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Abstract
Explicitly considering the software architecture supports system evolution and
efficient assessments of quality attributes. In particular, Architecture-based Per-
formance Prediction (AbPP) assesses the performance for future scenarios (e.g.,
alternative workload, design, deployment) without expensive measurements for
all such alternatives.
However, accurate AbPP requires an up-to-date architectural Performance Model
(aPM) that is parameterized over factors impacting performance like input data
characteristics. Especially in agile development, keeping such a parametric aPM
consistent with software artifacts is challenging due to frequent evolutionary,
adaptive and usage-related changes. Existing approaches do not address the impact
of all aforementioned changes. Besides, extracting the complete aPM after each
impacting change causes unnecessary monitoring overhead and may overwrite
previous manual adjustments.
In this article, we present our Continuous Integration of architectural Performance
Model (CIPM) approach, which automatically updates the parametric aPM after
each evolutionary, adaptive or usage change. To reduce the monitoring overhead,
CIPM calibrates just the affected performance parameters (e.g., resource demand)
using adaptive monitoring. Moreover, a self-validation process in CIPM validates
the accuracy, manages the monitoring and recalibrates the inaccurate parts.
Consequently, CIPM will automatically keep the aPM up-to-date throughout the
development and operation, which enables AbPP for a proactive identification of
upcoming performance problems and for evaluating alternatives at low costs.
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CIPM is evaluated using three open-source systems, considering (1) the accuracy
of updated aPMs and associated AbPP and (2) the applicability of CIPM in terms
of the scalability and monitoring overhead. The findings confirmed the accuracy
of updated aPMs and the applicability for realistic cases.

Keywords: Software Architecture, Architecture-based Performance Prediction,
Consistency, Models Parametrization with Dependencies, Self-Validation, DevOps

1 Introduction
Most developers nowadays follow agile practices like DevOps (IEEE 2675, 2021).
However, performance assurance during agile software development faces problems that
we refer to by P . For example, the widely used application performance management
(Heger et al, 2017) suffers from the required cost (PCost): Assessing the impact of
design decisions on performance requires implementing them (Smith and Williams,
2003), setting up test environments and measurements for all design alternatives.

Instead of relying on measurements in real environments, software performance
engineering (Woodside et al, 2007; Smith and Williams, 2003) uses models to predict
the software performance and identify potential issues earlier (Balsamo et al, 2004). In
particular, architectural performance modeling approaches, which model the system’s
architecture level without implementation details, can be a good basis for cost-effective
performance prediction of architectural design decisions (Reussner et al, 2016). Besides,
architectural Performance Models (aPMs) increase the human understandability of the
system and consequently the productivity of software development (Olsson et al, 2017).

However, applying Architecture-based Performance Prediction (AbPP) in agile
development is a demanding task: modeling is a time-consuming process (PCost) and the
developers do not trust models since they are approximations and difficult to validate
(Woodside et al, 2007)(PUncertainty). Besides, accurate AbPP is challenging for various
reasons. First, aPMs can be outdated due to frequent software changes (PInconsistency).
Here, changes of source code at the Development time (Dev-time) can affect the accuracy
of aPMs. Similarly, the adaptive changes at Operation time (Ops-time), like changes
in system composition and deployment, also affect the aPMs. Second, the accuracy of
AbPP depends mainly on the estimated Performance Model Parameters (PMPs), such
as resource demand. These parameters can depend on influencing factors that may
vary over Ops-time, e.g., usage profile and execution environment. Considering these
factors during parameterizing PMPs allows AbPP for unseen states, e.g., AbPP for
unseen workloads. Ignoring the so-called parametric dependencies (Becker et al, 2009)
can lead to inaccurate AbPP for design alternatives (PInaccuracy). The parameterized
PMPs can also be falsified over time by the aforementioned software changes. Re-
estimating all PMPs frequently after each impacting change causes monitoring overhead
(PMonitoring−Overhead), because PMPs are mostly calibrated by dynamic analysis of
the whole system (Spinner et al, 2015). Keeping the aPMs and their parameterized
PMPs consistent with the running system, which is continuously evolving, requires
repeated manual effort (PCost).

Hence, the efficient maintenance of the consistency between the parameterized aPMs
and the corresponding software systems is an important aspect for more comprehensive
of the system’s architecture and proactive performance management with an AbPP.
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1.1 State of the Art
Some approaches suggested partial automation of the consistency maintenance between
software artifacts. These approaches can be divided into two categories (C1 and
C2). C1 includes approaches that reverse-engineer the current architecture based on
static analysis of source code (Hamdouni et al, 2010; Langhammer et al, 2016; Becker
et al, 2010), dynamic analysis (Brosig et al, 2011; van Hoorn, 2014; Walter et al,
2017) or both (Konersmann, 2018; Krogmann, 2012) . These approaches suffer from
shortcomings: First, Not all impacting changes at Dev-time or Ops-time are observed
and addressed (PInconsistency). Second, frequent extraction and calibration of aPMs
cause high monitoring overhead (PMonitoring−Overhead). Third, the possible manual
modifications of the extracted aPMs would be discarded and should be repeated by
the next extraction (PCost). Finally, there is uncertainty of aPMs’ accuracy since no
automatic validation is available (PUncertainty).

C2 includes approaches that maintain the consistency incrementally either at
Dev-time based on consistency rules (Langhammer, 2017; Ding and Medvidovic, 2001;
von Detten, 2012; Voelter et al, 2012; Jens and Daniel, 2007; Buckley et al, 2013) or
at Ops-time (Heinrich, 2020; Spinner et al, 2019; van Hoorn, 2014) based on dynamic
analysis. None of the C2 approaches succeed in updating aPMs according to both
evolution and adaption (PInconsistency). The accuracy of the resulting aPMs and its
AbPP is uncertain and unreliable since no statement on the accuracy is provided
(PUncertainty). This applies as well to approaches that estimate parametric dependencies
to increase the accuracy of AbPP, e.g., (Krogmann, 2012; Grohmann et al, 2019).

Fig. 1: Overview on CIPM approach and the main actors. Red boxes show the
problems CIPM addresses. The lower part of the figure abstracts some aspects of aPM
(architecture and deployment on the right side and the behavior on the left side) using
TeaStore example (von Kistowski et al, 2018) and annotations of Palladio Component
Model (PCM) (Reussner et al, 2016) 3



1.2 Approach and Contributions
In this article, we present the Continuous Integration of Performance Models (CIPM)
approach. This approach maintains the consistency between the aPM and software
artifacts (source code and measurements) (Mazkatli and Koziolek, 2018). As shown
in Figure 1, CIPM automatically updates aPMs according to observed Dev-time and
Ops-time changes (PInconsistency) to enable AbPP (PCost). CIPM also calibrates aPMs
with parametric dependencies (PInaccuracy) and reduces the required overhead for
updating and calibrating aPMs through adaptive instrumentation and monitoring
(PMonitoring−Overhead) (Mazkatli et al, 2020; Voneva et al, 2020). Moreover, CIPM
provides a statement on the accuracy of the AbPP and automatically recalibrates
inaccurate parts (PUncertainty) (Monschein et al, 2021). In this way, the resulting aPMs
allow an accurate AbPP and more comprehension of the system architecture. This
supports adopting proactive actions for upcoming performance issues and answering
what-if questions about design alternatives (PCost). The novel contributions of this
paper are

1. Automated consistency maintenance at Dev-time: The proposed commit-based
strategy automatically (section 5) updates the models (e.g., aPMs) that are
affected by the Continuous Integration (CI) of the source code (PInconsistency).
Contrary to other approaches, it uses regular Git commits as input and does not
require a specialized editor, which eases its integration with CI.

2. Automated adaptive instrumentation: We propose commit-based, model-based
instrumentation of changed parts in source code (section 6). Compared to existing
concepts, our instrumentation automatically detects where and how to instrument
the source code to reduce excessive monitoring overhead (PMonitoring−Overhead).

In addition, this paper presents the full CIPM approach, including contributions
that have been previously published in workshop and conference papers (Mazkatli et al,
2020; Monschein et al, 2021; Mazkatli and Koziolek, 2018; Voneva et al, 2020):

3. Incremental calibration: We propose a novel incremental calibration of the PMPs
based on adaptive monitoring (Mazkatli et al, 2020). Our calibration uses statistical
analysis to learn parametric dependencies. It also optimizes them based on a genetic
algorithm if necessary (Voneva et al, 2020). In comparison to existing approaches,
CIPM can be performed at Ops-time and addresses PCost, PMonitoring−Overhead

and PInaccuracy.
4. Automated consistency maintenance at Ops-time: The Ops-time calibration

observes Ops-time changes based on dynamic analysis and updates the aPMs
accordingly (Monschein et al, 2021) (section 9). In comparison to existing
approaches, CIPM automatically updates the aPMs including PMPs, system
composition and resource environment using adaptive monitoring (PInconsistency).

5. Self-validation of updated aPMs: The self-validation (section 8) estimates the
accuracy of AbPP compared with real measurements (PUncertainty). It manages
the adaptive monitoring by activating and deactivating monitoring probes based on
the validation results. This reduces the required overhead (PMonitoring−Overhead).
According to our knowledge, our approach is the first approach that enables
self-validation of aPMs and dynamic management of monitoring overhead.
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6. Model-based DevOps pipeline: The proposed pipeline (Mazkatli et al, 2020) inte-
grates and automates the CIPM activities to enable continuous AbPP during
DevOps. To implement it, we designed and implemented a transformation pipeline
(Monschein et al, 2021) based on (Heinrich, 2020) using the tee and join pipeline
architecture (Buschmann, 1998). In contrast to existing pipelines, our pipeline
maintains consistency during the whole DevOps life cycle enabling AbPP.

We constructed experiments to evaluate CIPM approach. We assessed the accuracy
of the updated models and examined the applicability of CIPM in terms of monitoring
overhead and scalability. In addition to the evaluation of novel contributions (1,2), we
evaluated the scalability of the approach as a new contribution (subsection 10.6).

This paper is organized as follows. We provide a background on the foundational
approaches used throughout the article in section 2. Then, we present a motivating
example in section 3. An overview on CIPM approach is in section 4. We describe the
novel contributions of the paper (the automatic consistency preservation at Dev-time
and the adaptive instrumentation) in section 5 and section 6, respectively. The remaining
contributions of CIPM, which calibrate, validate, and maintain the performance model’s
consistency to the measurements at Ops-time, are discussed in section 7, section 8, and
section 9. We present the evaluation results in section 10 and discuss related researches
in section 11. Finally, we summarize the article and discuss future work in section 12.

2 Background
This section presents background on the foundational approaches we use in the article.

2.1 Palladio Component Model
Palladio (Reussner et al, 2016) is a software architecture simulation approach that
analyses the software at the model level for performance assessment, e.g., detecting
bottlenecks and scalability problems. The Palladio AbPP supports proactive evaluation
of design decisions to avoid high costs resulting from wrong decisions. The Palladio
Component Model (PCM) consists of five sub-models: The Repository Model contains
a repository with components, interfaces and roles describing which component provides
or requires which interface. In addition, it includes the descriptions of the abstract
behavior of services provided by these components using Service Effect Specifications
(SEFFs). The System Model describes the composition of the software architecture
based on the components and interfaces specified in the repository. The Resource
Environment Model reflects the actual hardware environment, which is composed
of containers with processing resources (e.g., central processing unit (CPU)) and
links between them. The mapping from the system composition (System Model) to
the resources (Resource Environment Model) is described by the Allocation Model.
Finally, the Usage Model defines users’ behavior (how they interact with the system).

The SEFF (Becker et al, 2009) describes the behavior of a component service
on an abstract level using different control flow elements (see the left lower part of
Figure 1): internal actions (combinations of internal computations that do not include
calls to required services), external call actions (calls to required services), loops and
branch actions. SEFF loops and branch actions include at least one external call. The
remaining loops and branches are combined into internal actions for higher abstraction.
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To predict the performance measures (response times, CPU utilization and through-
put) the architects have to enrich the SEFFs with PMPs. Examples of PMPs are
resource demands (processing amount that internal action requests from a certain
active resource, such as a CPU or hard disk), the probability of selecting a branch,
the number of loop’s iterations and the arguments of external calls. Palladio employs
the stochastic expression (StoEx) to define PMPs (Koziolek, 2016) using random vari-
ables or empirical distributions. StoEx expresses calculations and comparisons using
parameter characterization (e.g., value, number of lists elements or size of file).

2.2 Co-evolution approach with Vitruvius
The co-evolution approach (Langhammer, 2017) keeps the architecture model and
the source code model consistent during the software system evolution consistent on
Vitruvius platform (Klare et al, 2021). This view-based framework encapsulates the
heterogeneous models of a system and the semantic relationships between them in
a Virtual Single Underlying Model (VSUM) to keep them consistent. For that, the
reactions language of Vitruvius describes the Consistency Preservation Rules (CPRs)
at the metamodel level. CPRs describe the consistency repair logic for each kind of
changes, i.e., which and how the artifacts of a metamodel must be changed to restore
the consistency after a change in a related metamodel has occurred. Here, Vitruvius
stores the mapping between corresponding model elements in a correspondence model
to reuse them during the consistency preservation process.

Using Vitruvius, the co-evolution approach keeps Java source code model (Heiden-
reich et al, 2010) for Java 6 (Joy et al, 2000) and PCM consistent. Langhammer define
CPRs that update the Repository Model of a PCM model and its behavior (SEFFs
without PMPs by completely reconstructing it) to respond to changes in the source
code. Similarly, changes in the PCM are propagated to the Java source code model.

