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Abstract
The explicit consideration of the software architecture supports system evolution
and efficient assessments of quality attributes. In particular, Architecture-based
Performance Prediction (AbPP) assesses the performance for future scenarios
(e.g., alternative workload, design, deployment) without expensive measurements
for all such alternatives.
However, accurate AbPP requires an up-to-date architectural Performance Model
(aPM) that is parameterized over factors impacting the performance (e.g., input
data characteristics). Especially in agile development, keeping such a parametric
aPM consistent with software artifacts is challenging due to frequent evolutionary,
adaptive, and usage-related changes. Existing approaches do not address the
impact of all aforementioned changes. Moreover, the extraction of a complete
aPM after each impacting change causes unnecessary monitoring overhead and
may overwrite previous manual adjustments.
In this article, we present the Continuous Integration of architectural Perfor-
mance Model (CIPM) approach, which automatically updates a parametric
aPM after each evolutionary, adaptive, or usage change. To reduce the monitor-
ing overhead, CIPM only calibrates the affected performance parameters (e.g.,
resource demand) using adaptive monitoring. Moreover, a self-validation process
in CIPM validates the accuracy, manages the monitoring to reduce overhead, and
recalibrates inaccurate parts.

1



We evaluate the applicability of CIPM in terms of accuracy, monitoring overhead,
and scalability using five cases (three Java-based open source applications and
two industrial Lua-based sensor applications). Regarding accuracy, we observed
that CIPM correctly keeps an aPM up-to-date and estimates performance param-
eters well so that it supports accurate performance predictions. Regarding
the monitoring overhead in our experiments, CIPM’s adaptive instrumentation
demonstrated a significant reduction in the number of required instrumentation
probes, ranging from 12.6 % to 69 %, depending on the specific cases evaluated.
Finally, we found out that CIPM’s execution time is reasonable and scales well
with an increasing number of model elements and monitoring data.

Keywords: Software Architecture, Performance Prediction, Model Consistency,
Parametric Models, Self-Validation, DevOps, Continuous Integration, Consistency
Preservation

1 Introduction
Iterative software development approaches, such as agile methodologies, are commonly
supported by Continuous Integration (CI) pipelines to ensure continuous integration
and fast feedback during the development process. However, performance assurance
during iterative software development faces several problems that we refer to by P .
For example, the widely used application performance management (Heger et al, 2017)
suffers from the required costs (PCost): Assessing the impact of design decisions on
performance requires implementing them (Smith and Williams, 2003) and setting up
test environments and measurements for all design alternatives.

Instead of only relying on measurements in real environments, software performance
engineering (Woodside et al, 2007; Smith and Williams, 2003) additionally uses models
to predict the software performance and to identify potential issues earlier (Balsamo
et al, 2004). In particular, architectural performance modeling approaches, which
model the system at the architecture level without implementation details, can be a
good base for cost-effective performance predictions of architectural design decisions
(Reussner et al, 2016). Besides, architectural Performance Models (aPMs) increases
the human understandability of the system and, consequently, the productivity of
software development (Olsson et al, 2017).

Nevertheless, the application of Architecture-based Performance Prediction (AbPP)
in iterative development is a demanding task: Modeling is a time-consuming process
(PCost), and developers do not trust models since they are approximations and difficult
to validate (Woodside et al, 2007) (PInaccuracy).

Accurate and, thus, trustworthy AbPP is challenging for various reasons. First,
aPMs can be outdated due to frequent software changes, leading to inconsistencies
between aPMs and the software system (PInconsistency). Here, changes of the source
code at Development time (Dev-time) can affect the accuracy of aPMs. Similarly, adap-
tive changes at Operation time (Ops-time) (e.g., changes in the system composition and
deployment) also affect aPMs. Second, the accuracy of the AbPP depends mainly on
the estimated Performance Model Parameters (PMPs) such as resource demand. These
parameters in turn can depend on influencing factors that may vary over the Ops-time
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(e.g., usage profile or execution environment). The parameterization of PMPs over
these factors allows AbPP for unseen states, for instance, for unseen workloads. Ignor-
ing the so-called parametric dependencies (Becker et al, 2009) can lead to inaccurate
AbPP for design alternatives (PInaccuracy). The parameterized PMPs can also become
inaccurate over time as the system changes. Re-estimating all PMPs frequently after
each impacting change causes monitoring overhead (PMonitoring−Overhead) because
PMPs are mostly calibrated by dynamic analysis of the whole system (Spinner et al,
2015). Keeping the aPMs and their parameterized PMPs consistent with the running
system, which is continuously evolving, requires repeated manual effort (PCost). Hence,
the efficient maintenance of consistency between the parameterized aPMs and related
software system is important for an improved comprehensiveness of the system’s
architecture and proactive performance management with AbPP.

1.1 State of the Art
Several approaches suggest the partial automation of the consistency maintenance
between software artifacts. These approaches can be divided into two categories.

