14). As only the elastic deformation term within that equation
has pressure terms, it is the only non-zero term in the expression for JG,p. Simply inserting
the equation for the elastic deformation and using the influence factors (the kernel entries)
from Eq.(3.12) is not computationally viable because the influence factors are calculated
for all of the grid points. This means that for a chosen center node C, the pressure at
every other node in the domain has to be considered, resulting in a non-sparse system
matrix, i.e. the system matrix is mostly filled with non-zero values and computationally
expensive to solve. For the steady case, Hansen suggests to separate JG,p into two parts
Ap and Ah, where the former is the same as in Eq.(3.33) and the latter includes the
pressure coefficients that arise from the substitution of h. The methodology implemented
by Hansen is to only consider the five main diagonals of Ah to reduce computational effort
without compromising accuracy. This approach corresponds to only taking into account
the elastic deformation caused by the pressures at the nodes: C, N , E, S and W when
substituting h into the Reynolds equation to calculate the Jacobian [19]. This approach
has been extended in this thesis to include the coefficient of the expansion-squeeze term
by separating the corresponding part of the Jacobian further into Atime. Expressed in
equations:

JG,p = Ap + Ah + Atime. (3.40)

Next, the terms marked by (?) in Eq.(3.39) with the elastic deformation term substituted
with only the five main diagonals of both Ah and Atime are rewritten in scalar form to
fit the notation in Eq.(3.39). With the additional definition of two coefficients as:

ξu,h = U1ρl, (3.41)

ξt,h = ρl, (3.42)

to denote the coefficients of h after it has been substituted in the (?) terms7 in Eq.(3.39),
the results can be expressed in terms of the kernel entries as:

7Special attention should be paid to remark that the h is a subscript in these two new definitions.
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ξ′u,w∆x2 = (ξu,h · h)w ∆x2 = (ξu,h)w ∆x2

(
KNW δp̄

n+1
S +KCδp̄

n+1
W +KW δp̄

n+1
C

+ KWW δp̄
n+1
E +KSW δp̄

n+1
N

)
,

(3.43)

−ξ′u,e∆x2 = − (ξu,h · h)e ∆x2 = − (ξu,h)e ∆x2

(
KNδp̄

n+1
S +KEδp̄

n+1
W +KCδp̄

n+1
C

+ KW δp̄
n+1
E +KSδp̄

n+1
N

)
,

(3.44)

−ξ′t,C
∆x1∆x2

∆t
= − (ξt,h · h)C

∆x1∆x2

∆t
= − (ξt,h)C

∆x1∆x2

∆t

(
KNδp̄

n+1
S +KEδp̄

n+1
W

+KCδp̄
n+1
C +KW δp̄

n+1
E +KSδp̄

n+1
N

)
,

(3.45)

where the K terms with their subscripts refer to the corresponding kernel entries and
the interpolation methods used for the coefficients ξu,h and ξt,h are identical to their
respective counterparts, i.e. (ξu,h)w = (ξu,h)W and (ξu,h)e = (ξu,h)C . This means that
the terms in the parentheses on the right-hand sides of Eqs.(3.43) to (3.45) correspond to
approximations of the elastic deformations on the W , C and C cells, respectively. The
kernel entries can be calculated by Eq.(3.13).

If one considers the kernel similar to grid overlapping the computational node grid pre-
sented in Fig.3.1, the result of the convolution can be thought of visually. The matching
of the kernel entries to the nodes on the FV grid are obtained by placing the center of the
kernel, KC , where the elastic deformation is being calculated at, given by the subscript of
h. Then the kernel entries are mirrored, as by definition of convolution, and then the over-
lapping kernel entries are multiplied with the relative pressure values at the corresponding
nodes. This procedure is visualized in Fig.3.5 for calculating hw = hW in Eq.(3.43), where
only the relative pressures at the four compass directions and the center cell in the FV
grid are of relevance for the Jacobian.

Figure 3.5.: An illustration for calculating hW , the central kernel entry, KC , is aligned with
the west cell of the FV grid. The kernel is mirrored due to the convolution.
The relative pressures at C and directly neighbouring cells in the FV grid are
of interest.

42



3.2. Overview of the Algorithm 43

As the cavity fraction has no influence on any of its coefficients, JG,θ = B holds. The
substitution of Eqs.(3.43) to (3.45) into Eq.(3.39) would give one row of the equations of
the whole system the developed algorithm solves to obtain the update terms:

JG,p,Sδp̄
n+1
S + JG,p,W δp̄

n+1
W + JG,p,Cδp̄

n+1
C + JG,p,Eδp̄

n+1
E

+ JG,p,Nδp̄
n+1
N + JG,θ,W δθ

n+1
W + JG,θ,Cδθ

n+1
C = −G, (3.46)

where the entries of the Jacobians are the corresponding coefficients of the update terms,
δ~p (k) and δ~θ (k), for the respective cells. The right-hand side is the same as Eq.(3.39).
This equation is in fact one row of the system of equations introduced in Eq.(3.38). The
expressions for the pressure update coefficients in the above equation are as follows:

JG,p,S = ξp,s
∆x1

∆x2
+ (ξu,h)w ∆x2KNW − (ξu,h)e ∆x2KN − (ξt,h)C

∆x1∆x2

∆t
KN , (3.47)

JG,p,W = ξp,w
∆x2

∆x1
+ (ξu,h)w ∆x2KC − (ξu,h)e ∆x2KE − (ξt,h)C

∆x1∆x2

∆t
KE , (3.48)

JG,p,C = −
(
ξp,s

∆x1

∆x2
+ ξp,w

∆x2

∆x1
+ ξp,e

∆x2

∆x1
+ ξp,n

∆x1

∆x2

)
+ (ξu,h)w ∆x2KW

− (ξu,h)e ∆x2KC − (ξt,h)C
∆x1∆x2

∆t
KC ,

(3.49)

JG,p,E = ξp,e
∆x2

∆x1
+ (ξu,h)w ∆x2KWW − (ξu,h)e ∆x2KW − (ξt,h)C

∆x1∆x2

∆t
KW , (3.50)