2.3 iObserve
iObserve considers the adaptation and evolution of cloud-based systems as two interwo-
ven processes (Heinrich, 2020). The main idea is to use Ops-time observations to detect
changes during the operation and to reflect them by updating an architecture model
which is then applied to quality predictions. The PCM is used as the basis for the
quality predictions and Kieker (van Hoorn et al, 2012) is used for monitoring the sys-
tem during operation. iObserve collects monitoring data at Ops-time using Kieker and
applies necessary changes to the architecture model (PCM instance) which originated
at Dev-time. Adaptation and evolution are interwoven and shared models are used
throughout the application life-cycle to close the gap between Ops-time and Dev-time.
The mapping between elements in the architecture model and corresponding elements
in the source code is based on the runtime architecture correspondence model.

3 Running Example
The TeaStore is a web-based application implementing a shop for tea (von Kistowski
et al, 2018). The application is based on a distributed microservice architecture and is
designed to be suitable for the evaluation of performance modeling approaches.
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The TeaStore consists of six microservices: Registry, Image Provider, Auth, Persis-
tence, Recommender and WebUI. All microservices register themselves at the registry,
which makes them available for the individual components. This enables client-side
load balancing. Communication between the components is based on the widely used
representational state transfer (REST) standard (Filho and Ferreira, 2009).

TeaStore includes four different Recommender implementations that suggest related
products to the users. The developers implemented these versions along different devel-
opment iterations. These implementations have different performance characteristics.
Performance tests or monitoring can be used to discover these characteristics for the
current state, i.e., for the current implementation, current deployment, current envi-
ronment, current system composition and the current workload. However, predicting
the performance for another state (e.g., different deployment, workload, environment
...) is expensive and challenging because it requires setting up and performing several
tests for each implementation alternative. In our example, answering the following
questions is challenging based on application performance management (Heger et al,
2017): “Which implementation would perform better if the load or the deployment is
changed?” or “How well does the Recommender perform during yet unseen workload
scenarios?” An example for the latter question would be an upcoming offer of discounts,
where architects expect an increased number of customers and also a changed behavior
of customers in that each customer is expected to order more items. Another question
can be: “How does the current system composition look like? What would the perfor-
mance be if the system composition is changed?”. Changes in the system landscape
of TeaStore at Ops-time are common due to the load balancing, which allows replica-
tions and de-replications without great effort. Therefore, it is inevitable to constantly
update the associated architecture model to remain consistent with the system. An
up-to-date architecture model can answer questions regarding performance, scalability
and other quality aspects. Therefore, the goal of our approach is to provide an accurate
architecture model at any point in time and to keep the required manual effort and
monitoring overhead as low as possible.

4 Continuous Integration of architectural
Performance Model

CIPM can be considered as an extension of the iterative software development process
(e.g., agile or DevOps). Currently, the developers rely on an automated build, a test
automation, a Continuous Integration (CI) and a Continuous Delivery (CD). CIPM
aims to increase this level of automation in the development process by providing fast
feedback on the performance by enabling AbPP for design alternatives.

subsection 4.1 describes the models CIPM updates for executing AbPP, while
subsection 4.2 explains integrating CIPM processes into the DevOps pipeline.

4.1 Models to Keep Consistent
Executing AbPP using the Palladio simulator requires having an up-to-date PCM
containing the following sub-models: (A) Repository, (B) System, (C) Resource
Environment, (D) Allocation and (E) Usage Model (cf. subsection 2.1).
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To update the Repository Model (A), CIPM extends the Co-evolution approach
(Langhammer, 2017) to incrementally update the software structure using commit-based
consistency preservation rules, cf. section 5. For estimating the PMPs of the Repository
Model, CIPM uses adaptive instrumentation and monitoring to collect the required
data while the application is running cf. section 6. It is called adaptive instrumentation
because only selected parts of the source code are fine-grained instrumented. Besides, it
is adaptive monitoring, because the fine-grained monitoring can be deactivated after the
calibration to reduce the monitoring overhead. The Repository Model is calibrated at
Dev-time using test-data (cf. section 7) and refined at Ops-time using the monitoring
data from the production environment (cf. section 9). The incremental calibration
(cf. section 7) estimates the PMPs, such as the resource demand (cf. subsection 7.1)
considering the parametric dependencies (cf. subsection 7.2). If necessary, adaptive
optimization of PMPs can be activated to estimate the possible complex dependencies
(cf. subsection 7.3). The processes mentioned in this paragraph keep the Repository
Model (A) of aPM up-to-date at both Dev-time and Ops-time.

Regarding System Model (B), we provide semi-automatic extraction at Dev-time
based on static analysis of source code and automatic updates at Ops-time based
on dynamic analysis of monitoring data. More detail is found in subsection 5.4 and
subsection 9.3. CIPM updates the Resource Environment Model (C) based on the
dynamic analysis too (cf. subsection 9.2). To update the Allocation Model (D) and
Usage Model (E), CIPM integrates the dynamic analyses of the iObserve approach
(Heinrich, 2020) (cf. subsection 9.4 and subsection 9.5).

Consequently, CIPM continuously updates the aPM parts (A-E) to keep them
consistent with the running system. To ensure the accuracy of the AbPP using the
updated aPM, CIPM provides a self-validation process (cf. section 8).The following
subsection 4.2 describes how we integrate CIPM processes within the DevOps pipeline.

4.2 Model-based DevOps Pipeline
DevOps practices aim to close the gap between development and operations by inte-
grating them into one reliable process (IEEE 2675, 2021). We extend these practices to
integrate and automate the CIPM approach in a Model-based DevOps (MbDevOps)
pipeline. This enables AbPP during DevOps-oriented development as we illustrate later.

The MbDevOps pipeline (shown in Figure 2) starts on the “development” side
with the Continuous Integration (CI) process (Meyer, 2014) that merges the source
code changes of the developers. CI triggers the first process, CI-based update of
software models (1) (section 5). This process updates the source code model in the
VSUM of Vitruvius (1.1) (subsection 5.1). Then, the predefined CPRs in Vitruvius
respond to the changes in source code by updating the Repository Model (1.2)
(subsection 5.2). Similarly, CPRs update the Instrumentation Model (IM) (1.3) with new
probes corresponding to the recently updated parts of Repository Model to calibrate
them later (subsection 5.3). Besides, the first process extracts the System Model semi-
automatically (1.4) (subsection 5.4). The second process, the adaptive instrumentation
(2), instruments the changed parts of source code using the instrumentation points
from IM (section 6). The following process is the performance testing (3) using the
instrumented source code. It generates the necessary measurements for calibration.
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Fig. 2: Model-based DevOps pipeline
The pipeline divides the measures into 80% training and 20% validation set (Xu and
Goodacre, 2018). Using the training set, the incremental calibration (4) estimate the
PMPs with the parametric dependencies and enriches the Repository Model with
them (section 7). After the calibration, the pipeline starts the self-validation (5) with the
test data, which uses the validation set to evaluate the calibration accuracy. If the model
is deemed accurate, developers can use the resulting aPM to answer the performance
questions using AbPP (6). If not, they can either change the test configuration to
recalibrate aPM again or wait for the Ops-time calibration. Answering the what-if
performance questions using AbPP instead of the test-based performance prediction
reduces both the effort and cost of performing this prediction before the operation.

The “operation” side of Figure 2 starts on the continuous deployment (7) in the
production environment. The Monitoring (8) in the production environment generates
the required run-time measurements. The measurements in a customizable time interval
are grouped and sent to the subsequent processes: self-validation (9) and Ops-time
calibration (10). The self-validation (9) is an essential process to improve the accuracy
of the aPM. It compares the monitoring data and monitored simulation results to
validate the estimated aPM. The result of self-validation is used as input to the Ops-
time calibration and to manage the monitoring overhead. If the aPM is not accurate
enough, the Ops-time calibration process (section 7) recalibrates the inaccurate parts
based on the feedback of the self-validation, e.g., updating PMPs of Repository
Model, Resource Environment Model, System Model, Allocation Model or Usage
Model (section 9). Moreover, the self-validation deactivates the fine-grained monitoring
of the accurate parts. To keep in mind, self-validation (9) and calibration at Ops-time
(10) are triggered frequently according to customizable trigger time to respond to the
possible Ops-time changes and improve aPM accuracy by the new monitoring data.

The resulting model can be used to perform model-based analyses (11), e.g., model-
based auto-scaling. Besides, up-to-date descriptive aPM can support the development
planning (12) by increasing the understandability of the current version, modeling and
evaluating design alternatives and answering what-if questions.

Sections (5-9) describe the new processes marked as contributions in the Figure 2.
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5 CI-based Update of Software Models
This section describes updating the models affected by the changes in source code by (A)
the static analyses of the source code and (B) the predefined Consistency Preservation
Rules (CPRs) within Vitruvius platform. This process updates four models:

• The Source Code Model in the VSUM of Vitruvius based on (A) (subsection 5.1).
• The Repository Model in the VSUM of Vitruvius based on (B) ( subsection 5.2).
• The Instrumentation Model in the VSUM of Vitruvius by (B) (subsection 5.3).
• The System Model based on (A) (subsection 5.4).

The following subsections describe the update process of the models above in detail.

5.1 CI-based Update of the Source Code Model
The goal of this update process is to extract all source code changes from a commit
and to apply them on the source code model in the VSUM of the Vitruvius platform.
As a result, developing the source code within the Vitruvius platform is not required,
i.e., developers can use their own external tools for developing the source code and
managing the different versions. CIPM updates the aPM solely based on CI commits.

To achieve the update goal, all files in the repository with the changes of the recent
commit are parsed (cf. Figure 3). The result of the parsing must be an EMF model to
be comparable with the corresponding model in the VSUM. This allows the extraction
of EMF changes which can be applied on the source code model in the VSUM.

PCM

IM

CI 
Repository 

Commit

Java Parser

CPRs

CPRs

Recent Java
Model

 Java Model

ProcesscontrolData Model VSUM

VSUM

synchronise

Components
Detector 

update

Processcontrol

state-based propagation

Fig. 3: Commit-based Update of the aPM
Our implementation considers the Java programming language versioned in Git

repositories. For the Java models, we build upon the existing Java Model Parser and
Printer (JaMoPP) (Heidenreich et al, 2010). We extended the metamodel of JaMoPP
to enable the support of Java versions 7-15. Our extensions expand the metamodel with
new features, such as the diamond operator, lambda expressions, or modules. Moreover,
we implemented our own printer and parser. The parser implementation is based on the
Eclipse Java Development Tools (JDT) (Vogel et al, 2009-2020) from which Abstract
Syntax Trees (ASTs) and binding information are retrieved. The ASTs are converted to
EMF model instances while the bindings support the resolution of references between
model instances introduced by, e.g., imports. In contrast, the printer outputs model
instances into valid Java code. More detail on our extension is on (Armbruster, 2022) 1.

1The source code is available on https://github.com/PalladioSimulator/
Palladio-Supporting-EclipseJavaDevelopmentTools
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As a result, we use the extended JaMoPP to parse the files after a commit. In order
to retrieve complete code models, the source code can be built before parsing it to
obtain and include libraries the source code depends on. Additionally, we implemented
a trivial recovery, which creates model elements for missing dependencies and which
can also be used when no build is performed to gain complete models. After parsing the
source code, EMF Compare (Langer, 2019) extracts the EMF changes by comparing
the parsed model with the source code model in the VSUM state-based. In its first
step, EMF Compare matches all elements which are considered equal. We use a
custom language-specific matching algorithm (Kolovos et al, 2009): We combine the
default matching algorithm of EMF Compare with a hierarchical Java-specific matching
algorithm that we extended from SPLevo (Klatt, 2014) to be compatible with Java 7-
15. Thus, the Java-specific properties and structures are considered to provide accurate
matching. After the elements have been matched, the default algorithms of EMF
Compare calculate the differences and resulting changes. These changes are sorted and
applied on the Java model within the VSUM. This triggers the CPRs that update the
related models as described in the following subsections.

5.2 CI-based Update of the Repository Model
The goal of this process is to update the Repository Model according to the changes
that are transformed into the source code model in the previous step (see subsection 5.1).
It is mainly based on the CPRs defined by the Co-evolution approach (Langhammer,
2017) that we adapted for our applications.The adjustments in the CPRs are mainly
related to (1) technology-specific detection of components and interfaces, (2) update
and deletion CPRs and (3) SEFF reconstruction.

Regarding (1), for microservice-based applications, the component detection aims
to find the microservices to generate a component for each microservice. Currently,
our VSUM includes the source code model without any models of the configuration
files which rises the difficulty of the model-based detection of the microservices within
the VSUM or CPRs. Therefore, we added a pre-processing step after the parsing of
the last commit to enhance the source code model with additional information on the
components based on the file structures of the code and configuration files. For instance,
in our implementation, a microservice is identified if a set of classes is complemented
by a Docker and build file (e.g., a pom.xml file for Maven). If there is only a build file
without a Docker file, the set of classes is considered as a component candidate, and the
developer is asked to decide whether the candidate is a component or not. While the
CPRs are focused on microservices, we allow for the discovery of regular components
based on the packages in which a set of classes resides. When the developer decides
that a component candidate is a component, they also determine what the component
represents: a microservice or a regular component. This decision is also stored and
reused in subsequent propagations to eliminate the need to ask the developer again.
After all components have been identified, a Java module model is created for each
component. As a result, our CPRs map the Java module to a corresponding PCM
component and consequentially generate a component for each created module.