The first one includes approaches that reverse-engineer the current architecture
based on the static analysis of the source code (Alae-Eddine El Hamdouni et al, 2010;
Langhammer et al, 2016; Becker et al, 2010), dynamic analysis (Brosig et al, 2011;
van Hoorn, 2014; Walter et al, 2017) or both (Konersmann, 2018; Krogmann, 2012).
These approaches suffer from the following shortcomings. First, not all impacting
changes at Dev-time or Ops-time are observed and addressed (PInconsistency). Second,
the frequent extraction and calibration of aPMs may cause high monitoring overhead
(PMonitoring−Overhead). Third, possible manual modifications of the extracted aPMs
would be discarded and should be repeated during the next extraction (PCost). Finally,
there is uncertainty of the aPMs’ accuracy since no automatic validation is available
(PInaccuracy).

The second category of existing approaches includes approaches that maintain
the consistency incrementally either at Dev-time (Langhammer, 2017; Ding and
Medvidovic, 2001; von Detten, 2012; Voelter et al, 2012; Jens and Daniel, 2007; Buckley
et al, 2013) based on consistency rules or at Ops-time (Heinrich, 2020; Spinner et al,
2019; van Hoorn, 2014) based on dynamic analysis. None of these approaches succeeds
in updating aPMs according to both evolution and adaption (PInconsistency). The
accuracy of the resulting aPMs and AbPP is uncertain and unreliable since no statement
on the accuracy is provided (PInaccuracy). This also applies to approaches that estimate
parametric dependencies to increase the accuracy of AbPP (e.g., (Krogmann, 2012;
Grohmann et al, 2019)).

1.2 Approach and Contributions
In this article, we present the Continuous Integration of Performance Models (CIPM)
approach. This approach maintains the consistency between an aPM and software
artifacts (source code and measurements) (Mazkatli and Koziolek, 2018). As shown
in Figure 1, CIPM automatically updates aPMs according to observed Dev-time and
Ops-time changes (PInconsistency) to enable AbPP (PCost). CIPM also calibrates aPMs
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Fig. 1: Overview of the CIPM approach and the main actors.

with parametric dependencies (PInaccuracy) and reduces the required overhead for
updating and calibrating aPMs through adaptive monitoring (PMonitoring−Overhead)
(Mazkatli et al, 2020; Voneva et al, 2020). Moreover, CIPM provides a statement on
the accuracy of the AbPP and automatically recalibrates inaccurate parts (PInaccuracy)
(Monschein et al, 2021). Consequently, resulting aPMs allow accurate AbPP and an
improved comprehension of the system architecture. This enables proactive actions for
upcoming performance issues and assessment of design alternatives (PCost).

This paper is an extension of our work published in conference and workshop
papers (Mazkatli et al, 2020; Monschein et al, 2021; Voneva et al, 2020). In this
extension, we introduce a novel contribution to update aPMs and instrument source
code changes based on version control commits. This innovative approach allows the
seamless use of CIPM in modern Continuous Integration (CI) pipelines. To the best of
our knowledge, this new version of CIPM is the first consistency preservation approach
between source code and architecture models in a CI pipeline without the need for
specialized source code annotations or specific frameworks/editors. The innovations in
this paper are fourfold:
1. C1: Automated CI-based consistency maintenance at Dev-time. A commit-based

strategy (Section 5) is proposed to automatically update the models (e.g., aPMs)
affected by the CI of the source code (PInconsistency). Unlike other methods, this
approach uses standard version control commits as input, eliminating the need for
specialized development editors to record source code changes and update aPMs
accordingly. This facilitates easier integration into CI pipelines and minimizes the
overhead to keep aPMs up-to-date with the latest code changes (PCost).

2. C2: Automated adaptive instrumentation. We propose a CI-based, model-based
instrumentation that targets the changed parts in the source code (Section 6).
Unlike existing concepts, our instrumentation automatically detects where and
how to instrument the source code to calibrate performance parameters. This
reduces monitoring overhead (PMonitoring−Overhead) and eliminates the need for
costly, error-prone manual approaches (PCost).

3. Comprehensive Overview: To grasp the CIPM approach and the further conducted
evaluation, this paper also presents an overview of the whole approach, including
a concise description of previously published contributions:
• C3: Incremental calibration. Our calibration of the PMPs is based on adaptive

monitoring and uses statistical analysis to learn parametric dependencies
(Mazkatli et al, 2020). If needed, it optimizes them using a genetic algorithm
(Voneva et al, 2020). Compared to existing approaches, CIPM can calibrate
PMPs at Ops-time, addressing PMonitoring−Overhead and PInaccuracy.

• C4: Automated consistency maintenance at Ops-time. The Ops-time cali-
bration observes Ops-time changes based on dynamic analysis and updates
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the aPMs accordingly (Monschein et al, 2021) (Section 9). Unlike exist-
ing approaches, CIPM automatically updates the aPMs including PMPs,
system composition, and resource environment using adaptive monitoring
(PInconsistency,PMonitoring−Overhead).

• C5: Self-validation of updated aPMs. The self-validation (Section 8) estimates
the accuracy of AbPP against real measurements (PInaccuracy). It manages the
adaptive monitoring to reduce the required overhead (PMonitoring−Overhead)
(Monschein et al, 2021). According to our knowledge, our approach is the
first approach that enables self-validation of aPMs and dynamic management
of monitoring overhead.