JG,p,N = ξp,n
∆x1

∆x2︸ ︷︷ ︸
terms of Ap

+ (ξu,h)w ∆x2KSW − (ξu,h)e ∆x2KS︸ ︷︷ ︸
terms of Ah

− (ξt,h)C
∆x1∆x2

∆t
KS︸ ︷︷ ︸

terms of Atime

,
(3.51)

where on the right-hand side, the first terms8 correspond to entries of Ap, the second and
third terms are the entries of Ah and the last terms are the corresponding elements of
Atime, as illustrated in the last equation. The coefficients of the cavity fraction updates
for the (kth) iteration do not change due to the substitution of the pressure dependency
of h:

JG,θ,W = −ξu,w∆x2, (3.52)

JG,θ,C = ξu,e∆x2 + ξt,C
∆x1∆x2

∆t
. (3.53)

The precise implementation of this concept for the system of equations in matrix form
can be seen in the accompanying MATLAB script and is carried out by calculating the
diagonals of the corresponding matrices as they are sparse.

This chapter and the previous one provide a complete overview of the used model to
describe the EHL problem at hand, the methodology used to discretize equations and
the implemented algorithms to solve them. What remains now is to validate the solver
with experimental data from literature and investigate its dependency on grid and time
resolution.

8For Eq.(3.49) the expressions in the parentheses in the righ-hand side are considered a single term.
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4. Model Validation & Analysis

This chapter focuses on presenting the results of the carried out simulations to validate
the model and the parameters used to run them. Results of further simulations to analyse
the behaviour of the solver are also shown and discussed.

Firstly, the replicated experimental setup of Mourier et al. [21] is detailed and the used
micro-texture profile is explained. The required solid parameters, lubricant parameters
and operating conditions are specified. Then, the input parameters for the algorithm are
indicated and further explained. For validation, the calculated gap height distributions are
compared to the measured values of Mourier et al. [21] for two configurations and at five
different points in time. The two configurations differ from one another in the geometry
parameters of the micro-texture and they have different values for the slide-to-roll ratio
(SSR) defined by:

Σ =
ua − ub
ua + ub

(4.1)

where similarly to previous chapters, the subscript a is used for the lower body (the steel
ball) and b corresponds to the upper body (disc). As the ball and the disc are assumed to
have velocities in only x1-direction a second subscript is not necessary. The two different
configurations are described in detail in the following [21]. The three carried out studies
are detailed and an overview of all investigated simulations in presented. Then, the results
of the grid refinement and temporal resolution refinement studies are considered. Finally
an overall evaluation of the developed model and the investigations on it is made.

4.1. Setup & Overview

This section provides an overview of the simulated tribometer used by Mourier et al., the
various parameters for the algorithm and the carried out simulations alongside the studies
they belong to.

Replicated Experimental Setup

The ball-on-disc tribometer used by Mourier et al. in their 2006 paper is described in
Fig.4.1. The normal load is imposed on the ball and the stepping motors control the
velocities of the disk as well as the ball. The torque sensor under the disk is used to measure
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46 4. Model Validation & Analysis

the friction torque to calculate the friction force. The heating system in combination
with the pyrometer, a device to measure temperature without contact, enable the contact
temperature to be measured and moderated [21].

Figure 4.1.: The EHL tribometer used by Mourier et al. with their measurement setup.
Taken from [21].

The EHL contact is realized between a silica disk coated with a chromium layer for optical
measurement purposes and a 52 100 steel ball1. As the considered geometry is assumed to
be a spherical ball, R = Rx1 = Rx2 holds in Eq.(2.15) [21]. It is important to realize that
the gap height distribution created by the ball profile is actually the negative of the profile.
If the ball profile rises, the distance between the ball and the disc decreases, meaning that
the gap height also decreases.

The micro-texture is obtained using laser surface texturing (LST) and is placed on the
ball surface. The micro-texture influence on the gap height is modelled in the simulations
using the function [21]:

S(x1, x2, t) = d · cos

(
π

2

s′

1.2r

)
· exp

(
−2

(
s′

1.2r

)2
)
, (4.2)

where d is the micro-texture depth, r is the micro-texture radius and s′ denotes the dis-
tance of the micro-texture center, (x̄1, x̄2), at a given time to the considered point in the
simulation domain, written in mathematical terms: s′ =

√
(x1 − x̄1)2 + (x2 − x̄2)2. The

illustration of the micro-texture can be seen in Fig.4.2. The center coordinates of the
micro-texture depend on the surface velocity of the ball and its starting position:

(
x̄1

x̄2

)
=

(
x̄1,0

x̄2,0

)
+

(
u1,a

0

)
· t, (4.3)

where t is the time and the coordinates with the additional subscript 0 specify the initial
coordinates of the micro-texture center. This is how the time dependence of S(x1, x2, t) is

1This grade of steel is comparable to 100Cr6 in ISO standards, ISO 683-17:1999 [40]
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4.1. Setup & Overview 47

introduced. Another important remark is the fact that the micro-texture profile is simply
the negative of the illustrated surface, which is the gap height influence of the micro-
texture shown as S(x1, x2, t), similar to the ball profile and the gap height distribution
due to it. The micro-texture is a cavity on the surface of the ball and as it passes through
the contact, it locally increases the distance between the solid bodies, i.e. the gap height
[21].

(a) Along a line in x1-direction with x2 = 0

(b) In the x1-x2 plane

Figure 4.2.: The micro-texture influence on the gap height for the given parametrization
for configuration 1, shown as a profile on a line along constant x2 = 0 and
along the whole plane, both when (x̄1, x̄2) = (0, 0).

Mourier et al. provide their results of two experimental configurations, which differ in
the SSR and in the micro-texture depth and radius but have the same mean velocity,
U1 = 0.09 ms−1. The two configurations are illustrated in Table 4.1. A slide-to-roll ratio
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48 4. Model Validation & Analysis

of 0 corresponds to pure rolling as ua = ub and a negative value for the SSR means that
the lower body, the ball in this case, moves slower than the disc [21].