Moreover, we defined the CPRs that detect the interfaces of microservices. Typically,
microservices define a Representational State Transfer (REST) API as their interface.
Thus, we implemented CPRs for the Jakarta RESTful Web Services (JAX-RS, formerly
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Java API for RESTful Web Services) and Jakarta Servlet (formerly Java Servlet)
specification (Jakarta EE Platform Team, 2019) because these technologies are used in
our evaluation. In the context of JAX-RS, classes that are annotated with @Path or
@ApplicationPath constitute a REST API (Contributors to Jakarta RESTful Web
Services, 2020) so that an interface is created for such annotated classes. HttpServlets
as a specialization of Servlet provide another possibility to implement a REST API
by overriding HTTP-specific methods in subclasses of HttpServlet (Jakarta Servlet
Team, 2020). Consequently, classes that inherit from HttpServlet are also modeled as
interfaces. Regarding regular components, we use their public classes and interfaces for
modeling their interfaces.

As a further step, the components and interfaces need to be connected. Therefore,
if a PCM interface is created for a class, a connecting role between the interface
and component containing the class is established by the component providing an
implementation for the interface. To connect components with their required interfaces,
the CPRs look at imported types and types of fields within a component. If such a
type corresponds to an interface from outside the component, the component requires
the interface, and a new connection is established.

Regarding (2), we also implemented CPRs for the deletion and change of elements,
as the previously described CPRs are intended to detect new elements in the code and
add them to the PCM. On one hand, if an element in the source code model is removed,
corresponding PCM elements are also removed. For example, if a set of classes relating
to a component is removed, the component, its provided and required interfaces, and
all interfaces defined by classes contained in the set are deleted. On the other hand,
CPRs for changes consider renames (and rename corresponding elements) or changes
in methods with a corresponding SEFF so that the SEFF is reconstructed.

Regarding (3), we extend the CPRs that respond to method body changes (e.g.,
adding/updating statements) by reconstructing the SEFF using a reverse engineering
tool (Krogmann, 2012). Our extension extracts the mapping between code statements
and their related SEFF actions and stores it in Vitruvius correspondence model.
For example, the mapping between internal actions and their associated statements is
extracted and stored in Vitruvius’s correspondence model.

CPRs continuously update the mapping between the source code and the aPM,
which is necessary for the consistency preservation process in Vitruvius. Besides, we
use the mapping for two processes in the context of CIPM: the adaptive instrumentation
(cf. section 6) and the Dev-time System Model extraction, cf. subsection 5.4.

5.3 CI-based Update of the Instrumentation Model
For this step, we defined CPRs that react to changes in SEFF by providing IM with the
corresponding probes (e.g., service probe, internal action probe, loop probe or branch
probe). (cf. Figure 3). The defined CPRs generate probes referring to SEFF actions
whose corresponding source code statements have changed in the most recent commit.
However, the architect and the self-validation process can also add deactivated probes
to IM, which the self-validation can activate if their related PMPs are not accurate
enough. The adaptive instrumentation uses collected probes in the IM and the mappings
in the correspondence model to generate the instrumented source code, see section 6.
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5.4 Dev-time Extraction of System Model
This section presents a semi-automatic process for extracting the System Model. This
process can reduce the required time and effort of creating the System Model manually.
This helps in applying AbPP at the Dev-time and supporting the design decision at
this stage (e.g., proactive model-based assessment of the deployment plan). The process
is composed of two main steps: extracting the so-called Service-Call-Graph (SCG) that
represents the calls between services and extracting the system composition using SCG.

In the following, we introduce the structure of the SCG in subsubsection 5.4.1. After
that, subsubsection 5.4.2 describes the SCG extraction at Dev-time. The extraction of
System Model from the SCG, follows in subsubsection 5.4.3.

5.4.1 Service-Call-Graph (SCG)

Conceptually, an SCG describes “calls-to” relationships between services. We also
consider the resource container (computer) on which the respective services are executed.
This can be displayed as a directed graph where the pair of a service and resource
container is a node. The edge indicates that a service on a particular container calls a
service on a certain container. Figure 4 shows a truncated version of the SCG from the
TeaStore case, which was introduced in Sec. 3 and visualized in Figure 1.

Persistence.persistOrder

Auth.placeOrder

WebUIServerHost

WebUI.confirmOrder

ApplicationServerHost

Registry.placeOrder

Registry.persistOrder
DataBaseServerHost

Persistence.persistItems

host

service

call

Fig. 4: SCG extracted from an excerpt of TeaStore example

5.4.2 SCG Extraction at Dev-time

The extraction of SCG begins with a bytecode-level analysis that indicates the invo-
cation dependencies between Java methods (Vallée-Rai et al, 2010). Based on the
mapping between the source code and the Repository Model that has been stored
in Vitruvius (subsection 5.2), the method call graph of the services and the related
components are transformed into an SCG. In some cases, e.g., inheritance or condi-
tions, it is uncertain which call paths will be chosen at Ops-time. Therefore, extracting
SCG at Dev-time considers all possible execution semantics. At Dev-time, it is also
unknown where the components of the services will be hosted. Therefore, we exclude
this information, which causes so-called conflicts that the user needs to resolve, cf.
subsubsection 5.4.3.

5.4.3 System Model Extraction from SCG

The extraction of System Model starts from modeling the boundary interfaces that
the system provides (provided role), which the user determines (architect or developer).
In our running example, the provided role is the CartActions interface, which exposes
services for purchasing products and managing orders.
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For each provided role, the Repository Model is searched for components provided
it. If more than one component provide the same interface, the user is asked to select
the correct one. Then, instances of the selected components called assembly contexts
are created and linked to the provided roles using delegations. In our example, WebUI
component provides the CartActions interface. Therefore, an instance of the WebUI
component is created and added to System Model, cf. the lower part side of Figure 1.

To complete the System Model, the required roles of the added assembly contexts
must be satisfied. For that, the SCG is traversed to detect all services called by the
services of provided roles (considering SCG in Figure 4, the service confirmOrder calls
PlaceOrder). Like the previous step, the components that provide the called services
are detected based on Repository Model. If more than one component provides the
same required role, the user should resolve the so-called connection conflict and select
the right component (This is not the case for Registry component that provides
PlaceOrder). In the next step, an assembly context for each selected component is
created and added if no one is available in System Model. Otherwise, the user must
resolve the so-called assembly context conflict by deciding whether to use the available
assembly context or to add a new one (in our example, an instance of Registry
component is added and no conflict at this stage occurs). Afterwards, the required roles
are connected with the related provided roles. Recursively, each required role of the
recently added assembly contexts is satisfied by adding the required component instance
or by connecting to a previously added one, until all required roles are satisfied. In our
example, the required roles of Registry are satisfied by adding instances of components
that provide them (e.g., Auth and Persistence). Subsequently, the required role of
Auth is satisfied, since Auth.placeOrder calls Registry.persistOrder as shown in
Figure 4. In this case, an assembly context conflict occurs because an instance of the
Registry component is already available. As shown in Figure 1, the user can resolve
this conflict by using the public instance of Registry instead of creating a new one.

6 Adaptive Instrumentation
The goal is to automatically instrument parts of the source code that have been
changed and that thus may affect the validity of related PMPs. In our running
example, if Auth.PlaceOrder service (section 3) is newly added, then the adaptive
instrumentation injects monitoring points (probes) to provide measurements for cali-
brating its PMPs: the resource demands of prepareOrder and finalizeOrder, the
number of the loop execution and the parameters of Rigistry.persistOrder and
Rigistry.persistOrderItem external calls. If the source code of the remaining ser-
vices has not been changed, the old estimations of their PMPs remain valid and they
are not instrumented fine-grained. To automate the adaptive instrumentation, we
define the measurements metamodel (Figure 5), which consists of monitoring record
types corresponding to the probe types defined in IM, cf. subsection 5.3:

• ServiceContextRecord monitors the input parameters properties (e.g., type,
value, number of list elements, etc.) to be considered as candidates for paramet-
ric dependency investigation (parameters), the caller of this service execution
(callerExecutionID) to build SCG and calibrate the SEFF external call
(externalCallID), the allocation context that captures where the component
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InternalActionRecordInternalActionRecord
ServiceContextRecord

PCMContextRecordPCMContextRecord

SessionContextRecordSessionContextRecord

+ sessionID: String

+ exitTime: long

+ requestedResourceID: String

+ callerExecutionID: String

+ parameters: String

+ serviceID: String

+ exitTime: long

+ entryTime: long

+ internalActionID: String

LoopActionRecordLoopActionRecord

+ loopIterationCount: long

InternalActionRecordInternalActionRecord

+ executedBranchID: String

+ branchID: String

+ loopID: String

+ entryTime: long

+ externalCallID: String

HostContextRecordHostContextRecord

+ hostID: String

+ hostName: String

ResourceUtilizationRecordResourceUtilizationRecord

+ resourceID: String

+ timestamp: long

+ utilization: double

+ returnValue: String

Fig. 5: The Measurements Metamodel

offering this service is deployed (hostID, hostName) and the service execution
time to be used as a reference by the self-validation (entryTime, exitTime).

• InternalActionRecord monitors the execution time of internal actions
(entryTime, exitTime) to estimate their resource demands.

• ResourceUtilizationRecord monitors the utilization of a resource
(resourceID) in a time stamp (timestamp).

• LoopActionRecord monitors the number of loop iterations
(loopIterationCount).

• BranchActionRecord monitors the selected branch (executedBranchID).
For implementing our specific monitoring records, we used the instrumentation record
language (Jung et al, 2013) of Kieker (van Hoorn et al, 2012). Then, we implemented
a model-based instrumentation to generate the instrumented source code as a Vitru-
vius view. Here, the instrumentation code is responsible for taking the measurements
and creating the monitoring records. The Vitruvius view combines the information
from two models: the source code model and the IM. The instrumentation starts with
generating the instrumentation code for each probe in the IM according to the probe
type. Then, it injects the instrumentation code into a copy of the source code model.
To detect the correct places for the instrumentation codes, the instrumentation process
uses the mapping stored in Vitruvius correspondence model (subsection 5.2), i.e., the
relation between probes and SEFF elements as well as the relation between SEFF ele-
ments and their source code statements. After the injection of the instrumentation code
finishes, the instrumented source code model is ready to be printed and deployed in the
test/production environment to provide measurements for the calibration (section 7).

7 Incremental Calibration of PMPs
Based on the measurements resulting from the adaptive instrumentation described in
the previous section, the PMPs potentially can be calibrated to enable AbPP.
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Applying this process at the Dev-time before the deployment in the production
environment allows AbPP for design alternatives instead of the expensive test-based
prediction. The calibration of Repository Model at Dev-time is similar to that at the
Ops-time. The only difference is that at Dev-time we use measurements from the test
environment instead of the production environment. Therefore, the Dev-time calibration
step can be skipped. In this case, the PMPs will be calibrated for the first time at the
Ops-time using measurements from the production environment as section 9 explains.

The incremental calibration involves calibrating new or updated SEFF actions
as well as recalibrating inaccurate ones. As stated in subsection 2.1, PMPs are the
parameters of SEFF actions, including resource demand of an internal action, the
iterations’ number of a SEFF loop, the branch transitions of a SEFF branch, and the
arguments and return value of a SEFF external call. In subsection 7.1 we propose an
incremental estimation of resource demands based on adaptive monitoring. We then
identify the parametric dependencies to estimate all PMPs in relation to the impacting
factors, see subsection 7.2. Finally, we describe the adaptive optimization of the found
parametric dependencies using the genetic algorithm in subsection 7.3.

7.1 Incremental Estimation of Resource Demands
The incremental calibration of the internal actions with Resource Demand (RD) is
challenging because we aim to estimate the RD of internal actions incrementally
without high monitoring overhead. The existing Resource Demand Estimation (RDE)
approaches either estimate the RDs at the service level (Spinner et al, 2015) or require
expensive fine-grained monitoring (Brosig et al, 2009; Krogmann et al, 2010). Therefore,
we propose in the following paragraph a lightweight RDE process that is based on
adaptive instrumentation and monitoring to allow for an incremental RDE.

Our incremental RDE extends the approach Brosig et al (2009) to estimate the RDs
in the case of adaptive monitoring, i.e., monitoring the changed parts of source code.

Basis: Non-incremental resource demand estimation:
Brosig et al approximate the RDs with measured response times in the case of low
resource utilization, typically 20%. Otherwise, they estimate the RD of internal action
i for resource r (Di,r) based on service demand law shown in Equation 1.

Di,r =
Ui,r

Ci/T
=

Ui,r · T
Ci

(Menasceet al, 2004) (1)

Here, Ui,r is the average utilization of resource r due to executing internal action i
and Ci is the total number of times that internal action i is executed during a fixed
observation period of length T . Brosig et al. measure the Ci and estimate Ui,r by
using the weighted response time ratios of the total resource utilization, which is not
applicable in our adaptive case where not all internal actions are monitored. Therefore,
we extend their approach to estimate Ui,r and as a result Di,r based on the available
measurements and the old RDs estimations.