• C6: Model-based DevOps pipeline. The proposed pipeline integrates and
automates the CIPM activities during DevOps. In this paper, we refine
the pipeline initially proposed in (Mazkatli et al, 2020). Unlike existing
pipelines, our pipeline maintains consistency during the whole DevOps life
cycle, enabling AbPP.

4. Additional Evaluation: Besides evaluating the novel contributions (C1, C2) focus-
ing on the updated models’ accuracy and monitoring overhead, we also evaluate
the scalability of the approach (Section 10.7).

This paper is organized as follows. We provide a background on the approaches
used as a foundation in Section 2. Then, we present a motivating example in Section 3.
An overview of the CIPM approach is given in Section 4. We describe the novel
contributions of the paper (the automatic consistency preservation at Dev-time and
the adaptive instrumentation) in Section 5 and Section 6, respectively. The remaining
contributions of CIPM which calibrate, validate, and maintain the performance model’s
consistency to the measurements at Ops-time are discussed in Section 7, Section 8, and
Section 9. We present the evaluation results in Section 10 and discuss related research
in Section 11. Finally, we summarize the article and discuss future work in Section 12.

2 Background
This section presents the background on the approaches we use in the article.

2.1 Software Models
Models (Stachowiak, 1973) abstract entities and relationships from the real world by
capturing essential features and omitting unnecessary details. They provide structured
representations of attributes and their relationships, and facilitate various operations
and analyses for specific purposes.

Metamodels define the structure and relationships of different types of models
within a specific domain, serving as higher-level abstractions for valid software models.

The Eclipse Modeling Framework provides a standardized framework for modeling,
offering tools for creating, editing, manipulating, and transforming structured models
(Eclipse Foundation, 2024; Steinberg et al, 2009).

In CIPM’s context, the Eclipse Modeling Framework is utilized for modeling
software artifacts. This facilitates model-based transformations, such as propagating
changes between models to resolve inconsistencies.
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2.2 Palladio Component Model (PCM)
Palladio (Reussner et al, 2016) is a software architecture simulation approach that
analyzes software at the model level for performance assessments (e.g., detecting
bottlenecks or scalability problems).

The Palladio AbPP supports the proactive evaluation of design decisions to avoid
high costs resulting from suboptimal decisions. The Palladio Component Model (PCM)
consists of five sub-models, shown in Figure 2. The Repository Model (A) contains
a repository with components, interfaces, and services defined in the interfaces. It
also describes which component provides or requires which interfaces. In addition,
the Repository Model includes descriptions of the abstract behavior of services
in the form of Service Effect Specifications (SEFFs) (A’). The System Model (B)
describes the composition of the software architecture based on the components and
interfaces specified in the repository. The Resource Environment Model (C) reflects
the actual hardware environment, which is composed of containers with resources
(e.g., Central Processing Unit (CPU)) and links between them. The mapping from the
system composition (System Model) to the resources (Resource Environment Model)
is described by the Allocation Model (D). Finally, the Usage Model (E) defines the
behavior of users and how they interact with the system.

A SEFF describes the abstract behavior of a service in a component (Becker et al,
2009). It consists of ordered actions representing single process steps and focusing on
the explicit modeling of interactions between components. There are different action
types: start actions, stop actions, external call actions (calls to required services),
internal actions (combines internal computations that do not include calls to required
services), loop actions, and branch actions. Loop and branch actions contain at least
one external call action to explicitly model control flow elements that influence external
call actions. Remaining loops and branches in the source code are incorporated into
internal actions for a higher level of abstraction. An illustrative example for a SEFF
from our running example is shown in the left portion of Figure 3.

To predict performance measures (response times, CPU utilization, and through-
put), architects have to enrich SEFFs with PMPs. Examples of PMPs include resource
demands (processing units that an internal action requests from specific active resources
such as an CPU or hard disk), the probability of selecting a branch in a branch action,
the number of loop iterations in a loop action, and the arguments of external call
actions. Palladio employs stochastic expressions to define PMPs (Koziolek, 2016) by
means of random variables and empirical distributions. Additionally, a stochastic
expression can express so-called parametric dependencies, which define how a given
PMP depends on other parameters (e.g., input parameters of a service or on configu-
ration parameters of a component). Dependencies cannot only be defined directly on
parameter values, but also on other characterizations of parameter values, for instance,
the number of elements in a collection or the size of a file.

The PCM is the preferred aPM for implementing CIPM due to its modular structure
and parameterized PMPs that facilitate AbPP under varying conditions. This aligns
with the goals of CIPM for the proactive identification of performance issues and
evaluation of design alternatives. Moreover, CIPM reduces the overhead associated
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Fig. 2: Illustrations of PCM’s five submodels. The Repository Model includes static
structure and behavior (first two boxes).
with PCM by automating both the modeling process and the updates of its six core
models.

2.3 Vitruvius
The Vitruvius framework encapsulates heterogeneous models of a system and their
semantic relationships in a so-called Virtual Single Underlying Model (VSUM) and
keeps them consistent (Klare et al, 2021). Thus, the Reactions language of Vitruvius
allows describing Consistency Preservation Rules (CPRs) at the metamodel level.
CPRs, in turn, define the consistency preservation logic for each type of model change
(i.e., which and how models must be changed to restore consistency after a change in
a related model has occurred).