To be able to carry out the simulations, the geometry parameters, solid and lubricant
properties and operating conditions have to be further specified. An overview of the
values used by Mourier et al. is presented in Table 4.2. The first two parameters are
already known from previous considerations. The Hertzian contact radius is denoted by
a and used as a reference length for non-dimensionalization of the parameters provided
in the aforementioned paper. The lubricant is a 400 Neutral Solvent base oil for which
the cavitation pressure and the values to be used in the constitutive equations have to
be indicated. pcav is the cavitation pressure and is taken to be of the same magnitude as
the ambient pressure. ρ0 is the density of the liquid lubricant at ambient pressure, which
is used in the Dowson-Higginson relation, Eq.(2.74). The value for this parameter is not
provided by Mourier et al. so it is taken to be 850 kg/m3. The following three parameters
are the coefficients used for the viscosity-pressure relation, given in Eqs(2.75), (2.76) and
(2.77): µ0 is the dynamic viscosity of the lubricant at ambient pressure, p̃0 is the pressure
coefficient and α is the pressure viscosity index [21]. The limiting shear stress denoted
by τmax, is the value used to limit the average Couette stress in the contact, as explained
in the shear thinning model in section 2.3. The minimum macroscopic gap height, hmin,
needs to be defined to avoid non-physical solutions for the EHL problem at hand. If the
calculated gap height falls below this value at certain locations, the gap height at those
nodes are set to this predefined value, meaning that solid bodies never contact one another.
As for the operating conditions, p0 is the ambient pressure and F3 is the imposed vertical
load [19].

Simulated configurations SSR[-] d [µm] r [µm] U1 [ms−1] ua [ms−1] ub [ms−1]

Configuration 1 0 7 15.5 0.09 0.09 0.09
Configuration 2 -0.5 1.3 21.5 0.09 0.045 0.135

Table 4.1.: Overview of configuration 1 and 2 as given by Mourier et al. The geometry
parameter d is the micro-texture depth and r is the corresponding micro-texture
radius. The lower and upper bodies velocities, respectively ua and ub, are
calculated from the SSR and U1 [21].

Geometry and solid parameters

R 12.5 mm
E′ 110 GPa
a 136.5 µm

Lubricant parameters

pcav ≈ 101325 Pa
ρ0 850 kg/m3

µ0 0.25 Pa·s
p̃0 1.96 · 108 Pa
α 22 GPa−1

τmax 10 MPa
hmin 1 nm

Operating conditions

F3 15 N
p0 101325 Pa

Table 4.2.: Table of geometry parameters, solid and lubricant properties and operating
conditions as given by Mourier et al. [21].
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Algorithm Settings

The lubrication gap is discretized using the finite volume grid introduced in chapter 3 using
varying spatial resolutions. Mourier et al. use 257 × 257 grids for their own simulations,
so for the validation of the model, the same resolution is used in this thesis [21]. The
spatial grid resolution used for the further studies are summarized later as necessary. The
domain is defined as a 819 µm × 819 µm square with the origin placed in the middle [19].
The micro-texture moves along a line in x1-direction as the surfaces only have velocities
in this direction. The starting coordinates of the micro-texture are set to (x̄1, x̄2) =
(−250 µm, 0 µm) and it is introduced to the domain after the first time point, the steady
case, is solved for. To know when to stop the time loop, (II) in Fig.3.4, a final x1-coordinate
for the micro-texture center has to be specified additionally, this value is defined as 250
µm.

Defining the values of the relative tolerances and the allowed maximum number of iter-
ations for the secant and FBNS loops are also of importance to know when to exit the
respective loops. For the initial guess of the pressure distribution the dry contact pressure
algorithm2 is used. The values of the required parameters for these three algorithms are
presented in Table 4.3. The meaning of each parameter is described shortly in the fol-
lowing. A common relative tolerance is used throughout the algorithm, denoted by ∆gen.
For each of the calculated residuals, namely, for the normal force, relative pressure, cavity
fraction and for the error in the contact pressure algorithm relative errors are calculated
and compared to ∆gen. To calculate relative errors, reference values are also specified,
which are discussed in the following when necessary.

The maximum number of permitted iterations for the secant algorithm is determined
with isec,max. As the algorithm needs two initial guesses for calculating the next guess,
h0,n−2 and h0,n−1 are used, which are respectively the first and the second guesses for the
rigid body displacement. Upper and lower limits for h0 are defined as h0,max and h0,min.
Whenever the calculated value reaches the limits the secant algorithm is reset and the
initial two guesses are adjusted accordingly. And hδ is the value that separates the newly
adjusted two initial guesses. ∆p is the relative residual of the FBNS algorithm that has
to be reached to evaluate the load balance equation3. The relative error for the secant
algorithm is calculated using the ratio of the difference between the calculated and the
imposed normal load to the imposed normal load.

As for the FBNS algorithm, similarly, the maximum number of iterations permitted before
exiting the loop is indicated with ip,max. For calculating the relative errors, the residuals
for both p̄ and θ are calculated and divided by appropriate reference values. The former is
divided by pref,p, which is the average pressure on the contact, i.e. the normal load divided
by the area of the FV grid. The latter however, can only take values between 0 and 1,
so a reference value is not needed to calculate the relative error associated with it, the
residual itself is sufficient. The greater of these values is chosen as the FBNS relative error
which is then compared to ∆gen to decide if the secant algorithm should keep iterating.
The relative error for the pressure guess from the FBNS algorithm is compared to ∆p

to decide whether a new guess for the rigid body displacement should be made by the
secant algorithm. The under-relaxation factor, for Eq.(3.35), is determined empirically
for different spatial resolutions and found to be sufficiently appropriate as 0.05 for lower
spatial resolutions and 0.04 for higher grid resolutions. Exact specifications can be found
at the end of this section.

2As mentioned before, this algorithm is taken from the repository by Hansen: “https://github.com/
ErikHansenGit/Contact_elastic_half-space”

3The subscript p is used for shorthand notation and is associated with the FBNS algorithm as it calculates
the pressure distribution.
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50 4. Model Validation & Analysis

For the contact pressure algorithm to calculate the initial pressure distribution guess, two
input parameters are presented here without further explanation as it is not within the
scope of this work. This segment of the solver has been developed by Hansen and the
interested reader is referred to the previously mentioned repository for more information
[19, 32]. Moreover, the time step size has to be specified to be able to proceed with
transient computations. For this parameter, the values used for each simulation differ
from one another. Thus, are presented as the corresponding simulations are discussed.