Incremental estimation of resource demands:
Our approach distinguishes internal actions into two categories based on whether they
have been modified in the source code commit preceding the incremental calibration.
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We denote internal actions whose corresponding code regions have been modified in
the preceding source code commit as Monitored Internal Actions (MIAs), – these code
regions are instrumented (section 6) and monitored to produce measurements for RDE.
We denote internal actions whose corresponding code regions have not been changed
in the preceding source code commit as Not Monitored Internal Actions (NMIAs), –
monitoring data for these code regions has already been observed in a previous iteration
and, consequently, we have already an estimation of their RDs.

Based on the fact that the total utilization Ur is measurable and the utilization due
to executing NMIAs can be estimated based on the old estimations of RDs, we can
estimate Ur,MIAs and estimate the RD of each internal action i ∈ MIAs accordingly
as it will be explained in the following paragraphs.

To estimate (Ur,NMIAs), we estimate which internal actions nmi ∈ NMIAs are
processed in this interval and how many times nmi are called (Cnmi). For that, we
analyze the service call records (see section 6) to determine which services are called
in an observation period T and which parameters are passed. Then we traverse the
service’s control flows (i.e. their SEFFs) to get NMIAs and predict their RD using
the input parameters. This requires evaluating branches and loops of the control flow
to decide which branch transition we have to follow and how many times we have to
handle the inner control flow of loops. Our calibration adjusts the new or outdated
branches and loops using the monitoring data (as will be described in sections 7.2.2 and
7.2.3) before starting this incremental RDE. Thus, we make sure that we can traverse
the SEFFs control flow. Consequently, we can sum up the predicted RDs for all calls of
the NMIAs and divide the result by T to estimate the Ur,NMIAs based on Equation 2:

Ur,NMIAs =

∑
nmi∈NMIAs

∑
k≤Cnmi

Dnmik,r

T
(2)

Accordingly, we estimate the utilization due to executing the MIAs (Ur,MIAs) using
the measured Ur and the estimated Ur,NMIAs as shown in Equation 3:

Ur,MIAs = Ur − Ur,NMIAs (3)
Hence, we can estimate the utilization Ui,r due to executing each internal action
i ∈ MIAs using the weighted response time ratios as shown in Equation 4, where
Ri and Ci are the average response time of i and its throughput. Rj is the average
response time of the internal action j ∈ MIAs and Cj is its throughput in T .

Ui,r = Ur,MIAs.
Ri · Ci∑

j∈MIAs

Rj · Cj
(4)

Using Ui,r we can estimate the resource demand for i (Di,r) based on Equation 1. If
the host has multiple processors, our approach uses the average of the utilizations as Ur.

Note that we assume that each internal action is dominated by a single resource. If
this is not the case, we follow the solution of Brosig et al (2009) to measure processing
times of individual execution fragments, so that the measured times of these fragments
are dominated by a single resource. To differ between the CPU demands and disk
demands, we suggest detecting the disk-based services in the first activity of CIPM
using specific notation or based on the used libraries.
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7.2 Identification of Parametric Dependencies
This process estimates the PMPs in relation to the impacting input data and their
properties, e.g., the number of elements in a list or the size of a file. CIPM begins by esti-
mating the dependencies of loops (subsubsection 7.2.2), branches (subsubsection 7.2.3),
and arguments of external calls (subsubsection 7.2.4) because the incremental RDE
requires traversing the SEFF control flow to estimate the utilization of NMIAs. Then
CIPM estimates the parametric dependencies for the RDs (subsubsection 7.2.1). CIPM
learns relations between PMPs and input data using decision trees for branches and
regression analysis for remaining PMPs. Based on the cross-validation results of PMPs,
an adaptive optimization by the genetic algorithm can be started (subsection 7.3).

7.2.1 Resource demands

To learn the parametric dependency between the resource demand of an internal action
i and input parameters P , we first estimate the resource demand on resource r for
each combination of the input parameters (Di,r(P )) using the proposed incremental
RDE as described in section 7.1.

Second, we adjust the estimated RDs of an internal action using the processing rate
of the resource, where it is executed, to extract the resource demand independently of
the resource’ processing rate Di(p).

Third, if the input parameters include enumerations, we perform additional analysis
to test the relation between RDs and enumeration values using the decision tree. If a
relation is found, we build a data set for each enumeration value. Otherwise, we create
one data set for each internal action that includes the estimated RDs and their related
numeric parameters. The goal is to find potential significant relations by the regression
analysis of Equation 5:

Di(P ) = (a ∗ p0 + b ∗ p1 + · · ·+ z ∗ pn + a1 ∗ p20 + b1 ∗ p21 + · · ·+ z1 ∗ p2n+

a2 ∗ p30 + b2 ∗ p31 + · · ·+ z2 ∗ p3n + a3 ∗
√

P0 + b3 ∗
√
p1 + · · ·+ z3 ∗

√
pn + C) (5)

p0, p1.. pn are the numeric input parameters and the numeric attributes of objects
that are input parameters.

a... z, a1... z1, a2... z2 and a3... z3 are the weights of the input parameters and their
transformations using quadratic, cubic and square root functions. C is a constant value.

Fourth, we perform the regression analysis to find the weights of the significant
relations and the constant C.

Fifth, we replace the constant value C with a stochastic expression that describes the
empirical distribution of C value instead of the mean value delivered by the regression
analysis. This step is particularly important when no relations to the input parameters
are found. In that case, the distribution function will represent the RD of internal action
better than a constant value. To achieve that, we iterate on the resulting equation
that includes the significant parameters and their weights to recalculate the value of C
for each RD value and their relevant parameters. Then, we build a distribution that
represents all measured values and their frequency.

Finally, we build the stochastic expression of RD that may include the input
parameters and the distribution of C.
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7.2.2 Loop iterations count

To estimate the relationship between the number of loop iterations and input parameters,
we use loop records that log the iterations’ count and refer to the enclusing service
calls. Then, we combine the monitored loop iterations with the integer input parameter
the service call into one data set. Non-integer parameters are filtered out, and their
integer properties are considered (e.g., number of list elements or file size). We also
add quadratic and cubic transformations of parameters to test additional relationships.
Regression analysis is used to estimate the weights of influencing parameters.

As the loop iteration count is an integer value, the output value must also be an
integer. Approximations or distributions of integer values are used for the resulting
non-integer weights, e.g., 1.6 is expressed as distribution that takes the value 1 in 40%
of cases and the value 2 in 60% of cases.

If cross-validation finds no relationship to the input parameters, we replace the
constant value of the resulting stochastic expression with an integer distribution
function, similar to the fifth step of parameterized RDE in subsubsection 7.2.1.

7.2.3 Branch transitions

To estimate parameterized branch transitions, we utilize pre-defined branch monitoring
records that log chosen branch transitions and the enclosing service call reference. We
then build a dataset for each path, including the input parameters of the service call.
We use a decision tree algorithm to identify potential relationships between the input
parameters and the chosen path, and filter out any non-significant parameters based
on cross-validation. If a relationship is found, we can transform the decision tree into a
boolean stochastic expression for each branch transition, allowing us to calculate the
probability of selecting a specific transition for a given set of input parameters. However,
if no relationship is found, we can still estimate the probability by constructing a
boolean distribution.

7.2.4 External call arguments

In this step, we predict the parameters of an external call by examining their relation to
the input parameters of the calling service and the data flow, which refers to the return
value of the previous internal or external actions. We first determine if each parameter
is a constant value, identical to one of the candidates, or dependent on them. To identify
the dependencies, we use linear regression for numeric parameters, decision tree for
boolean/enumeration parameters, and discrete distribution for other parameter types.

7.3 Adaptive Optimization of Parametric Dependencies
The Genetic Algorithm (GA) is a heuristic algorithm used to optimize solutions for
an optimization problem (Kramer, 2017). In the context of adaptive optimization of
parametric dependencies, GA is used to improve the accuracy of inaccurate PMPs and
reduce the complexity of the resulting StoEx. The optimization process is triggered
only for the PMPs with high cross-validation errors. The GA evolves initial solutions
represented as genes (previous StoEx estimates), aiming to output StoEx with cross-
validation error no greater than the original. We represent the genes as mathematical
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functions in an Abstract Syntax Tree (AST), similar to Krogmann (2012). Then, the
evolutionary loop of GA generates new candidate solutions by evolving the genes using
crossover and mutation operators. The crossover operator randomly swaps two subtrees
belonging to two trees, while the mutation operator alters some genes to ensure diversity
in the new population, e.g., altering a subtree or some values. The fitness function
evaluates the resulting solutions based on two criteria: prediction accuracy using MSE
and complexity of the mathematical expression using the depth of the AST. Best
solutions are selected as parents for the next generation, and the process continues until
a termination condition is met. The termination condition can be an optimal solution,
defined as the best fitness being lower than a given minimum threshold, exceeding
a maximum execution time, or evolving a fixed number of generations. Finally, the
resulting AST is converted to a StoEx and transferred to Repository Model. The
adaptive optimization of inaccurate PMPs is the last step of the incremental calibration
and is followed by the self-validation process that informs the user about the accuracy
of the calibrated aPM, cf. section 8.

8 Self-Validation
The goal of Self-Validation is to continuously evaluate the accuracy of the performance
predictions related to the updated aPM. To determine the prediction accuracy of a
model, a baseline is required. CIPM uses measurements from the real system as a
reference, which are available from the monitoring, both from test environments at
Dev-time and from the production environment at Ops-time.

By comparing the simulation data of the models with the monitoring data, it can
be assessed how well the models represent the actually observed system in its current
state. In case of high deviations, it is possible to intervene. The simulation results are
grouped into so-called measuring points, i.e., the points at which measurements were
taken. For example, a typical measuring point is the response time of a service. To be
able to compare the simulation results with the monitoring data, we have to map the
monitoring data to the corresponding measuring points. This assignment is based on
the mapping between the Repository Model and the source code. After the monitoring
data has been mapped to the measuring points of the simulation results, we obtain two
distributions for each measuring point. These are compared and different metrics are
calculated to determine how close the simulation results are to the actual measured
values. For the comparison, we use the Wasserstein distance (Santambrogio, 2015),
Kolmogorov–Smirnov test (Dodge, 2008) and conventional statistical measures (e.g.,
average and quartiles). More details on the used metrics are in subsubsection 10.2.2.
These metrics give the user feedback on the accuracy of aPM. If the model is considered
accurate, developers can trust it and use it to answer What-if performance questions.
Otherwise, the self-validation determines the inaccurate parts to be recalibrated. The
re-calibration can access the calculated metrics and use them to reduce the deviation
and improve the accuracy of the resulting aPM. If the self-validation is executed in test
environment and the re-calibration fails by increasing the accuracy, then the tester may
change the test configuration to get more representative measurements. Another option
is to wait for the Ops-time calibration, where measurements based on the real usage of
the system can be continuously monitored until the accuracy degree is accepted.
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The resulting metrics are also used to adjust the granularity of the monitoring: The
monitoring for certain services can be deactivated If a predefined accuracy threshold
is met. This help in reducing the monitoring overhead. However, the self-validation
can activate the fine-grained monitoring for some parts if their accuracy degree is
not enough. If the inaccurate parts are not instrumented, new probes for them are
added to IM to recalibrate these parts after the next deployment. So the monitoring
management balances the accuracy of aPM and the required monitoring overhead.

9 Ops-time Calibration
The goal of Ops-time Calibration is to update the aPM according to monitoring data
of the production environment. For that, we use a transformations pipeline similar to
iObserve (Heinrich, 2016). To realize the transformation pipeline we used a tee and
join pipeline architecture (Buschmann, 1998), based on parts of iObserve.

The transformation pipeline (shown in Figure 2) consists of the following transforma-
tions: TPreprocess for pre-processing monitoring data, TResourceEnvironment for updat-
ing Resource Environment Model, TSystemComposition for updating System Model,
TAllocation for updating Allocation Model, TRepository for updating Repository
Model, TUsage for updating Usage Model, and TFinalize for validating aPM and man-
aging the monitoring data. The following subsections detail these transformations.

9.1 Pre-processing of Ops-time Calibration
The TPreprocess (the first step in the transformation pipeline) filters the monitoring
data and converts them into suitable data structures. One example is the construction
of service call traces, which can be used to analyze the structure of the system
composition. Furthermore, the monitoring data is divided into two sets. One set is
used as input for the following transformations (training set) and the second set is
used for the validations of the architecture model (validation set). The reason for this
split is that the validation is much more meaningful when it is carried out on data that
the transformations have never seen.

9.2 Ops-time Updating of Resource Environment
After the monitoring data has been pre-processed, the current Ops-time environment is
analyzed by TResourceEnvironment. The Ops-time information (monitoring) is written
to the so-called Runtime Environment Model (REM). The REM contains details about
the hosts and the connections between them. We defined CPR based on the Vitruvius
platform (Klare et al, 2021) to keep our REM consistent with the resource environment
in the corresponding aPM. The advantages and the idea behind the REM are twofold:
REM ensures the separation of concerns principle (Dev-time vs. Ops-time concerns)
and it allows to establish a mapping between the Ops-time environment and the
elements in the architecture model via the correspondence mechanism of Vitruvius.

9.3 Ops-time Updating of System Model
The process of extracting a System Model at Ops-time is similar to Dev-time, and it
requires a SCG. The next two paragraphs explain how we extract SCG from monitoring
data and how we use it to update the System Model.