Vitruvius as a delta-based consistency approach (Diskin et al, 2011) propagates
changes (i.e., deltas) in one model to derive changes for other models, updating models
inductively and avoiding overwriting changes from other models (Wittler et al, 2023).
For this purpose, Vitruvius stores a mapping between corresponding model elements
in a correspondence model to reuse them during the consistency preservation.

Utilizing Vitruvius, the co-evolution approach (Langhammer, 2017) keeps a Java
source code model (Heidenreich et al, 2010) for Java 6 (Joy et al, 2000) and the PCM
consistent. Therefore, the co-evolution approach employs specialized editors to record
changes (in the form of deltas) that developers apply to the source code and propagate
them to the PCM by executing CPRs. Langhammer defines CPRs that update the
Repository Model of a PCM (i.e., the components and interfaces) and its behavior
(SEFFs without PMPs by a full reconstruction) in response to the recorded changes
in the source code. Changes in the PCM are also propagated to the code model.

In the context of CIPM, we utilize the Vitruvius platform to maintain consistency
across software models, including PMPs, through incremental updates. In contrast to
model-based batch transformations, these updates retain potential manual adjustments
of the models and preserve architectural decisions of users.

2.4 iObserve
iObserve considers the adaptation and evolution of cloud-based systems as two inter-
woven processes (Heinrich, 2020). The main idea is to use Ops-time observations to
detect changes during the operation and to reflect them by updating a given archi-
tecture model, which is then applied to quality predictions. The PCM is the basis for
the quality predictions, and Kieker (van Hoorn et al, 2012) is used for monitoring the
system during operation. iObserve collects monitoring data at Ops-time with Kieker
(Jung et al, 2013) and applies necessary changes to the architecture model (PCM).
Adaptation and evolution are interwoven, and shared models are used throughout the
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Fig. 3: Excerpt of TeaStore’s architecture with notations from Palladio (Section 2.2).
application life-cycle to close the gap between Ops-time and Dev-time. The mapping
between elements in the architecture model and corresponding elements in the source
code is based on a so-called runtime architecture correspondence model.

In CIPM, we integrate iObserve’s dynamic analysis to update the modeled usage
and deployment parts based on monitoring data. CIPM updates remaining aspects,
such as the system composition, performance parameters, and the resource environment,
to ensure that the architectural performance model reflects the system’s behavior.

3 Running Example
The TeaStore is a web-based application implementing a shop for tea (von Kistowski
et al, 2018). The application is based on a distributed microservice architecture and is
designed to be suitable for evaluating performance modeling approaches.

The TeaStore consists of six microservices: Registry, Image Provider, Auth, Persis-
tence, Recommender, and WebUI. All microservices register themselves at the Registry,
which provides them to every other microservice. In addition, this enables client-side
load balancing. The communication between microservices is based on the widely used
Representational State Transfer (REST) standard (Filho and Ferreira, 2009). On the
right side of Figure 3, there is a picture of the System Model and Allocation Model
of the TeaStore, demonstrating the connections between its microservices. On the left
side, the depicted abstract behavior of the placeOrder service begins with an internal
action that prepares an order and calls an external service from the Registry to persist
the order. Then, a loop calls an external service of Auth to persist each order item.
This loop iterates until all items are persisted. Finally, the order is finalized.

TeaStore includes four different Recommender implementations that suggest related
products to users. The developers implemented these versions along different develop-
ment iterations. The four implementations have different performance characteristics.
Performance tests or monitoring can be employed to discover these characteristics for
the current state (i.e., the current implementation, current deployment, current envi-
ronment, current system composition, and current workload). However, predicting the
performance for another state is expensive and challenging because it requires setting

8



up and performing several tests for each implementation alternative. In our example,
answering the following questions is challenging based on application performance
management (Heger et al, 2017) only: “Which implementation would perform better if
the load or deployment is changed?” or “How well does the Recommender perform
during unseen workload scenarios?”. An example of the latter question would be an
upcoming offer of discounts where architects expect an increased number of customers
and changed behavior where each customer is expected to order more items. Another
question can be: “What is the current system composition?” or “How would be the
performance if the system composition changes?”.

Changes in Teastore’s landscape are common at Ops-time due to the load balancing,
allowing replications and de-replications without great effort. Therefore, it is inevitable
to constantly update the associated architecture model to remain consistent with
the system. An up-to-date architecture model can answer performance, scalability,
and other quality questions. Therefore, our approach aims to provide an accurate
architecture model at any point in time and keep the required manual effort and
monitoring overhead as low as possible.

4 Continuous Integration of architectural
Performance Models

In iterative software development processes (e.g., agile ones or DevOps), developers rely
on automated builds, test automation, CI, and continuous deployment to streamline
iterative delivery. CIPM aims to integrate aPMs into the delivery pipeline and to keep
aPMs automatically consistent with the evolving system. Thus, an up-to-date aPM is
available at any time for AbPP with low costs.

This section provides an overview of CIPM by describing the models CIPM auto-
matically updates (Section 4.1) and how CIPM can be integrated into the DevOps
pipeline (Section 4.2).