General

∆gen 10−5 [-]

Secant algorithm

isec,max 30 [-]
h0,n−2 −1 µm
h0,n−1 −0.5 µm
h0,max 0 µm
h0,min −2.5 µm
hδ 0.1 µm
∆p 0.1 [-]

FBNS algorithm

ip,max 20 [-]

pref,p
F3
A = 21.02 MPa

α̃ {0.05, 0.04} [-]

Dry contact pressure

icon,max 100 [-]
href,con 0.01 µm

Table 4.3.: Summary of required parameters for the various algorithms and the values
used. See text for explanations.

Overview of Simulations

In total, 11 simulations were investigated in detail under the scope of the validation of
the model by comparison to experimental results and the two studies on the developed
solver. All simulations were run on the computer “istmlynx2” of the Institut für Strö-
mungsmechanik (ISTM) of Karlsruher Institut für Technologie (KIT). The relevant infor-
mation of the computer can be read from Table 4.4.

The simulations are divided into three categories distinguished by letters:

� A: validation by experimental results from Mourier et al. [21],

� B: spatial resolution analysis,

� C: temporal resolution analysis for a spatial gird of 129× 129 resolution.

Table 4.5 summarizes all simulations and relevant parameters. Computational times are
presented alongside the simulations but are discussed in section 4.3. One important pa-
rameter is the ratio of the dimensionless time step size, ∆T to the dimensionless grid
spacing, ∆X. The non-dimensionalization is carried out using the Hertzian contact radius
a and the mean velocity of the surfaces U1. The same procedure as Mourier et al. is
followed [21]:
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∆X =
∆x1

a
=

∆x2

a
, (4.4)

∆T =
∆t · U1

a
. (4.5)

Information on the computer

Computer name istmlynx2
CPU model name AMD Opteron(tm) Processor 6376
Total RAM 131995800 kB

Table 4.4.: Specifications of the computer used to run all simulations.

Sim. ID Grid ∆T
∆X Con. α̃ nt ttot [h] tmax [s] tavg [s] ctmax

A.1 3 257-by-257 1 1 0.04 157 16.83 1460.6 388.45 16
A.2 9 257-by-257 1 2 0.04 313 22.88 1374.3 264 16

B.1 1 65-by-65 1 1 0.05 40 0.27 237 24.86 8
B.2 2 129-by-129 1 1 0.05 79 1.57 165 71.89 8
B.3 3 257-by-257 1 1 0.04 157 16.83 1460.6 388.45 16
B.4 11 65-by-65 1 2 0.05 79 0.30 47.12 13.59 8
B.5 8 129-by-129 1 2 0.04 157 2.81 205.37 64.64 8
B.6 9 257-by-257 1 2 0.04 313 22.88 1374.3 264 16

C.1 32 129-by-129 0.25 2 0.04 626 8.57 208.66 49.28 8
C.2 34 129-by-129 0.5 2 0.04 313 5.02 204.91 57.69 8
C.3 36 129-by-129 0.75 2 0.04 209 3.67 209.21 63.3 8
C.4 8 129-by-129 1 2 0.04 157 2.81 205.47 64.64 8
C.5 39 129-by-129 1.5 2 0.04 105 2.23 211.92 76.58 8

Table 4.5.: Overview of all carried out simulations and elapsed times for each simulation.
“Sim.” stands for simulation and indicates the study the simulations belong to
and their number. “ID” denotes the internally used identification number when
simulations were being carried out. ∆T and ∆X are the dimensionless time step
size and grid spacing respectively. “Con.” is the number of the configuration,
corresponding to 1 for SSR=0 and 2 for SSR=-0.5. α̃ is the under-relaxation
factor used in the FBNS algorithm, nt is the number of computed time points,
ttot is the total elapsed time for the simulation in hours, tmax is the elapsed
time for the time point that took longest to compute in seconds, tavg is the
average computational time per time point in seconds. ctmax is the number of
maximum computational threads allowed for the simulation.
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52 4. Model Validation & Analysis

Mourier et al. mention that for their simulations ∆T = ∆X holds, meaning that as the
spatial resolution is refined the temporal resolution is also refined accordingly, and vice
versa [21]. In this thesis, the studies A and B follow the same approach. For study C, the
ratio of the two dimensionless parameters is investigated, so ∆T = ∆X is not necessarily
true. The values of the dimensionless grid spacing corresponding to the different grid
sizes used is presented in Table 4.6. As the main goal of this work is to develop and
validate a model for simulating the pressure distribution in a ball-on-disc tribometer, the
mentioned additional studies are briefly discussed to better understand the behaviour
of the solver. The simulation ID’s presented in Table 4.5 are used to identify specific
simulations independent of the study they belong to and were internally used during the
working procedure of this thesis. From now on, the simulations will be referred to with
respect to their study identifiers.

257× 257 129× 129 65× 65

∆X 0.0234375 0.0468750 0.0937500

Table 4.6.: Dimensionless grid spacings, ∆X, for different spatial resolutions.

4.2. Validation of the Model

To validate the model, the two previously discussed configurations are simulated, each
corresponding to one experiment Mourier et al. have provided [21]. The gap height dis-
tribution of five different time points are compared with the experimental measurements.
Firstly, the results of the simulations and the experiments are presented together. Addi-
tionally, the theoretical pressure distributions are shown. Then, the validity of the model
is discussed.

Results & Comparison to Experiments

For the case with pure rolling, i.e. zero slide-to-roll ratio, the gap height distributions
for each time point corresponding to five x1-coordinates of the micro-texture center are
illustrated in Fig.4.3. The x1-coordinates are approximate values and do not exactly match
for the simulation and the measurements due to measurement inaccuracies. The calculated
hydrodynamic pressure distributions are displayed along a line x2 = 0 in Fig.4.3 (top)
and across the whole domain in Fig.4.5. No experimental data was found to compare
the pressure values. Nonetheless, knowledge of the pressure distribution, especially the
pressure peaks observed around the micro-texture provide interesting insights.