21



SCG Extraction at Ops-time
To build trees of service calls, TTrace analyses the monitoring data that refer directly
to the related services in Repository Model. The mapping to Repository Model is
woven into the source code by the instrumentation (cf. Figure 5 and section 6). As a
result, The service call traces can easily reflect which services call each other, which is
the information required for the construction of the SCG.

In this context, it is crucial that we know explicitly which methods have been called,
so the information quality is much higher compared to SCG extracted at Dev-time from
the static code analysis (subsubsection 5.4.2). Moreover, we can attach the information
about the host to the SCG nodes, because it is included in the monitoring data.

Even service call traces that extend beyond system boundaries are recorded by the
monitoring. When a call leaves a system, the necessary information is attached so that
the traces can be merged. For our approach, we have implemented this exemplary for
HTTP requests. A header is added to each request, which indicates by which service
call trace it was triggered. The monitoring data is finally bundled and sent to a backend,
which can reassemble the traces based on this information (Monschein, 2020).

Updating the System Model
The TSystemComposition updates the System Model based on the extracted SCG and
the methodology in subsubsection 5.4.3. The only difference is that no conflict happens
since the SCG at Ops-time is more accurate and includes the host information.

9.4 Ops-time Updating of Allocation Model
After the extraction of the SCG, the system deployment is investigated in parallel to
updating the System Model. The TAllocation recognizes deployments and undeployment
events because the SCG also contains information about the hosts (subsection 9.3). As
a result, TAllocation can add/ delete allocation context to/ from Allocation Model.
This supports TSystemComposition with the required information about the current
allocation of the system components. More detail is found in (Monschein, 2020).

9.5 Ops-time Updating of Repository Model
The TRepository calibrates the inaccurate PMPs that are revealed by the self-validation
using the monitoring data. The calibration process is similar to the process at Dev-time
(section 7) and includes the validation results to optimize the PMPs. The simple
optimization is based on the regression analysis. It adjusts the regressions’ parameters
based on the validation results to minimize the error between the measured response
time and monitored one. If more optimization is required, the optimization using the
genetic algorithm can also be triggered ( subsection 7.3). In parallel, TUsage analyses
the user behavior and updates the Usage Model based on iObserve (Heinrich, 2020).

9.6 Finalization of Ops-time Calibration
The final step of Ops-time Calibration, TFinalize, executes the self-validation (section 8).
Based on the self-validation results and configurable criteria, the granularity of the
monitoring is adjusted, i.e., fine-grained monitoring can be activated/ deactivated.
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In our example, the measured response times of confirmOrder service are compared
with those obtained by simulating the architecture model. If the deviation matches
defined criteria (e.g., the distance of the means is less than 5ms), the fine-grained
monitoring for this service is deactivated. Finally, the validation results are entered as
input into the next execution of the Ops-time calibration.

10 Evaluation
In our evaluation, we adopt the Goal-Question-Metrics approach of van Solingen et al
(2002): We define the evaluation goals and drive the Evaluation Questions EQs that
can check whether the described goals are reached or not, cf. subsection 10.1. In
subsection 10.2, we define metrics that can answer the EQs. Then, we performed goal-
oriented experiments to calculate the metrics and answer the EQs, cf. subsection 10.3.

The results of our evaluation are described in three subsections that are related to
the evaluation’s goals: the accuracy of AbPP using the updated aPMs in subsection 10.4,
the required monitoring overhead in subsection 10.5 and the scalability of the approach
in subsection 10.6. Finally, we discuss the threats of validity in subsection 10.7.
10.1 Evaluation Goals and Questions
The main goal of the evaluation is to evaluate the applicability of the approach in the
mean of accuracy (Goal 1 (G1)), monitoring overhead (G2) and scalability (G3): CIPM
should provide accurate models (G1.1) and allows accurate AbPP (G1.2) without
high monitoring overhead (G2). Moreover, CIPM has to avoid performance issues at
Ops-time by quickly identifying and resolving inconsistencies (G3).

In the following, we drive the EQs that check the aforementioned goals:
• G1.1: Accuracy of the incrementally updated models:

– EQ-1.1: How accurately does CIPM update the Repository Model and its
related models within VSUM after a git commit?

– EQ-1.2: Can we aggregate commits and propagate them together without
affecting the accuracy? If yes, users can also choose less frequent execution of
CIPM, e.g. in nightly builds.

– EQ-1.3: How accurately is the extraction of the System Model at Dev-time?
– EQ-1.4: How accurately does CIPM update the Resource Environment
Model, the Allocation Model and the System Model at Ops-time when
applying software adaption scenarios?

– EQ-1.5: How accurately does the adaptive instrumentation instrument the
source code based on the collected instrumentation points in IM?

• G1.2: Accuracy of AbPP using the updated aPMs:
– EQ-1.6: How accurate is the AbPP using the incrementally updated aPM?
– EQ-1.7: How correctly can CIPM identify the parametric dependencies and

to what extent can the estimation of them improve the accuracy of the AbPP?
– EQ-1.8: What impact do Ops-time changes have on AbPP accuracy?

• G2: Monitoring Overhead
– EQ-2.1: To what extent can the adaptive instrumentation reduce monitoring

overhead?
– EQ-2.2: To what extent does the adaptive monitoring at Ops-time help to

reduce the monitoring overhead?
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• G3: Scalability of the transformation pipeline:
– EQ-3.1: How does the transformation pipeline of CIPM scale with an

increasing number of monitoring records?

10.2 Evaluation Metrics
The metrics used in the evaluation can be divided into the following three categories.

10.2.1 Model Conformity
The Jaccard similarity coefficient (JC) (Eckey et al, 2002) calculates the similarity of
two sets (A and B) as follows:

JC(A,B) =
|A ∩B|
|A ∪B|

(6)

The resulting JC ranges between 0 to 1. The higher the value is, the more similar
the two sets are. The JC is 1 if the sets are identical.

As models are sets of elements, we can also apply this concept to models. Therefore,
we implemented matching algorithms that determine the identical elements (intersec-
tion) of two models A and B based on different factors: the types of elements, some
properties, e.g., the name of named elements, some references as the implementing
interface of a SEFF, and the model structure, for example, the position of SEFF actions.
The matched elements will be considered as the intersection of the models (A ∩ B)
whereas the models’ union (A ∪B) consists of the matched and unmatched elements.

We implemented the JC to evaluate the equality of System Models, Allocation
Models, and Resource Environment Models2 (Monschein, 2020, p. 69).

In the case of JaMoPP Models and Repository Models, we implemented matching
algorithms based on EMF Compare (Langer, 2019) respecting the models’ structures
(see subsection 5.1 for JaMoPP and (Armbruster, 2021, p. 37) for more detail).

10.2.2 Distribution Comparison
To compare distributions, we use three types of metrics: conventional statistical mea-
sures (Upton and Cook, 2008), non-parametric tests (Kolmogorov–Smirnov test (KS
test)) (Sheskin, 2007) and distance functions (Wasserstein) (Mémoli, 2011). These
metrics can be used to compare the distributions of the monitored response times
(reality) with the simulated response times (prediction).

KS test (Dodge, 2008) calculates the maximum distance between the Cumulative
Distribution Functions (CDFs). The minimum is 0 (if both distributions are perfectly
identical) and the closer to 1, the more different are the distributions under observation.
KS test is sensitive to the shifts and shapes of distributions, which may produce
undesirable false positive alerts (high values) (Huyen, 2022). For example, KS test may
result in high value, if two distributions with the same mean have different shapes.
Therefore, we use the KS test in combination with other metrics during our evaluation.

The Wasserstein metric (Mémoli, 2011) measures the distance between distributions,
describing the effort to transform one into the other. An advantage of this metric is that,
unlike the KS test, it is insensitive to the distributions’ shapes. A drawback, however, is
that a result is an absolute number that cannot be easily interpreted without a baseline.

2For more detail, see https://github.com/CIPM-tools/CIPM-Pipeline/wiki/Model-Conformity.
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Statistics metrics (e.g., mean or quartiles) are also calculated for both distributions.
Using these three commonly known metrics, it is possible to get an overview of the

two distributions and their dissimilarities in a simple and quick way.

10.2.3 F-Score

The F-Score is a measure to assess the quality of a binary classification (Derczynski,
2016). Its calculation (Goutte and Gaussier, 2005) is based on the number of correctly
classified entities (True Positives (TP) if they belong to the given class and True
Negatives (TN) if they do not belong to the class) and incorrectly classified entities
(False Positives (FP) if they are assigned to the class and do not belong to the class
and False Negatives (FN) if they are not assigned to the class and belong to the class):

F − Score =
(1 + β2) ∗ TP

(1 + β2) ∗ TP + β2 ∗ FN + FP
(7)

We use the F1-Score (F-Score with β = 1) to evaluate the update of the IM. Thus,
we count SEFFs and changed SEFF actions with a corresponding instrumentation point
as TPs, SEFFs and changed SEFF actions without a corresponding instrumentation
point as FNs, and instrumentation points without a corresponding SEFF or SEFF
action as FPs. Based on these numbers, we can calculate the F1-Score.

10.3 Experiment Setup
The evaluation of our approach is based on three cases: TeaStore (von Kistowski
et al, 2018) that is introduced in section 3, Common Component Modeling Example
(CoCoME) (Heinrich et al, 2015), and the real-world case "TEAMMATES" 3.

CoCoME is a trading system for supermarkets (Heinrich et al, 2015). It supports
several processes such as scanning products at a cash desk or processing sales using a
credit card. We used a cloud-based implementation of CoCoME, where the enterprise
server and the database are running in the cloud.

TEAMMATES is a cloud-based tool to manage students’ feedback with a Web-based
frontend and a Java-based backend, on which we focus in the evaluation.

In this article, we present five experiments that focus on evaluating the following
points: the accuracy of aPMs after changes at Dev-time (E1, E2) and after changes at
Ops-time (E4), the accuracy of AbPP that is achieved by self-validation (E3, E4) and
after adaptions at Ops-time (E4), the required overhead (E4) and the scalability (E5).
We exclude from this paper the experiments that evaluate the accuracy of AbPP (A)
after incremental calibrations of aPM (Mazkatli et al, 2020) and (B) after optimization
of the PMPs (Voneva et al, 2020). The main reason for excluding these experiments is
to avoid producing too long paper, since the incremental calibration based on adaptive
monitoring (A) is also evaluated partly in our experiments (E3, E4). Regarding (B),
the optimization using genetic algorithm will not be triggered in our cases because
they include no complex dependencies. Anyway, we sum up the results of the excluded
experiments when we present the results of the following experiments 4.

3See https://github.com/TEAMMATES/teammates
4More information on source Code, replication packages and experiments is on https://sdqweb.ipd.kit.

edu/wiki/CIPM
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Experiment 1 (E1)
The goal of E1 is to evaluate the commit-based update of the aPM and to answer EQ-1.1
and EQ-1.2. To achieve this goal, we used two cases: TeaStore and TEAMMATES.

E1 on TeaStore. we propagate the changes between version 1.1 and 1.3.1 of the
TeaStore. The commits from version 1.1 to version 1.3.1 can be split into four intervals
(I) [1.1, 1.2], (II) [1.2, 1.2.1], (III) [1.2.1, 1.3], and (IV) [1.3, 1.3.1]. The first interval
consists of 50 commits, of which 27 commits affect 144 Java files with overall 9553
added and 7908 removed lines. In contrast, interval (II) contains 20 commits, of which
12 commits affect 5 Java files with 141 added lines and one removed line. Three Java
files (123 lines in total) were added. In interval (III), seven of 11 commits affect 4 Java
files with overall 121 added and 134 removed lines while 9 Java files with overall 215
added and 227 removed lines are affected by 12 of 100 commits in interval (IV).

The initial commit includes a lot of architectural-relevant changes. By propagating
this commit, an incremental reverse engineering of version 1.1 of the code is performed
(IRE). Considering interval (I), it contains five architectural-relevant changes and no
changes in the dependencies. The successive commits in interval (II), on which we
concentrate in the following, include three architectural-relevant changes: (A) in the
Auth service (A1) and WebUI service (A2), a new REST endpoint for obtaining the
readiness has been added whereby both implementations are identical, (B) a method
corresponding to a SEFF was extended by one statement, and (C), in a supporting
service, a servlet has been added which provides functions to control and access log
files. Besides, there are no changes in the dependencies. Both intervals (III) and (IV)
contain no architectural-relevant changes and no changes in the dependencies.

Before the changes are propagated, we use the changes between an empty repository
and version 1.1 as an initial commit to integrate it into Vitruvius. Then, we perform
the commit-based update of the models by using the commits that transform the
version 1.1 into the version 1.2. We also execute the adaptive instrumentation after
the update process and repeat the complete procedure for every interval. For every
commit, components are detected by the microservice-based strategy, and a build of
the TeaStore is performed. Only if the build succeeds, the commit is propagated.

In the next step, we evaluate whether the models of the VSUM are correctly
updated based on the changes in a commit. This applies to the (1) source code model
(SCM), (2) the Repository Model (RepM), and (3) the IM. Afterwards, we evaluate
whether the instrumented source code is correctly generated (4). Finally, we evaluate
the reduction of monitoring overhead resulting by the adaptive instrumentation (5).

Regarding (1), an updated source code model in the VSUM shall be in the same
state as if the complete code model of a commit would have been integrated into the
VSUM. Therefore, the source code of the last commit is parsed to be used as a reference
for evaluating the updated one in the VSUM. We compare the updated source code
model with the generated reference (SCM’) by calculating the JC metric.