4.1 Models to Keep Consistent
Performance predictions with architecture-based methods require modeling the software
architecture in terms of static structure and behavior, the resource environment,
the related resource demands, the workload, and the usage. The accuracy of the
performance prediction depends on the accuracy of the aPM, which CIPM updates.

The CIPM approach employs the PCM for AbPP as it simplifies modeling the afore-
mentioned perspectives of aPMs by the (A) Repository, (B) System, (C) Resource
Environment, (D) Allocation, and (E) Usage Model (Section 2.2).

To update the Repository Model (A), CIPM proposes a CI-based consistency
preservation that extracts changes from source code commits and applies pre-defined
change-based consistency preservation rules to restore the consistency between source
code and the repository model (i.e., static structure and behavior models as SEFFs)
(Section 5). To estimate the PMPs of the Repository Model, CIPM uses adaptive
instrumentation and adaptive monitoring to collect the required data while the appli-
cation runs (Section 6). The instrumentation is adaptive, which applies fine-grained
instrumentation to specific sections of the source code. Furthermore, the monitoring
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is also adaptive. It can be deactivated after the calibration to reduce the monitoring
overhead. The Repository Model is calibrated at Dev-time using test data (Section 7)
and refined at Ops-time with the monitoring data from the production environment
(Section 9). The incremental calibration (Section 7) estimates the PMPs, such as the
resource demand, considering parametric dependencies. If necessary, the adaptive opti-
mization of PMPs can be activated to estimate complex dependencies (Voneva et al,
2020). The processes mentioned in this paragraph keep the Repository Model (A)
up-to-date at both Dev-time and Ops-time.

Regarding the System Model (B), we provide a semi-automatic extraction at
Dev-time based on static analysis of source code (Section 5.5) and automatic updates
at Ops-time based on dynamic analysis of monitoring data (Section 9). CIPM also
updates the Resource Environment Model (C) based on the dynamic analysis and
integrates the dynamic analyses of the iObserve approach (Heinrich, 2020) to update
the Allocation Model (D) and Usage Model (E) (Section 9).

In combination, CIPM continuously updates the aPM parts (A) - (E) to keep
them consistent with the running system. The following Section 4.2 describes how we
integrate the CIPM processes into a DevOps pipeline (C6).

4.2 Model-based DevOps Pipeline
DevOps practices aim to close the gap between development and operations by
integrating them into one reliable process (IEEE, 2021). We integrate an aPM into this
process to achieve a Model-based DevOps (MbDevOps) pipeline (C6) that updates
the aPM (PInconsistency,PInaccuracy). This enables AbPP during DevOps-oriented
development.

The MbDevOps pipeline (shown in Figure 4) starts on the “development” side with
the CI process (Meyer, 2014) that merges the source code changes of the developers.
CI triggers the first process: CI-based update of software models (1) (Section 5). This
process updates a source code model in the VSUM of Vitruvius (1.1) (Section 5.2).
Then, predefined CPRs in Vitruvius respond to the changes in the source code
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by updating the Repository Model (1.2) (Section 5.3). Similarly, CPRs update the
Instrumentation Model (IM) (1.3) with new probes corresponding to recently updated
parts of the Repository Model to calibrate them later (Section 5.4). Besides, the
first process extracts the System Model semi-automatically (1.4) (Section 5.5). The
second process, the adaptive instrumentation (2), instruments the changed parts of
the source code according to the instrumentation probes in the IM and based on the
source code model(Section 6). The next process is the performance testing (3) with
the instrumented source code. It generates the necessary measurements for calibration.
The pipeline divides these measurements into an 80 % training and 20 % validation
set for cross-validation (Xu and Goodacre, 2018). Employing the training set, the
incremental calibration (4) estimates the PMPs with parametric dependencies and
enriches the Repository Model with them (Section 7). After the calibration, the
pipeline starts the self-validation (5) with the validation set to evaluate the calibration
accuracy (Section 8). If the resulting aPM is deemed accurate, developers can use it
to answer performance questions using AbPP (6). If not, they can either change the
test configuration to recalibrate the aPM again or wait for the Ops-time calibration.
Answering what-if performance questions using AbPP instead of intensive performance
tests reduces both the effort and costs of performing this prediction before the operation.

The “operation” side of Figure 4 starts on the continuous deployment (7) in
the production environment. The Monitoring (8) in the production environment
generates the required runtime measurements in a customizable time interval. These
measurements are grouped and sent to the subsequent processes: self-validation (9) and
Ops-time calibration (10). The self-validation (9) is an essential process to improve
the accuracy of the aPM (Section 8). It compares the monitoring data and monitored
simulation results to validate the estimated aPM. The result of self-validation is
used as input to the Ops-time calibration and to manage the monitoring overhead.
If the aPM is not accurate enough, the Ops-time calibration process recalibrates
inaccurate parts based on the feedback of the self-validation (e.g., by updating PMPs of
the Repository Model, Resource Environment Model, System Model, Allocation
Model, or Usage Model (Section 9)). Moreover, the self-validation deactivates the fine-
grained monitoring of accurate parts. In addition to being triggered after a source code
commit as described before, the self-validation (9) and calibration at Ops-time (10)
are also triggered frequently according to a customizable trigger time to respond to
possible Ops-time changes and improve the aPM accuracy with new monitoring data.
The resulting model can be used to perform model-based analyses (11) (e.g., model-
based auto-scaling). Besides, up-to-date descriptive aPMs can support the development
planning (12) by increasing the understandability of the current version, modeling and
evaluating design alternatives and answering what-if questions.