As for the second configuration, where the slide-to-roll ratio is given to be −0.5 and the
micro-texture is wider and shallower as indicated by Mourier et al., the calculated results
using the introduced EHL solver and the measured values of the gap height distribution
are displayed in Fig.4.4. The pressure distributions along x2 = 0 are also shown in Fig.4.4
(top). Fig.4.6 illustrates the pressure distribution along the whole domain as a surface.

Discussion

If one compares the top and bottom graphs for configuration 1 in Fig.4.3, a high degree of
similarity between them can be observed. The biggest differences occur when the micro-
texture is entering and leaving the contact, in (b) and (e). The predicted gap height
decreases right in front and right after the micro-texture and are more severe compared
to the measured values. These locations are also associated with extreme pressure spikes,
up to 1.2 GPa, as depicted in Fig.4.3 (top). Additionally, the maximum hydrodynamic
pressures across the whole field for both configurations is plotted against time in Fig.4.7.
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Stahl and Jacobson show that the Dowson-Higginson relation, the used compressibility
model in this work, is in good agreement with experimental results up to 400 MPa [16, 41].
As the maximum pressures in the contact reach above 1.2 GPa for configuration 1, it is
hypothesized that this might be a reason behind the discrepancies between the simulations
carried out here and the experimental measurements of Mourier et al. [21].

As for configuration 2, the passing of the micro-texture creates less extreme pressure spikes.
Interestingly, the largest differences between predictions and measurements are when the
micro-texture is in the middle of the contact, (c) and (d) in Fig.4.4, the opposite of the
observations for configuration 1. For configuration 2, the maximum hydrodynamic pressure
across the whole contact approximately reach half of the values observed for configuration
1, as illustrated in Fig.4.7.
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For both configurations, cavitation occurs towards the end of the contact and is observed
to not be significantly influenced by the passing of the micro-texture. As the micro-texture
moves through, there is a slight increase in the cavity fraction because the lubricant at the
center of the micro-texture experiences sudden drops in pressure. The precise changes to
the cavity fraction and their explanation are not in the scope of this thesis, so they are
only briefly mentioned.

The number of total FBNS and secant algorithm iterations required to move to the next
time point are plotted against time for both configurations in Fig.4.8. It can be observed
that the first time point usually requires the most amount of iterations, which is expected
as the initial guess of the pressure distribution is far from the actual one. Then, both
algorithms start to require less iterations for the next few time points. This is because
of the relatively small change compared to the value of the gap height the micro-texture
introduces as it moves from time point to time point when it is far from the inlet. The gap
height as seen in Figs.4.3 and 4.4 is considerably larger as one considers more and more neg-
ative x1-coordinates. Quickly after, the curves shown in Fig.4.8 rise as the micro-texture
now introduces a significant amount of change in the gap height with each passing time
point. As expected, when the micro-texture leaves the central area of the contact, since
its relative influence decreases, the number of iterations go down as well. Furthermore, in
Fig.4.8 (a) more iterations are required for both algorithms per time point overall. This
can be explained by considering the differences in ball velocity between the two configu-
rations. For configuration 1, the ball moves faster due to the increased slide-to-roll ratio.
This means for configuration 1 with each time step, recalling that the micro-texture is
placed on the ball, the relative change introduced by the movement of the micro-texture is
larger compared to configuration 2, causing more iterations to be made to as the first guess
is further away from the solution. It is also significant to remark that the time step sizes
are of the same magnitude for both configurations. This is because the non-dimensional
grid spacings, the mean velocity in x1-direction (U1) and the Hertzian contact radii (a)
are the same for both.

To sum up, it can be said that, the predictions agree to a better extent with the experi-
mental results for configuration 2, compared to the first one. Nonetheless, even the results
for the first configuration are sufficiently similar to the experimental measurements. Thus,
the model for predicting the pressure distribution for the ball-on-disc tribometer with a
micro-texture on the ball is considered to be validated to a sufficient degree. This is done
by confirming the accuracy of the gap height distribution predictions with experimental
results. Further studies on the developed solver are presented after the figures in the
following pages.
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Figure 4.5.: The pressure distribution across the contact as a surface plot, when x̄1 = 21.8
µm for configuration 1. Result of simulation A.1.

Figure 4.6.: The pressure distribution across the contact, when x̄1 = −9, 5 µm for config-
uration 2. Result of simulation A.2.
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(a) For configuration 1 (SSR=0).

(b) For configuration 2 (SSR=−0.5).

Figure 4.7.: Calculated maximum pressure values across the whole contact area plotted
against time for both configurations. Results of simulations A.1 and A.2.
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(a) For configuration 1 (SSR=0)

(b) For configuration 2 (SSR=-0.5)

Figure 4.8.: FBNS (itFBNS = itp) and secant (itW = itsec) algorithm iterations required to
satisfy the residual tolerances to move to the next time point plotted against
time for both configurations. The vertical axis is in logarithmic scale and
the horizontal axis is shown using a linear scale. The horizontal axis denotes
the time within the simulation, not to be confused with the actual elapsed
computational time in the physical world. Results of simulations A.1 and A.2.

4.3. Studies on the Model

In this section, the various studies outlined in section 4.1 are explained. The most relevant
results are presented and briefly discussed.

4.3.1. Grid Size

For study B, three different grid sizes are chosen: 65 × 65, 127 × 127 and 257 × 257.
A finer grid of 513 × 513 was also considered but it was found to be computationally
infeasible. For both configurations and all three grid sizes the gap height distributions
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and the hydrodynamic pressure profiles along a constant line of x2 = 0 are presented.
Additionally, maximum pressure and minimum gap height values are plotted against time
for configuration 2.

For configuration 1, the gap height and hydrodynamic pressure distributions are displayed
in Fig.4.9 when the micro-texture center is at x1 = −70 µm. The general trend that
can be observed is that, as the grid gets finer, the decrease of gap height in front of the
micro-texture and the decrease in the wake of it, become less pronounced. The pressure
peaks around the texture decrease in magnitude as the grid gets coarser.

As for configuration 2, a better agreement between the three considered grid resolutions
is observed. The predicted gap height is larger ahead of the micro-texture, at the location
x1 ≈ 50 µm. In Fig.4.4 (b) it can be seen that the gap height is supposed to decrease in
that region. Thus, coarse grids, as expected, represent the experiment with less accuracy.
The pressure profiles do not differ drastically as the grid is refined.