To evaluate the automatically updated Repository Model (2), we compare it with
a manually updated Repository Model (RepM ′) used as a reference. For example, in
the manual update for (A1) and (A2), a new interface with one method is added for
each new REST endpoint. Furthermore, the WebUI and Auth components provide their
interface and contain a new SEFF for the method. The added statement by change
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(B) is included in an internal action and requires no adjustment of the corresponding
SEFF. As a consequence of (C), the servlet is added as a new interface provided by
the supporting service. For more evaluation of CPRs updating Repository Model, we
also propagate the version 1.3.1 as an initial commit to compare the resulting model
with a manual available one (Monschein, 2020).

The expected changes in the SEFFs should cause the generation of new probes in
the IM (3). Thus, we calculate the F-Score for the IM.

Regarding (4), we first check that no compilation errors occur because of the
instrumentation. Then, we check whether the instrumentation statements related to
the IM probes are correctly injected into the source code (EQ-1.5).

Regarding (5), we check how much the adaptive instrumentation can reduce the
monitoring overhead by calculating the ratio of adaptively instrumented probes to all
probes required to calibrate the whole aPM (EQ-2.1). We also calculate the ratio of
the fine-grained adaptively instrumented probes to all possible fine-grained probes.

To answer EQ-1.2, for each interval, we propagate all commits individually and then
the commits between two Versions (V) as one commit, e.g., the 20 commits between
version 1.2 and 1.2.1 are propagated as a single commit. Then, we compare the resulting
Repository Model (RepM∑

V ) to the result of the propagation of multiple commits
incrementally (RepMVinc) and a manually updated Repository Model (RepM ′) using
JC. The resulting source code model and IM are checked as in (1) and (3).

E1 on TEAMMATES. Similar to TeaStore, we repeated E1 with the real git history
of TEAMMATES. The evaluation covers 17.859 commits that impact 1.428 files. The
considered commits are propagated in five steps, i.e., the commits are integrated and
propagated as five commits to show the results in a simple way, since EQ-1.2. evaluates
the accuracy of integrating multiple commits. Therefore, we propagate the commit
64842 (TM-0) as the initial commit, and 48b67 (TM-1), 83f51 (TM-2), f33d0 (TM-3),
and ce446 (TM-4) as the following commits. While TM-0 spans 17832 commits and
adds 114468 code lines in 709 Java files, TM-1 spans 3 commits with 154 added and
129 removed lines in 122 Java files. Between TM-0 and TM-1, the maintainer role
was introduced. From TM-1 to TM-2, public fields were made private including the
addition of corresponding get and/ or set methods and an adaptation of the direct
field accesses to the new methods. TM-2 spans 2 commits with 3249 added and 2978
removed lines in 227 Java files. With TM-3, 2 commits affected 65 Java files adding 502
lines and removing 340 lines. Static variables were made non-static while some classes
were converted to singletons. In the last commit TM-4, JavaDoc was updated and more
classes were converted to singletons. It spans 20 commits adding 3457 and removing
1293 lines in 147 Java files 5. Like TeaStore, we repeat the E1 on TEAMMATES to
answer EQ-1.1, EQ-1.5 and EQ-2.1. However, different to TeaStore, the components
of TEAMMATES are detected by the package-based strategy, and missing dependencies
in the source code model are recovered instead of building TEAMMATES.

Experiment 2 (E2)
In this experiment, we evaluate the extraction of a System Model at Dev-time that is
explained in subsection 5.4. The input is the source code of TeaStore and CoCoME.

5see https://sdqweb.ipd.kit.edu/wiki/CIPM_Evaluation_Details
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Then, the resulting models are compared to reference models that represent the actual
system compositions. Based on the results of this experiment, EQ-1.3 can be answered.

Experiment 3 (E3)
This experiment aims to evaluate the accuracy of Ops-time calibration (G1).E3 starts
with monitoring the application under examination and execution of a load test.
Meanwhile, metrics about the monitoring are collected and the monitoring data is
used as input for the transformation pipeline. The monitoring data is then compared
with the simulation results of the derived models. Finally, metrics are calculated to
quantify the deviation between the monitoring data and the simulation results. Here,
monitoring data from a parallel and independent run were used for comparison, and the
experiment ran 10 times for 180 minutes to eliminate possible outliers. This experiment
was performed for CoCoME and the results allow initial answers to EQ-1.6.

Experiment 4 (E4)
This experiment extends E3. It evaluates the accuracy of aPM (G1.1), the accuracy of
AbPP (G1.2) and the required monitoring overhead (G2) after simulated adaptions. The
foundation is a number of predefined change scenarios, such as replications, allocations,
workload changes and system composition changes. The Scenario Generator selects
several change scenarios and for each of the selected scenarios, a reference model is
generated. Since the Scenario Generator knows the executed change, it also knows how
the reference model must look like. Besides the list of changes, another output is the
Change Orchestration component, which applies the selected changes at Ops-time. The
modified system is observed and the arising monitoring data is used as input for the
transformation pipeline. Finally, the resulting models are compared to the reference
models and deviations are detected by applying the JC. We focus on the System Model,
the Resource Environment Model and the Allocation Model (EQ-1.4).

The Usage Model is excluded from this paper, as Heinrich addressed it extensively.
For evaluating the accuracy of AbPP, the monitoring data is compared to simulation

results of the derived models to estimate how well the models are parameterized at
Ops-time and how well they represent the performance characteristics of the system.
Here, we used the metrics introduced in subsubsection 10.2.2 to answer EQ-1.6, EQ-1.7
and EQ-1.8. To quantify the accuracy of AbPP, the following procedure is used:

1. Execution of E4, storage of the derived models and the related monitoring data.
2. Examination of the models at different points in time based on simulations.
3. Comparison of the simulation results with the monitoring data in two different

ways: (a) Comparison with monitoring data collected after the construction of the
model under consideration (forward prediction). This allows us to make statements
about how well the derived model can be used to predict future scenarios. (b)
Comparison with monitoring data collected chronologically before the construction
of the model under consideration (backward prediction). In this way, it can be
determined how well the model is able to reproduce previously observed situations.

It must be taken into account that in future/previous points in time other system
compositions, runtime environments or user behavior are present (due to the simulated
changes). Therefore, the considered model must be adapted so that it correctly reflects
the system at the respective point in time.
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E4 was executed 10 times, each time with different changes. Every 5 minutes the
next change is executed. In total, E4 is carried out for 180 minutes. To ensure that
the forward prediction and the backward prediction are meaningful, we eliminate the
warm-up phase and only consider the time period between the 30 and the 150 minute,
to avoid side effects that falsify the measurement, e.g., just in time compiling.

Within E4, we only consider the TeaStore case and focused on the service “con-
firmOrder”. To increase the complexity of the service, it was slightly modified to call
service of Recommender: After the order has been processed within the “confirmOrder”
service, the Recommender component is re-trained. As a result, the response time of
the “confirmOrder” service increases with a growing number of orders in the database,
since the execution time of the Recommender depends on the number of orders and the
applied recommending strategy. Thus, we want to ensure that our approach recognizes
parametric dependencies (EQ-1.7) and the system composition (EQ-1.4).

In E4, we measure the monitoring overhead and data generated in the worst case,
where the whole source code is fine-grained instrumented. This allows us to evaluate
whether self-validation can reduce monitoring overhead, answering EQ-2.2.

Experiment 5 (E5)
In this experiment, synthetic monitoring data is generated and used as input for the
individual transformations within the transformation pipeline. First, we identify the
parameters that influence the execution times and, subsequently, we generate the
monitoring data in such a way, that it produces worst-case execution times. By means
of this experiment, scalability questions can be answered (EQ-3.1).

10.4 Accuracy
In this section, we present the results of evaluating the accuracy of updated aPM in
subsubsection 10.4.1 and the related AbPP in subsubsection 10.4.2.

10.4.1 Model Accuracy

In this section, we present the evaluation of models’ accuracy after changes at Dev-time
(E1, E2) and changes at Ops-time (E4).

Table 1 shows an excerpt of the evaluation results for the updated models of
TeaStore in experiment E1. The excerpt includes the initial commits of each interval
and commits whose changes contain architectural-relevant changes. The resulting
RepMs are distinguished according to the version, interval and commit number.

Additionally, Table 2 displays the results for TEAMMATES. The results in both
tables reveal that the calculated JC for the Java models is one, i.e., the source code
models in the VSUM are correctly updated. The comparison between the manually
and automatically updated Repository Model results in JC values of one. This means
the Repository Model is also correctly updated. Considering the IM, the evaluation
shows that the right probes are generated, i.e., the F-Score is one. As a consequence
for answering EQ-1.1, these results indicate that the source code model, Repository
Model and IM were correctly updated. The results for the remaining commits of
TeaStore are identical. We obtained JC values of one for all Java model and repository
model comparisons and F-Scores of one for all IMs.
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Table 1: Excerpt of E1 results by TeaStore case.
JC(SCM,SCM ′) Resulting RepM JC(RepM,RepM ′) F (IM, IM ′)

I 1 RepRepMI.3 1 1
1 RepMI.18 1 1

II

1 RepM1.2.1 1 1
1 RepMII.10 1 1
1 RepMII.11 1 1
1 RepMII.13 1 1
1 RepMII.18 1 1

III 1 RepM1.3 1 1
IV 1 RepM1.3.1 1 1

Execution time of IRE = 36.6 min
Update time average = 4.24 min

Instrumentation time average = 0.6 min

Both tables 1 and 2 contain the execution time for the initial commit and the
average execution time for the model update and instrumentation. Between TeaStore
and TEAMMATES, there is a difference in the execution time of the IRE: it takes
27.21 minutes longer in case of TeaStore because the TeaStore code is built before it is
parsed. This results in a higher number of source code model elements compared to
the recovered elements in TEAMMATES which need to be propagated.

Table 2: E1 results by TEAMMATES case.
JC(SCM,SCM ′) Resulting RepM JC(RepM,RepM ′) F (IM, IM ′)

II 1 RepMII 1 1
III 1 RepMIII 1 1
IV 1 RepMIV 1 1
V 1 RepMV 1 1

Execution time of IRE = 9.39 min
Update time average = 2.05 min

Instrumentation time average = 0.45 min

By comparing the integrated version 1.2 and 1.3.1 with the manually created
Repository Model, we discovered that both models contain components for the
microservices and the interactions between them. However, the resulting Repository
Models include more technical details that are not present in the manually created one.

Additionally, we check the instrumented source code generated during E1 to ensure
that it includes all probes that were represented in IM. We find that the source code is
correctly instrumented and has no compilation error, which answers EQ-1.5.

The evaluation results for the propagation of the changes as one commit for
answering EQ-1.2 are visualized in Table 3. It shows that all models in the VSUM are
correctly updated. This indicates there is no difference for the resulting Repository
Model if multiple commits are propagated or if the commits are propagated as one
commit. As a result, developers can choose to propagate, for example, every or specific
commits. Considering the IM, there is a difference because the IM after the single
propagation contains all newly generated probes at once while the IM is continuously
updated during the propagation of multiple commits.

Next, based on in experiment E2, the accuracy of the System Model extraction at
Dev-time is investigated. The key findings of the experiment for the selected cases are
shown in Table 4. It can be seen that in both cases an identical model to the reference
model is built, as the JC equals to one. Furthermore, the table shows the number
of elements in the final model and the number of conflicts that had to be resolved
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Table 3: Evaluation results for propagating TeasStore versions’ commits as
one, comparing resulting Repository Model (RepM∑

V ) to manual reference
(RepM ′) and one updated incrementally (RepMVinc

).
Versions (V) Version 1.1 Version 1.2.1 Version 1.3 Version 1.3.1

JC(SCM,SCM ′) 1.0 1.0 1.0 1.0
JC(RepM∑

V , RepM ′) 1.0 1.0 1.0 1.0
JC(RepM∑

V , RepMVinc
) 1.0 1.0 1.0 1.0

F (IM, IM ′) 1.0 1.0 1.0 1.0

Table 4: Results for deriving the System Model at Dev-time
Open Source System JC Model Elements Conflicts Number

CoCoME 1.0 16 2
TeaStore 1.0 18 5

manually during the process. According to these results, EQ-1.3 can be answered, as
the system compositions were reflected correctly in the extracted System Models.

Finally, Table 5 shows the results of experiment E4 and lists the minimal JC for all
considered change scenarios at Ops-time. The results show that three model types are
correctly inferred in all cases. Consequently, it can be concluded for EQ-1.4 that the

Table 5: Model accuracy when simulating adaption scenarios

Change Type Minimum Jaccard Index
System Allocation Resource Environment

(De-)/Allocation 1.0 1.0 1.0
(De-)/Replication 1.0 1.0 1.0

Migration 1.0 1.0 1.0
System Composition 1.0 1.0 1.0

Workload 1.0 1.0 1.0

change scenarios were recognized and correctly propagated to the models.

Summary: We conclude that CIPM can update the software models automati-
cally and accurately. This applies to the following models: source code (JaMoPP),
instrumented source code, Repository Model, System Model, Allocation Model and
Resource Environment Model. Exceptional case was the update of System Model
and Repository Model at the Dev-time, where the update process is not fully-
automatically: the user can be asked to confirm the detected components of the
Repository Model or to decide whether to create or reuse available component’s
instances for the System Model.