Sections 5-9 describe the new processes marked as contributions in Figure 4.
Section 5 and Section 6 highlight the primary contributions C1 and C2. Sections 7-9
delve into previously published contributions (C3, C4, and C5) to offer a comprehensive
overview of the CIPM concept.
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Fig. 5: CI-based update of the aPM.

5 CI-based Update of Software Models
Section 5.1 describes the concept of C1 that automatically maintains the consistency
between an aPM and software models at Dev-time addressing PCost and PInconsistency.
This includes the extraction of the initial models based on the considered initial commit
of the CI and the automatic updates in response to subsequent commits.

The realization of C1’s concept updates the following four models in response to
the CI of source code by (A) statically analyzing the source code and (B) executing
predefined CPRs within the Vitruvius platform.

• The Source Code Model in the VSUM of Vitruvius based on (A) (Section 5.2).
• The Repository Model in the VSUM of Vitruvius based on (B) (Section 5.3).
• The Instrumentation Model in the VSUM of Vitruvius based on (B)

(Section 5.4).
• The System Model based on (A) (Section 5.5).

5.1 Concept of the CI-based Update
In the following, we describe the concept behind C1 to maintain the consistency between
software models after source code changes. The process steps are depicted in Figure 5.

As mentioned in Section 2.3, Vitruvius itself is a delta-based consistency approach,
i.e., it requires a sequence of changes (deltas) as input. Thus, so far, its direct use
required specialized editors to record and output a sequence of changes. However,
popular available code editors cannot produce such a change sequence. Therefore, CIPM
extracts the source code changes from version control systems to allow developers to
use their own external and preferred tools for development and version management.

To the best of our knowledge, our approach is the first one to bridge this gap
between state-based version control in source code repositories and delta-based multi-
view consistency preservation, increasing the applicability of model-based consistency
preservation for source code. In addition to the overall process detailed below, the
conceptual novelties are specifically the parsing, component detection, CPRs for the
aPM, and the CPRs for the IM.
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Parsing
At first, developers commit their (source code) changes to a version control system’s
repository, which triggers the CI pipeline of CIPM. Next, a parser reads all source
code files with the latest changes from the repository. It generates a source code model
containing the developers’ recent changes.

Usually, there are multiple source code files. If one source code model was created
for every file, it would be challenging to extract the changes. For instance, changes in
two models can have cyclic dependencies to each other so that the two models need to
be considered at the same time. As a result and novelty, our approach consolidates
the complete source code into one single source code model that allows to integrate it
into the Vitruvius platform.

Component Detection
The parsing process may not provide additional information from further sources
(e.g., from file structures or configuration files), especially when a source code parser
is applied. Such information is crucial for the model-based detection of components
within Vitruvius because such additional information can support or enable the
component detection. To tackle this challenge, we introduce a novel pre-processing
step after parsing the recent commit. This component detector enhances the source
code model by incorporating information about the components based on different
factors, for example, the file structure of the source code or configuration files.

Change Extraction
For the extraction of a change sequence in CIPM, the source code model extended
in the last step is compared state-based to the source code model in Vitruvius’s
VSUM which corresponds to a previous commit. The state-based comparison consists
of these extendable phases (Brun and Pierantonio, 2008): calculation (divided into
matching and differencing) and representation. In the matching phase, elements from
both models are compared to find related elements. Afterward, the differencing phase
calculates the changes between related model elements. These changes are represented
as Vitruvius changes.

Vitruvius does not specify how the matching is performed (Klare et al, 2021).
Therefore, we provide custom language-specific matching algorithms (Kolovos et al,
2009a) to Vitruvius. These algorithms consider the model structure and model
element types, representing a novel advancement in accurately matching source code
elements within Vitruvius.

Change Propagation
The changes obtained from the state-based comparison consist of atomic edit operations
on which the CPRs operate. Additionally, they describe how the source code model in
the VSUM can be transformed into the recent source code model. Thus, the changes
are sorted so that the creation of elements happens before references to the elements are
added, and Vitruvius applies the sorted changes. Consequently, the change sequence
is utilized to update the source code model in the VSUM of Vitruvius. This triggers
the CPRs for the aPM and IM.
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CPR for the aPM
The CPRs for the aPM focus on (1) the technology-specific detection of components
and interfaces, (2) addition, update and deletion of elements, and (3) behavior recon-
struction so that the aPM can represent the software architecture as close as possible
imagined by the developers.

Regarding the detection of components and interfaces (1), our approach employs
the information from the source code model (potentially enhanced by the component
detector) to find the components and their interfaces. As these CPRs are only intended
to detect new elements in the source code, further CPRs add them and other elements
to the aPM (2). Within these CPRs, the components are connected with the interfaces
they provide and require. Here, a challenge in preserving the consistency between the
source code and aPM is the order of aPM changes: components and interfaces, for
example, need to be created first before they are connected. In general, the structural
parts are followed by the behavioral parts. Addressing this challenge, our CPRs ensure
this order. To the best of our knowledge, this ordering of changes for the aPM is novel.