To investigate the behaviour of the simulations for all time points, the maximal pressure
and minimal gap height across the whole contact is plotted for the three grid sizes, under
the operating conditions of configuration 2 in Fig.4.11. It can be observed that the coarser
grids show oscillations in the maximum pressure and the coarsest grid exhibits a large
decrease in the minimum gap height after 8 ms. On the other hand, the 257 × 257 grid
shows no significant oscillations in maximum pressure and no decrease for the minimum
gap height. The minimum gap heights in non-textured EHL contacts are usually observed
in the sides of the domain, in the case considered here: the south and the north domain
boundaries, as the micro-texture moves from the west to the east boundary. It is apparent
that for coarser grids, the passing of the micro-texture causes the minimum gap height
within the contact to fall below the values at the contact edges, while for finer grids this
is not the case. This reduction of the minimum gap height in the coarser grids can be
caused by the sudden pressure drop right before the 8ms mark, compare Fig.4.11 (a) and
(b). Cavitation occurs only at the outlet of the contact and it is hypothesized that it
has a significant effect on the pressure and that the predicted cavity fraction is much
less accurate for the coarse grids, causing non-physical decreases in the pressure and the
minimum gap height.

As the spatial grid gets finer, the total time required to carry out the simulations drastically
increases as illustrated in Table 4.5. Both the average computational time spent per time
step and the total computation time increase. Simulations corresponding to configuration
2 take longer to compute because the micro-texture moves slower. The slower velocity
of the micro-texture improves tavg as the relative change from one time point to the
other caused by the movement of the micro-texture gets smaller. An unexpected result is
observed for simulation B.1 (the coarsest grid for configuration 1). For B.1 the maximal
elapsed computational time for a single time point, tmax, is considerably higher than the
tmax for the 129× 129 grid. This is because of observed instabilities for the coarsest grid.
For B.1, the time point that takes the longest to compute is not actually the first one
but a time point when the micro-texture is about to leave the contact. The algorithm
showed tendencies to be unstable and did not converge until the maximum number of
secant algorithm iterations were reached, thereby causing the computational time to be
unexpectedly large for this one time point. No further instabilities were observed during
the analysis.

These considerations are interpreted to mean that a relatively fine grid size of 257 × 257
is feasible to have appropriate results from simulations. However, if a grid of 129 × 129
is used, a significant reduction in computational effort, as indicated in Table 4.5, can be
achieved with some loss in accuracy. Thus, a compromise must be made depending on the
priorities one might have when carrying out the simulations.
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(a) Gap height.

(b) Hydrodynamic pressure.

Figure 4.9.: Gap height and hydrodynamic pressure along a line of x2 = 0 for configuration
1 for three different resolutions, with ∆T = ∆X. Micro-texture center located
at x̄1 = −70 µm. Results of simulations B.1, B.2 and B.3.
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(a) Gap height.

(b) Hydrodynamic pressure.

Figure 4.10.: Gap height and hydrodynamic pressure along a line of x2 = 0 for configura-
tion 2 for three different resolutions, with ∆T = ∆X. Micro-texture center
located at x̄1 = −70 µm. Results of simulations B.4, B.5 and B.6.
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(a) Maximum hydrodynamic pressure across the contact.

(b) Minimum gap height across the contact.

Figure 4.11.: Temporal behaviour of the theoretical predictions for configuration 2 for three
grid resolutions as shown in the corresponding legends. Results of simulations
B.4, B.5 and B.6.

4.3.2. Temporal Resolution

The results of study C is presented in this section. The ratio of the dimensionless time
step size to the dimensionless grid size is varied. The gap height distributions for one
time point, when the micro-texture center is at x1 = −70 µm, are compared and all time
resolutions. Then, the temporal evolution of the maximum pressure across the contact is
discussed.

Fig.4.12 (a) shows that the maximum pressure still shows oscillations as observed in
Fig.4.11 (a) even at the finest studied time resolution(C.1). Fig.4.12 (b) shows a zoomed
in view with all the results included4. It can be seen that the larger the time step size
gets, the more the predicted maximum pressure increases. The oscillation of the maximum

4Fig.4.12 (a) shows only two simulation results because the curves are almost overlapping and very hard
to distinguish in the zoomed out view.
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predicted pressure seem to decrease in frequency as well, but this could be because of the
simulations with larger time step sizes having less time points overall, i.e. less points are
plotted in the graph. This leads to the conclusion that the spatial grid spacing is the main
influencing factor on the the observed oscillations.

Fig.4.13 illustrates the gap height distribution for the various time step sizes. Comparison
to the experimental results displayed in Fig.4.4, shows that the film thickness decrease
further in front of the micro-texture is the expected result. As the time resolution gets
finer, this is precisely what is observed in Fig.4.12 (b). Simulations C.1 and C.2 result
in sufficiently close approximations of the film thickness in that region, leading to to the
conclusion that the time step size used in C.2 is accurate enough.

The general trend in the computational times, as it can be seen from Table 4.5 is that as
the time resolution gets finer, i.e. the ratio ∆T/∆X decreases, the total computational
time, ttot, increases while the average computation time spent per time point decreases.
This can be explained because the smaller the considered time steps are, the smaller the
change that is induced by the movement of the micro-texture. However, this decrease
cannot compensate for the increase in the total elapsed time. As expected, tmax does
not vary as the spatial grid is kept constant and the temporal resolution is refined. It
corresponds to the solution of the steady state in the first time point, thus only depends
on spatial resolution.

All of the relevant figures for the time step size analysis can be found in the following
pages. Thus, the behaviour of the developed algorithm based on the previously described
models have been outlined depending on the space and time discretization for the given
operating conditions.
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(a) The maximum pressure with the smallest (C.1) and the largest (C.5) time step.

(b) Zoomed in view with all simulations.

Figure 4.12.: The maximum hydrodynamic pressure across the contact plotted against
time. Simulations have varying time step sizes, the smallest time step size
is used for C.1 and the largest is used for C.5. Results of simulations C.1 to
C.5, details in Table 4.5.
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(a) Zoomed out view.