10.4.2 Prediction Accuracy

In this section, we present the results regarding the accuracy of the AbPP, broken
down according to the two cases, CoCoME and TeaStore.

CoCoME (E3):
Figure 6 (a) shows the Wasserstein distance between the simulations of the derived
models and the monitoring data for the response times of the “bookSale” service, which
is triggered when a purchase is initiated.

These results provide initial answers to EQ-1.6. It can be seen that the Wasserstein
distance decreases very rapidly at the beginning and then settles below a value of 20
with minor fluctuations. This means that the accuracy of the simulations increases
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Fig. 6: Overview of the metrics over time for the CoCoME case (comparing the
distributions which result from the analysis and the monitoring)

over time and consequently the accuracy of the derived PCM models increases too.
This observation conforms to the chart on the KS test (Figure 6 (b)). In both graphs
the metrics decrease over time and then stabilize at a low level. The fluctuations in the
graphs are caused by the fact that the simulations are stochastic processes. In other
words, it is very unlikely that two simulations produce identical results, even if the
used models are equal. Consequently, the accuracy of the models increases over time
and then remains at a constant level. The improvement in accuracy over time can be
explained by two factors: first, the pipeline receives more and more data over time and
thus information about the performance characteristics of the application. Second, the
repository transformation learns over time from the monitoring data (see section 9).

TeaStore (E4):
Figure 7 shows the median of the Wasserstein distance over time for the forward and
backward prediction, regarding the response times of the “confirmOrder” service. In
addition, Table 6 summarizes the accuracy metrics over time.
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Fig. 7: Median Wasserstein distance for forward and backward prediction of TeaStore’s
confirmOrder service response times using models derived at a given point in time.

The Wasserstein distance of the forward prediction is still very high at the beginning.
The main reason for this is that the amount of data is not yet sufficient to estimate
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the behavior in general. After a short time, however, it decreases significantly and gets
closer to the values of the backward prediction. Thereafter, the value settles at a level
close to the backward prediction. Consequently, the derived models are very well suited
to make predictions about the performance characteristics of the application.

The results also imply that the parametric dependency of the response time on
the number of orders in the database is detected. The advantage of parameterized
models has been studied in detail in our previous work (Mazkatli et al, 2020). The
experiments compared the accuracy of AbPP using an aPM that CIPM parameterized
with dependencies to AbPP using a non-parameterized one. The results show that
AbPP using parameterized aPM is obviously more accurate in case of predicting the
performance for unseen state (Mazkatli et al, 2020) (EQ-1.7). Additionally, the PMPs
in E4 are well calibrated without an optimization since TeaStore includes no non-linear
parametric dependencies. Therefore, the optimization of the genetic algorithm is not
triggered in this scenario. However, the incremental optimization of PMPs is evaluated
in a previous work in more detail (Voneva et al, 2020). The results show that the
optimization can improve the accuracy of AbPP for unseen state till five times if the
PMPs have non-linear dependencies.

Table 6: Aggregated metrics of the forward and backward prediction over time
Metric Q1 Q2 Q3 Mean Std Dev

Forward Prediction
Wasserstein 44.732 47.179 52.718 70.991 68.524

KS test 0.125 0.143 0.168 0.199 0.131
Mean distance 13.198 25.965 41.924 61.573 91.482

Backward Prediction
Wasserstein 32.622 35.011 41.246 37.268 7.618

KS test 0.098 0.112 0.121 0.114 0.031
Mean distance 15.560 26.981 34.373 23.329 9.053

The observations can be confirmed using additional metrics (Table 6). The interpre-
tation of the mean distance depends on the average response time of the “confirmOrder”
service, which amounted to approximately 1000 ms in the experiment. Besides, it is
important to note that the average and standard deviation of the forward prediction
metrics are strongly affected by the high values at the beginning of the experiment.
Based on these findings, EQ-1.6 and EQ-1.8 can be answered: all metrics show that
the derived models represent the already observed behavior very well and can also be
used to predict the performance for scenarios that have not been observed so far.

Summary: The Experiment E3 confirmed that the accuracy of the aPMs at Ops-time
is increasing over time by learning from more monitoring data. Then, the accuracy
stabilizes at a good level: In case of CoCoME the maximum KS test was 0.075947
and the maximum Wasserstein distance amounted to 12.384184. Similar results are
obtained by applying E3 to TeaStore (Monschein, 2020, 86). Applying E4 on TeaStore
also confirmed the accuracy of aPMs despite of the simulated Ops-time changes.

Additional experiments on TeaStore and CoCoME in Mazkatli et al (2020) studied
the incremental calibration based on adaptive instrumentation in more detail and also
confirmed the accuracy of AbPP (EQ-1.6). The experiments resulted in KS test values
not exceeding on average 0.16 and Wasserstein distances lower than 39.6 on average.
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10.5 Monitoring Overhead
First, we calculated the reduced monitoring overhead that the adaptive instrumentation
is able to achieve according to the last evaluation step of experiment E1 (5). According to
E1’s results shown in Table 7, the adaptive instrumentation can reduce the monitoring
overhead for all probes between 46.0% and 69% (EQ-2.1). On the level of the fine-
grained probes, the reduction of the monitoring overhead is between 72.8% and 100%.
In Mazkatli et al (2020), we obtained similar results in evaluating the reduction of
monitoring overhead in the case of adaptive instrumentation. Even if the developer
decides to instrument the whole source code, the monitoring overhead will be reduced
because only the probes for parts have been changed after the last commit are activated.

Table 7: Reduction of the monitoring overhead caused by the adaptive instrumenta-
tion according to experiment E1

Case Commit The reduction ratio of probes The reduction ratio of fine-grained probes

T
ea

st
or

e

I.3 60.5% 85.2%
I.14 67.7% 95.5%
II.10 67.8% 96.3%
II.11 67.8% 96.3%
II.13 67.8% 96.3%
II.18 68.1% 97.6%
III 69% 100%
IV 69% 100%

T
ea

m
m

at
e TM-1 55.4% 88.9%

TM-2 46.0% 72.8%
TM-3 62.8% 99.5%
TM-4 60.7% 96.4%

Second, the overall monitoring overhead is analyzed and observed over time in the
worst case, where the source code is fully instrumented. Every 5 minutes, the sum
of the monitoring overhead from the last 5 minutes is calculated. When considering
the entire overhead, it is important to note that parts of the monitoring that are
independent of the granularity of the monitoring, such as observing resource utilization.
Figure 8 shows the results obtained by forming the median from multiple experiment
executions. The dashed line in the graph highlights the point in time when the first
switch from fine-grained monitoring to coarse-grained monitoring happened.
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Fig. 8: Median of the monitoring overhead over time for five minute intervals
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Based on the graph above, an answer to EQ-2.2 can be given. After the self-
validation process begins to find individual services that are well calibrated, the
granularity of monitoring is reduced since some fine-grained probes will be deactivated.
This happens after about 20 minutes. At the peak, a monitoring overhead of approx.
1.362s (i.e. 0,454% of 5 minutes) arises and then decreases to an average of 0.822s as
the experiment progresses. This corresponds to a reduction of 39.65%.

Summary: Together with the evaluation results of the model and the prediction
accuracy, it can be concluded that the self-validation successfully identified services that
are well represented in the model and then reduced the granularity of the monitoring
accordingly. Ultimately, this leads to a significant reduction of the monitoring overhead,
in addition to the reduction can be achieved by the adaptive instrumentation.

10.6 Scalability
We address EQ-3.1 by examining the scalability properties of all sub-transformations
in the pipeline separately in the upcoming sections.

10.6.1 Repository Model Transformation

First of all, the scalability of the repository model transformation has been analyzed.
The transformation can roughly be divided into two parts. In the first part, the
validation results are analyzed and the results of this analysis are used as input for the
second step which executes the optimizations. The analysis of the validation results is
irrelevant regarding the execution times. The results are iterated only once and even if
the simulations are configured with excessive simulation times and measuring points,
the execution time is negligible within the overall context. Therefore, we will only
consider the second part in the following scalability analysis.

In our evaluation, the optimization is performed based on the regression. However,
if the genetic algorithm would be applied, it can be configured so that its execution
time does not exceed a specific threshold. As a result, there is a tradeoff between the
execution time and the accuracy of the resulting Repository Model, requiring a more
detailed scalability analysis that also considers possible side effects. This point will be
evaluated in future work. For these reasons, we focused here on the scalability of the
transformation when using regression.

The regression is performed for each stochastic expression that needs to be calibrated.
The number of data points within a regression is variable and depends on the monitoring
data. This can be well illustrated using the example of internal actions whose resource
demands need to be calibrated. Two factors influence the execution time of the
transformation: the number of internal actions that are observed and the number
of data points that are recorded for each internal action. The number of observed
internal actions corresponds to the number of triggered regressions and the number
of data points directly affects the duration of the regressions. Based on this, we built
the scenarios that are considered in the scalability analysis. First, we examined the
execution times of the transformation for an increasing number of internal actions.
Subsequently, we observed the runtimes for an increasing number of data points for a
single internal action. The results are summarized in Figure 9. In both cases, it is visible
that the duration of the transformation scales linearly with increasing parameters.
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Fig. 9: Scalability analysis of the repository transformation under various circumstances

Even for a high number of internal actions (a), the growth of the execution time
remains linear. The same can be observed when increasing the data points per internal
action. In summary, it can be concluded that the transformation also scales linearly in
worst-case scenarios and therefore, no unexpected side-effects emerge.

10.6.2 Resource Environment Transformation

The resource environment transformation identifies changes to the hosts and the network
connections within the Ops-time environment. The detected hosts and connections are
inserted into the Runtime Environment Model (REM). Using the consistency rules based
on Vitruvius, the corresponding resource containers and linking resources are created
in the Resource Environment Model. The execution time of the transformation is
dominated by the change propagation via Vitruvius. In the following, we will examine
the execution times of the transformation with an increasing number of new hosts and
connections. Therefore, we consider two scenarios:

1. Increasing number of new hosts; sparse meshed - indicating that each of the new
hosts has only one network connection

2. Increasing number of new hosts; fully meshed - indicating that each of the new
hosts has a connection all other hosts
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Fig. 10: Scalability analysis of the transformation of Resource Environment Model
in different scenarios

The chart (a) in Figure 10 shows the scalability of sparse meshed Ops-time envi-
ronments. The execution time scales almost perfectly linear with up to 180 new hosts.
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For realistic values of about 20 new hosts or less (within a single execution of the
transformation), an execution time of 2 seconds is not exceeded in our test setup. In
contrast, the execution time rises exponentially when adding fully meshed hosts as
chart (b) in Figure 10 shows. This is simply because the connections between hosts
need to be synchronized one by one. The number of connections increases exponen-
tially with the number of hosts when considering a fully meshed network. However, it
can still be concluded that the transformation provides adequate execution times for
most use cases, as an appearance of more than 10 new fully meshed hosts between two
executions of the pipeline will rarely occur in practice.

To recap, the analysis results for the Resource Environment Model transformation
indicated that the execution times scale is appropriate for realistic use cases.

10.6.3 System Model and Allocation Model Transformation

The transformations that are responsible for updating the Allocation Model and the
System Model are reviewed together within the scalability analyses. For the derivation
of updates in the System Model, the number of changes in the system composition is
crucial. On the other hand, for the derivation of updates in the Allocation Model, the
number of changes in the deployments is crucial. Consequently, these two parameters
determine the design of the scalability analysis. First, the number of changes is
determined, one half is populated with deployment changes and the other half with
changes to the system composition. These change scenarios are generated with different
sizes and used as input for the combination of both transformations (TSystemComposition

and TAllocation).
Figure 11 shows the cumulated execution time of both transformations for an

increasing number of changes. The chart shows that the execution times scale approxi-
mately linearly, with a slightly lower slope at the beginning compared to a higher but
stable slope from about 500 changes onwards. Even for a total number of 1200 changes
the execution time is lower than 4 seconds. Because such a number of changes between
two pipeline executions probably never occurs in practice, it can be concluded that
both transformations scale well.
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Fig. 11: Execution times of System Model transformation with increasing changes in
the system composition.
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10.6.4 Usage Model Transformation

The Usage Model transformation is adopted from iObserve and ported to our moni-
toring data structure. Hence, both approaches are conceptually identical. A detailed
scalability analysis has already been done for iObserve (Heinrich, 2020).

The goal of the scalability analysis in the context of CIPM is to show that the
results are consistent with those of iObserve. We consider two different cases. First, an
increasing number of users, all of them triggering exactly one service call and second,
an increasing number of service calls triggered by a single user. Figure 12 shows the
scalability analysis for both scenarios. Here, (a) shows the increase in execution times
for a rising number of users and (b) shows the growth for an increasing number of
service calls initiated by a single user. When looking at the sub-figure (b) it should be
noted that the axes are scaled logarithmically. In this way, we wanted to ensure that
the results can be compared to those obtained from the iObserve scalability analysis.
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Fig. 12: Scalability analysis of the Usage Model transformation
The first experiment shows that the execution time scales almost perfectly linear

with an increasing number of users. The same conclusion can be drawn from the results
of iObserve’s scalability analysis (Heinrich, 2020). We also obtained consistent results
when analyzing the execution time for an increasing number of service calls initiated
by a single user. For 100 or less initiated service calls, the execution time increases
sublinearly and thereafter superlinearly with an explosive growth in execution time
above 10000 initiated service calls. In the superlinear segment, the execution time
is dominated by the loop detection (Heinrich, 2020). The extreme increase of the
execution time with a high number of triggered service calls is not critical, because
such a user behavior is unlikely in practice.