Moreover, there are CPRs which update or delete elements in the aPM (2) if the
corresponding elements in the source code change. Finally, behavioral parts in the
aPM are reconstructed (3). In addition, we maintain the mapping between changed
source code statements and their related behavioral parts with Vitruvius.

CPR for the IM
Based on the behavior reconstruction, we propose novel CPRs that update the IM to
capture all behavioral parts that have changed in the recent commit. As the CPRs
react to the changes in the aPM, they are independent of the source code model.
Again, we employ Vitruvius to establish a mapping between the behavioral parts
and probes in the IM. This mapping in combination with the mapping between source
code statements and behavioral parts enables the consistency preservation between an
aPM and measurements generated by instrumented code.

The information from the IM is later employed in the adaptive instrumentation
(Section 6). Additionally, software architects and the self-validation process can add
deactivated probes to the IM. The self-validation can activate these new probes if their
related PMPs are not accurate enough.

System Model Extraction
At last, the System Model is extracted, capturing the system’s composition by detailing
how the components in the Repository Model are instantiated and assembled. The
System Model is essential for enabling AbPP to guide design decisions at Dev-time.
The System Model extraction at Dev-time is semi-automated (Monschein et al, 2021),
saving time and effort compared to manual creation.

First, we generate a unified structure called Service-Call-Graph (SCG) based on
the models in the VSUM. The SCG describes “calls-to” connections between services
including associated resource containers on which the respective services are executed.
It is a directed graph where a node consists of a service and resource container. An edge
indicates that one service on a particular container calls another service on another
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container. By introducing the SCG, we employ a data structure that is independent of
the underlying programming languages and applicable in different situations.

Second, we extract the System Model based on the SCG. It starts by modeling
the boundary interfaces that the system provides. The user (architect or developer)
determines these interfaces. Then, the Repository Model is searched for components
that provide the selected interfaces. If more than one component provides the same
interface, the user is asked to choose the correct one. For a valid System Model, the
required interfaces originating from the provided components need to be satisfied.
Therefore, the SCG is traversed to detect all services called by the services of the
provided interfaces. As before, the components providing the called services are detected
based on the Repository Model so that the required interfaces can be connected with
the related provided interfaces. Recursively, each required interface is satisfied until
none is left.

5.2 Realization of the Source Code Model Update
CIPM employs source code models which represent the source code one-to-one so that
they can be integrated into Vitruvius. Currently, we provide metamodels and support
for the programming languages Java and Lua (Mazkatli et al, 2023). We focus on the
Java model as an example because the TeaStore is implemented in Java (TeaStore-Git,
2023). The following excerpts and examples are simplified.

Java Programming Language
For Java models, we build upon the existing Java Model Parser and Printer (JaMoPP)
which provides a Java metamodel (Heidenreich et al, 2010). We extended this meta-
model with new features to enable the support for the Java versions 7-15 including
lambda expressions, modules, and others (Armbruster, 2022). Moreover, we imple-
mented a new parser to generate Java models from source code and a new printer
to output the models as code again. More details on our JaMoPP extensions can be
found in (Armbruster, 2022)1.

Java source code contains references between different elements (e.g., a class
references the interface it implements) which also extend into the source code’s
dependencies. References can be reflected in the Java models. In order to generate
them, CIPM provides two options. When applying the first option, the source code
is compiled before it is parsed. This allows to obtain and include the dependencies.
Alternatively, for cases where compiling the source code is not feasible, the second
option uses a recovery strategy which creates model elements for references to missing
dependencies (Armbruster et al, 2023).

Figure 6 displays an excerpt from the Java metamodel. It contains elements to
represent Java classes and interfaces as specializations of Java types. Types in turn
include their declared members, for instance, methods or fields.

We illustrate the Java models with parts of the Recommender microservice code
from the TeaStore (TeaStore-Git, 2023). Listing 1 shows an excerpt of the code: The
IRecommender interface allows to train a recommender and to recommendProducts.

1The source code is available on https://github.com/MDSD-Tools/
TheExtendedJavaModelParserAndPrinter.
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Fig. 6: Excerpt from the Java metamodel highlighting parts to represent interfaces,
classes, and their members.
The AbstractRecommender serves as a default implementation, which delegates the
actual recommendations to the execute method. For the presented code, Figure 7
displays an excerpt from the Java model conforming to the metamodel excerpt shown
in Figure 6.

To achieve the update of the source code model in the VSUM, we perform a state-
based comparison of the Java model generated by the parser and the Java model
in the VSUM. The first (i.e., matching) phase aims to find and relate all elements
from both models which are considered equal. Because the default similarity-based
matching algorithm (Kolovos et al, 2009a) in Vitruvius’s implementation resulted
in insufficient matches (e.g., elements without a match although there is an equal
element, or matches in which the elements are not equal), we decided to apply a custom
language-specific matching algorithm. For Java, we reuse an existing hierarchical Java-
specific matching algorithm (Klatt, 2014) that we extended to be compatible with Java
7-15. This matching algorithm considers the specific properties and structures of the
Java language to provide an accurate matching. For example, two classes are only equal
if they are located in the same package and have the same name. After the elements
have been matched, the differences and change sequence for Vitruvius are calculated.