(b) Zoomed in view.

Figure 4.13.: The gap height distribution when x̄1 = −70 µm with varying time step size.
Results of simulations C.1 to C.5, details in Table 4.5.
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(a) The minimum gap height with the smallest (C.1) and the largest (C.5) time step.

(b) Zoomed in view with all simulations.

Figure 4.14.: Minimum gap height across the contact for varying step sizes. Results of C.1
to C.5
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5. Conclusion

All four goals of this thesis mentioned in the beginning have been reached. To be able to
extend the supplied steady EHL solver by Erik Hansen to include transient configurations,
the required fundamentals of tribology and the necessary theory to derive the governing
equations of the three critical phenomena in EHL: fluid flow, elastic deformation and the
pressure-dependency of the lubricant properties (constitutive equations) were explained.
The used mass-conserving cavitation model is introduced into the Reynolds equation. The
discretization and interpolation methods utilized in the steady solver have been expanded
to include the time derivative term in the Reynolds equation, alternatively called the
combined expansion and squeeze term. The existing algorithm was modified to include a
time loop for marching through time and to include a single micro-texture of adjustable
profile. Then, the developed algorithm was validated by comparing the predicted gap
height distributions to the experimental results of Mourier et al. [21]. A good agreement
between them was found, and thus, the predicted pressure distributions were considered
to be accurate and be validated as the gap height is directly influenced by pressure. The
dependency of the numerical model on the spatial and temporal discretization resolution
were also investigated. A grid size of 257 × 257 was found to be sufficiently accurate to
replicate experimental setups and it was proposed to use a coarser grid if low computational
effort is of high priority. Except for the coarsest grid size, 65 × 65, the solver showed no
tendencies to be unstable, which is a benefit of using the Euler implicit method for time
discretization. An overall characterization of the algorithm based on the quality of the
space and time discretization was presented. This concludes the work of this thesis. What
remains now is to discuss open questions and the outlook for further research following
this work.

The developed algorithm can be further built upon by introducing the possibility to include
multiple micro-textures, which would be more realistic for industry applications of surface
texturing. Some challenges in accomplishing this could be to create a periodic expression
for the micro-textures. Finding experimental data to validate the numerical predictions
with, would pose another challenge. As the focus of this thesis was to develop and validate
the unsteady solver, further work could be done on optimizing the parameters for the
algorithm and an in depth analysis of its dependency on various parameters and operating
conditions would be very valuable. One limitation that could be faced is the simplicity,
therefore the limited validity, of the used constitutive relations. Further development could
be made by the introduction of more complex but accurate models for the pressure and
shear dependency of lubricant parameters. This would require special attention to avoid
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any instabilities or any increases of computational effort that might arise. During the
literature survey for this thesis, it was also realized that multi-grid methods are used very
often in the field of EHL simulations. It would be worthwhile to compare the performance
of the approach presented in this thesis to multi-grid solvers. The author of this thesis
sincerely hopes that in the future, with contributions from others, the developed algorithm
can be used by many researchers in the field and be helpful to others seeking to reduce
friction and improve the efficiency of their systems.
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Symbols and Abbreviations

Latin Symbols

Symbol Unit Description

a [m] Hertzian contact radius

Atime , Ah

[
kg

Pa·s

]
Additional coefficients that are introduced to
the Jacobian when the p dependence of h is in-
troduced to the Reynolds equation

Ap

[
kg

Pa·s

]
The coefficients of the pressure terms in the ex-
pression for ~G and a part of the Jacobian matrix

B [kg/s] The coefficients of the cavity fraction terms in
the expression for ~G and the cavity fraction co-
efficients for the Jacobian

Cf [-] Friction coefficient
E [Pa] Young’s modulus
E′ [Pa] Equivalent Young’s modulus
eij [1/s] Rate of deformation tensor
Ff [N] Friction force
FN = F3 [N] Normal force
G [Pa] Shear modulus (same as µ̃)
~G [kg/s] The system of equations that describes the dis-

cretized Reynolds equation with the cavitation
model. Corresponds to the residual

H [-] Hersey number
h [m] Gap height
hδ [m] Adjustment amount to first and second guesses

if the maximum or minimum rigid body dis-
placements are reached in the secant algorithm

h0,max, h0,min [m] Maximum and minimum allowed values for the
rigid body displacement in the secant algorithm.
The algorithm is reset if these values are reached

h0,n−1 [m] Second guess of the rigid body displacement in
the secant algorithm

h0,n−2 [m] First guess of the rigid body displacement in the
secant algorithm

h0 [m] Rigid body displacement term in the film thick-
ness equation

h1 , h2 [m] Non-deformed initial shape of body 1 and 2
hmin [m] Minimum allowed gap height
href,con [m] Reference length used for the dry contact pres-

sure algorithm
hu [m] Non-deformed gap height
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icon,max [-] Maximum allowed dry contact pressure algo-
rithm iterations

ip,max [-] Maximum allowed FBNS algorithm iterations
before exiting the loop

isec,max [-] Maximum allowed secant algorithm iterations
before exiting the loop

J , JG,p, JF,p, JG,θ, JF,θ [matrix] The Jacobian and its corresponding sub-
matrices for the FBNS algorithm formulation

Kiji′j′ [m/Pa] General form of kernel entries
KNW , KC , etc. [m/Pa] Kernel entries that correspond to the cells indi-

cated in the subscript in relation to the center
cell

ki [m/s2] Mass body force in i-direction
l0 [m] Characteristic length for Reynolds number
nt [-] Number of required time points for the micro-

texture to travel from x1 = −250 µm to x1 =
250 µm for the given configuration

p [Pa] pressure
p̄ [Pa] Relative pressure p̄ = p− pcav
pcav [Pa] Cavitation pressure of the lubricant
pref,p [Pa] Reference pressure for calculating relative pres-

sure residual in the FBNS algorithm
p0 [Pa] Ambient pressure
p̃0 [Pa] Pressure coefficient for the Roelands relation
q′x1 , q′x2 [m2/s] Volume flow rate per unit width in x1- and x2-

directions
r [m] Euclidean distance between point of action of

the concentrated force (the origin) on the elas-
tic half-space and the point where the elastic
deformation is calculated at