Summary: It can be stated that the results of our scalability analysis are in line with
those of iObserve. Therefore, it can also be concluded that the execution times of the
Usage Model transformation are appropriate.

10.7 Threats of Validity
The identification of the threats to validity is based on guidelines for case study research
(Wohlin et al, 2012). Therefore, we distinguish between three dimensions of validity:
internal validity, external validity, and construct validity.
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Internal Validity: The first threat to validity concerns the execution of experiment
E2 (see Sec. 10.3). The conflicts that occurred during the execution of the experiment
were resolved manually, so the outcome depends on the person who performs the
experiment. If this person does not know the system composition well enough and makes
an incorrect decision, the calculated JC would be lower. The second threat to validity
is by applying E1 on Teammates where we do not have a reference PCM to evaluate
the first PCM obtained by propagating the initial commit. However, we evaluated the
resulting PCM by the comparison with the available well-documented architecture6.

External Validity: An external threat to validity is the selection of cases. It may be
possible that the results obtained from the cases are not representative. To avoid this,
we selected CoCoME, TeaStore and Teammates, which are widely used in research and
address common business use cases (Reussner et al, 2019; Keim et al, 2021; Grohmann
et al, 2019; von Kistowski et al, 2018). By combining the several cases, the risk of
non-representative results is further reduced.

Construct Validity: A threat to validity is the selection of metrics within the
evaluation. For comparing distributions we used the Wasserstein distance, the KS-
test and conventional statistical measures. These have been used in related studies
(Heinrich et al, 2017; Mazkatli et al, 2020; Voneva et al, 2020) and by combining them
we minimize the risk that a single metric distorts the evaluation results. The same
applies for the JC, which has also been used in related work (Heinrich, 2020). Besides,
in the evaluation, we rely on a combination of synthetically generated monitoring data
and monitoring data generated directly by executing a system. For the synthetically
generated data, external factors such as the Ops-time environment or the type of
load testing can be excluded. When observing the system, however, the quality of the
monitoring events must be ensured. Therefore, we decided to use the Kieker framework
with extensions that have already been implemented in previous projects (van Hoorn
et al, 2012; Mazkatli et al, 2020).

11 Related Work
There are a lot of approaches that aim to achieve the consistency between the software
artifacts automatically. As explained in section 1, these approaches belong to two main
categories: the first one (C1) generates the up-to-date artifacts as a batch process
(marked as B in Table 8), e.g., reverse engineering approaches. The second one checks
the consistency and tries to eliminate it (called as incremental approach and marked
as inc in Table 8). Both C1 and C2 can be also classified into three subcategories
based on the phase, in which the consistency is maintained: at Dev-time, at Ops-time
or at both. The Table 8 summarizes the related works and just assigns them to these
subcategories since the main category is labeled as B for C1 and inc for C2.

11.1 Consistency management at Dev-time
As shown in Table 8, there are a lot of approaches that focus on consistency maintenance
at Dev-time. For that, they either extract an architecture model or maintain an existing

6see https://teammates.github.io/teammates/design.html
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one (C2). The reverse engineering approaches at Dev-time (C1) is based mainly on
static analysis of source code. For example, SoMoX (Becker et al, 2010) and Extract
(Langhammer et al, 2016) extract parts of PCM. Similarly, the ROMANTIC-RCA
(Hamdouni et al, 2010) extracts component-based architecture from an object-oriented
system based on relational concept analysis. A shortcoming of C1 is that they ignore
the possible manual optimization of the extracted model by the next extraction. The
incremental consistency maintenance at Dev-time (C2) includes the approaches that
minimize, prevent or repair architecture erosions. de Silva and Balasubramaniam (2012)
present good summary of these approaches. Moreover, Jens and Daniel (2007) compare
the approaches that minimize the architecture erosion by detecting architectural
violations at Dev-time. JITTAC tool (Buckley et al, 2013), for instance, detects the
inconsistencies between architecture models and source code, but does not eliminate
them automatically. Archimetrix (von Detten, 2012) also detects the most relevant
deficiencies through continuous architecture reconstruction based on reverse engineering.
Examples of C2 approaches that prevent the inconsistency between source code and
architecture model at Dev-time are the mbeddr approach of Voelter et al (2012)
and the Co-evolution approach of Langhammer (2017). The mbeddr approach uses
a single underlying model for implementing, testing and verifying system artifacts
like component-based architecture. Similarly, the Co-evolution approach uses a virtual
single underlying model to allow the co-evolution of PCM and source code. The Focus
approach of Ding and Medvidovic (2001) avoids the inconsistencies by recovering the
architecture and using it as a basis for the evolution of object-oriented applications.
The main limitation of the consistency management at Dev-time is that the provided
models are mostly considered as system documentation and should be enriched with
PMPs if the AbPP is to be supported. Therefore, some of these approaches are extended
to allow AbPP. For example, Langhammer calibrated the co-evaluated approach with
an approximation of resource demand (response times) to show that it can be used for
AbPP. Similarly, Krogmann et al extended SoMoX with a calibration of PMPs with
the parametric dependencies based on dynamic analysis (Beagle approach (Krogmann,
2012)). However, the approach of Krogmann requires high monitoring overhead which
restricts collecting the monitoring data from the production environment rather than
from the test environment. Therefore, we assign Krogmann’s approach to the Dev-time
approaches rather than the hybrid approaches. In general, the calibration of the whole
project after each adjustment in the models causes monitoring overhead and ignores
possible manual adjustments of PMPs, which our approach overcomes by incremental
calibration. Moreover, all the consistency management approaches at Dev-time ignore
the effect of adaption at Ops-time on the accuracy of aPMs.

11.2 Consistency management at Ops-time
The approaches that maintain the consistency at Ops-time are based mainly on
the dynamic analysis of monitoring events. For example, the approaches of Brosig
et al (2011) , (Walter et al, 2017) and (Brunnert et al, 2013) are reverse engineering
approaches (C1) that extract parts of the PCM based on dynamic analysis for AbPP.
Furthermore, the SLAstic approach (van Hoorn, 2014) extracts aPM and can detect
some changes at Ops-time like migrations and reflect them in the model (C2). A
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previous work of ours, iObserve (Heinrich, 2020), can also respond to changes in
deployment and usage by updating the related parts in PCM (C2), which we also
integrated into CIPM. Other approaches that extract/ update performance models at
Ops-time are summarized by Szvetits and Zdun (2016). The Drawbacks of the Ops-time
approaches are that continuously high monitoring effort is required to extract/ update
models. They cannot also model the system’s parts that have not been called and
consequentially not covered by the monitoring. Besides, these approaches ignore the
source code changes do not validate the accuracy of the resulting models.

11.3 Hybrid approaches
The scope of hybrid approaches spans Dev-time and Ops-time. For example, Langham-
mer introduces also a reverse engineering tool (EjbMox) (Langhammer, 2017, P. 140)
that extracts the behavior of the underlying Enterprise Java Bean source code, by
analyzing it at Dev-time and calibrating it based on the dynamic analysis at Ops-time.
The approach of Konersmann (2018) integrates information about the architecture
model into the code via annotations for a dynamic generation of an architecture model
from the source code via transformations. Moreover, the approach of Konersmann
synchronizes allocation models with running software (Konersmann and Holschbach,
2016). Spinner et al (2019) propose an agent-based approach to update architectural
performance models (C2). In their approach, a static analysis of the source code is
performed to detect the components and apply the instrumentation. However, the
above-mentioned approaches show a much smaller scope of consistency preservation
(e.g., limited recognition of evolution and adaption scenarios).

11.4 Instrumentation
Similar to CIPM, Kiciman and Livshits (2010) propose a platform (AjaxScope) for
the instrumentation of JavaScript code to allow performance analysis and usability
evaluation. Based on coarse-grained monitoring, AjaxScope identifies where the source
code runs slowly and instruments it to find the cause of the slowness. AIM (Wert
et al, 2015) provides adaptable instrumentation of the services of the application
under test to get more accurate measurements for estimating the resource demands
of an architectural performance model. Contrary, our approach detects what parts
should be instrumented fine-grained. The measurements are collected then from test
or production environments.

11.5 Resource Demands
The related approaches estimate the resource demands either based on coarse-grained
monitoring data (Spinner et al, 2015, 2014) or fine-grained data (Brosig et al, 2009;
Willnecker et al, 2015). The latter approaches give a higher accuracy but have a
downside effect because of the overhead of the instrumentation and the monitoring.
Our approach reduces the overhead by the automatic adaptive instrumentation and
monitoring. Similar to CIPM, Grohmann et al (2021) update the resource demand
continuously at Ops-time. For that, they tune, select, and execute an ensemble of
resource demand estimation approaches to adapt to changes at Ops-time. The resulting
estimation is a constant value. In contrast, CIPM considers the parametric dependencies
and optimizes the estimated stochastic expression at Ops-time.
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Table 8: An Overview of the Related Work
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Mbeddr Voelter et al (2012), Focus Ding and
Medvidovic (2001)
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Consistency checker Jens and Daniel (2007),
Buckley et al (2013),von Detten (2012)

inc

Extract Langhammer et al (2016) B B

ROMANTIC-RCA Hamdouni et al (2010) B

SoMoX+Beagle Krogmann (2012) B B

O
p
s-
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m

e Brosig et al (2011) B B B B B

PMXWalter et al (2017) B B B B

Brunnert et al (2013) B B B B B

SLAstic van Hoorn (2014) inc inc inc

iObserve Heinrich (2020) inc inc inc

H
yb

ri
d EjbMoX Langhammer (2017, P. 140) B

Konersmann (2018) B

PRISMA Spinner et al (2019) inc inc inc inc inc B

CIPM inc inc inc inc inc inc

11.6 Parametric dependencies
In addition to the approach of Krogmann (2012) (SoMoX+Beagle), the works of
Ackermann et al (2018) and Courtois and Woodside (2000) characterize the parametric
dependencies. Grohmann et al (2019) also consider the characterization of parametric
dependencies in performance models at Ops-time. Similarly, CIPM characterizes the
parametric dependencies during updating and calibrating aPMs at Ops-time.

12 Conclusion
Considering the software architecture model increases the understandability as well
as the productivity of software development (Olsson et al, 2017). Moreover, Applying
AbPP promises proactive detection of performance problems by simulation instead of
the expensive measurement-based performance prediction.

In this article, we presented the continuous integration of the architectural perfor-
mance model that keeps the aPM continuously up-to-date. Our approach maintains
the consistency between software artifacts at Dev-time and Ops-time. It updates aPM
after the evolution and adaptation of the system.

At Dev-time, the commit-based strategy extracts source code changes from commits
to update the aPM including the structure, abstract behavior and system composition.

To allow the simulation of aPM, our calibration estimates the parameterized
PMPs incrementally and uses a novel incremental resource demand estimation based
on adaptive monitoring. The calibration identifies the parametric dependencies and
optimize it based on the genetic algorithm.

In addition to PMPs, the Ops-time calibration observes the adaptive changes and
updates the affected parts of aPM accordingly. This applies to changes in deployment,
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resource environment, usage and even system composition. The proposed self-validation
continuously analyses the accuracy of the AbPP. The results of self-validation is used
to manage the monitoring and calibrate aPM at Ops-time.

For the evaluation we performed various experiments based on two cases: CoCoME
(Heinrich et al, 2015) and TeaStore (von Kistowski et al, 2018). We were able to update
the structure of the aPM based on the commit. The accuracy of the updated models and
the applicability of the consistency maintenance process were demonstrated. Besides,
we measured the emerging monitoring overhead and revealed, that by continuously
adjusting the monitoring based on the validation results, the arising overhead can
be reduced. Finally, we analyzed the scalability characteristics of the transformation
pipeline and discovered that all transformations within the pipeline scale adequately.

In future works, we will expand the scope of the optimization of the accuracy using
genetic algorithm to cover the whole abstract behavior of the services (SEFFs) instead
of just the performance parameters. Moreover, we plan to evaluate the scalability of
our approach in the case of the optimization using genetic algorithm, since there are
trade between the impact of the algorithm’s configuration on PMPs (their accuracy)
and the overhead that this configuration requires. Besides, we are aware that our
implementation of CPRs are currently just suitable for the domain of microservice
applications that are based on Java language and specific technologies mentioned in
subsection 5.2. However, our approach is based on the Vitruvius platform, which
allows defining domain-specific metamodels and consistency preservation rules (Klare
et al, 2021). The required overhead to adjust metamodels and CPRs for other domains
in future works should be acceptable compared to the gained advantages by applying
CIPM approach. We also plan to consider technology-based calls explicitly, for example
calls to REST interfaces or calls to messaging queues (Werle et al, 2020). Then, CIPM
can consider such specific calls and calibrate them at Ops-time based on the dynamic
analysis of our extendable incremental calibration. This will result in more accurate
AbPP and avoid asking the developers during the CI-based update of aPM about the
real target of such technology-based calls.

Currently, we are adapting the CIPM approach to be applicable to LUA-based
industrial applications by SICK7. Our adaption already covers parsing LUA source
code, adjusting the CPRs to detect the SICK AppSpace apps as components and
update of the models in VSUM. The initial findings (Burgey, 2023) indicate that the
approach is applicable to real-world applications from the industrial sector. The future
work is aimed on completing the prototype and resolving minor technical constraints.
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