R [m] Equivalent radius of curvature for the ball sur-

face
(

1
R = 1

R1
+ 1

R2

)
R1,x1 , R1,x2 [m] Principal radii of curvature of body 1 (lower) in

x1- and x2-directions
R2,x1 , R2,x2 [m] Principal radii of curvature of body 2 (upper)

in x1- and x2-directions
Re [-] Reynolds number
S [m] Effect of surface textures on gap height
s′ [m] Euclidean distance of the micro-texture center

to given x1- and x2-coordinates
t [s] Time
T [Pa] Stress tensor
tavg [s] Average elapsed computational time per time

point in a given simulation In seconds
tmax [s] Maximum elapsed computational time for any

time point in a given simulation in seconds
ttot [h] Total computational time elapsed for the simu-

lation in hours
u0 [m/s] Characteristic velocity for Reynolds number
U1, U2 [m/s] Mean surface velocities of the solid bodies in x1-

and x2-directions

72



73

ui,b, ui,a [m/s] Surface velocity in i-direction of body b (upper)
and a (lower)

ui [m/s] Fluid velocity in i-direction
ur [m/s] Relative velocity between solid bodies

(ur = ub − ua)
W [Pa] Average applied load
x1, x2, x3 [m] Cartesian coordinates used to describe the ge-

ometry of the contact
x̄1, x̄2 [m] Micro-texture center coordinates
X1, X2, X ′1, X ′2 [m] Shorthand notation for x1- and x2-coordinates

for the discretized formulation of the linear elas-
ticity equations

Greek Symbols

Symbol Unit Description

α [1/Pa] Pressure-viscosity index
α̃ [-] Under-relaxation factor for FBNS algorithm
γ̇ [1/s] Shear rate
δ [m] Elastic deformation of the solid bodies. Defined positive

pointing inwards to the elastic half-space
δij [-] Kronecker delta
δ~p [Pa] Pressure update for the relative pressure terms in the FBNS

algorithm

δ~θ [-] Cavity fraction update in the FBNS algorithm
∆X [-] Dimensionless grid spacing (∆X = ∆x1/a = ∆x2/a)

∆T [-] Dimensionless time step size
(
∆T = ∆t·U1

a

)
∆x1, ∆x2 [m] Finite volume grid spacings in x1- and x2-directions
∆t [s] Time step size
∆gen [-] General relative error tolerance for the various algorithms
∆p [-] Relative residual tolerance of the relative pressure in the

FBNS algorithm
θ [-] Cavity fraction

λ̃ [Pa] First Lamé parameter
λ∗ [Pa·s] Second viscosity coefficient
λe [-] Linear interpolation factor for the central differencing scheme

on the east boundary
µ [Pa·s] Dynamic viscosity
µ̄0 [Pa·s] Characteristic dynamic viscosity for the Reynolds number
µ̃ [Pa] Second Lamé constant
µl [Pa·s] Dynamic viscosity of the lubricant at a given pressure (µ = µl)
µ0 [Pa·s] Dynamic viscosity of the lubricant at ambient pressure
ν [-] Poisson’s ratio
ξp [kg/(Pa·s)] Poiseulle coefficent in discretized Reynolds equation(

ξp = h3ρl
12µ

)
ξu [kg/(m·s)] Coefficient for the Couette terms and the cavity fraction term

in the discretized Reynolds equation (ξu = U1ρlh)
ξt [kg/m2] Coefficient for the combined squeeze and expansion term in

the discretized Reynolds equation (ξt = ρlh)
ξu,h [kg/(m2·s)] First coefficient of the pressure terms that arises from sub-

stituting the p dependence of h into the expression for the
Jacobian, (ξu,h = U1ρl)
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ξt,h [kg/m3] Second coefficient of the pressure terms that arises from sub-
stituting the p dependence of h into the expression for the
Jacobian, (ξt,h = ρl)

ρ [kg/m3] Lubricant density
ρ̄0 [kg/m3] Characteristic density for the Reynolds number
ρl [kg/m3] Density of the non-cavitated, liquid lubricant
ρ0 [kg/m3] Density of the lubricant at ambient pressure
σji [Pa] Stress tensor in index notation

Σ [-] Slide-to-roll ratio
(

Σ = ua−ub
ua+ub

)
τji [Pa] Friction stress tensor in index notation
τavg [Pa] Average Couette shear stress
τmax [Pa] Set maximal value of the average Couette stress for the shear-

thinning model
φ [-] Generalized variable for explaining interpolation methods
Ω [1/s] Rotations per second of the disc, used to explain friction co-

efficient

∇ [-] 2 dimensional nabla operator

(
∇ =

(
∂
∂x1
∂
∂x2

))

Abbreviations

Abbreviation Description

EHL Elastohydrodynamic lubrication
CDS Central differencing scheme
CV Control volume
EA Elrod-Adams
FBNS Fischer-Burmeister-Newton-Schur
FFT Fast Fourier transform
FFT−1 Inverse fast fourier transform
FV Finite volume
HL Hydrodynamic lubrication
JFO model Jakobsson, Floberg and Olson model
LST Laser surface texturing
rps Rotations per second
SSR Slide-to-roll ratio
UDS Upwind differencing scheme
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Appendix

A. Detailed Flowcharts of the Algortihm

This section in the Appendix provides detailed flowcharts explaining the processes followed
in the script. Some processes are simplified as black boxes and shown with a filled black
rectangle with white text. The processes shown with a thicker outline mean that the
process is detailed in another following flowchart. Naturally, some simplifications have
been done to have understandable visualizations of the involved processes. The MATLAB
script developed by Erik Hansen and then extended by the author (Altay Kacan) contains
extensive comments that detail the working principles of the algorithms. These flowcharts
are intended to be supporting material for the MATLAB script and are meant to help
visualize how the various algorithms are interconnected. The interested reader is therefore
referred to the code for more information.
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Figure A.1.: Detailed flowchart of the main algorithm.
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Figure A.2.: Detailed flowchart of the secant algorithm.
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Figure A.3.: Detailed flowchart of the FBNS algorithm.
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