1 public interface IRecommender {
2 public void train(List orderItems, List orders);
3 public List recommendProducts(Long userid, List currentItems); }
4
5 public abstract class AbstractRecommender implements IRecommender {
6 public void train(List orderItems, List orders) {}
7 public List recommendProducts(Long userid, List currentItems) {}
8 protected abstract List execute(Long userid, List currentItems);
9 }

Listing 1: Excerpt from the Recommender code.

Lua Programming Language
For Lua, we extended an existing Lua grammar from which we obtain a metamodel,
parser, and printer (Mazkatli et al, 2023). Additionally, we defined and implemented a
custom language-specific matching algorithm for Lua-based applications.

5.3 Realization of the Repository Model Update
In this process, CPRs update the Repository Model according to the changes on the
source code model. We base the CPRs for Java on the CPRs defined by the Co-evolution
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Fig. 7: Excerpt from the Recommender Java model.

approach (Langhammer, 2017) that we extended for our applications. The extension
is mainly related to the (1) technology-specific detection of components and interfaces,
(2) addition, update, and deletion of elements, and (3) behavior reconstruction in the
form of a SEFF reconstruction.

For the detection of components and interfaces (1), we consider technologies for the
implementation of microservice-based applications. As a result, the component detector
aims to find all microservices in order to generate a component for each microservice.
Due to its access to the source code and configuration files, the component detector
looks for sets of classes which are complemented by a Docker and build file (e.g., a
pom.xml file for Maven). In this case, it identifies a set of classes as a microservice since
the classes are built into one artifact and deployed as one. Parts of the Repository
Model affected by the discovered microservice can be extracted fully automatically.

In addition, CIPM also supports cases where information is missing and consistency
can only be restored semi-automatically. If there is only a build file without a Docker
file for a set of classes, the set of classes is considered as a component candidate, and
the developer is asked to decide whether the candidate is a component or not. When
the developer decides that a component candidate is a component, they also determine
what the component represents: a microservice or a regular component. This decision
is stored and reused in subsequent executions of the CPRs to eliminate the need to
ask the developer again.

While the CPRs focus on microservices, we allow the discovery of other notions
of components. In our current implementation, if a set of classes resides in a specific
pre-defined package, it is considered as a regular component.

After all components have been identified, they need to be encoded in the Java mod-
els so that the CPRs within Vitruvius can create the components in the Repository
Model. As a consequence, a Java module is created for each component. Then, our
CPRs map each Java module to a corresponding component in the Repository Model
and, consequentially, generate a component for each new module as illustrated in
Algorithm 1.
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Moreover, we defined CPRs that detect the interfaces of microservices. Concretely,
we implemented CPRs for two technologies as a first step because these technologies are
used in our evaluation. One of the technologies is the Jakarta RESTful Web Services. In
its context, Java classes that are annotated with @Path constitute an API (Contributors
to Jakarta RESTful Web Services, 2020) so that an interface in the Repository Model
is created for such an annotated class. Regarding regular components, we use their
public Java classes and interfaces to model the interfaces in the Repository Model.
The pseudocode in Algorithm 2 represents the CPRs for the interface detection.
Algorithm 1 Pseudocode for the CPR updating the Repository Model after adding
a new module.
Require: New module added to Java model
1: function upateComponents(module)
2: component ← createComponent(module)
3: component.name ← module.name
4: addToRepositoryModel(component)
5: end function

Algorithm 2 Pseudocode for the CPR updating the Repository Model after adding
a new class.
Require: New class added to Java model
1: function updateInterfaces(class)
2: if class.isAnnotatedWith(Path) or
3: (class.isPublic() and componentOf(class).isRegular()) then
4: interface ← createInterface(class)
5: interface.name ← class.name
6: addToRepositoryModel(interface)
7: end if
8: end function

For further illustration, we extend the simplified example from the Recommender
microservice in Section 5.2. As depicted in Figure 8, the Java model MJ1 contains
at least the IRecommender interface for which the pre-processing step detects the
Recommender microservice because it has a Docker and pom.xml file (TeaStore-
Git, 2023). Thus, a new module in the Java model is generated. The state-based
comparison of the Java models with and without the Recommender module results in
the ordered changes C1. These changes transform the Java model MJ1 into MJ2 with
the Recommender module and include the creation of the module, adding it to the
Java model, setting its name, and adding a reference to the IRecommender interface.
The second change (addition of the module to the model) triggers the CPR described
in Algorithm 1. Its execution induces the changes C2 to keep the Repository Model
consistent with the changes C1. Per definition, the changes in C2 create a component,
assign the module name as the component name, and add it to the Repository Model.
As a consequence, the previous Repository Model MP 1 without a Recommender
component is enhanced with such a component into the Repository Model MP 2.

While the addition of elements is mostly covered by the previously described CPRs,
we also implemented CPRs for the update and deletion of elements (2). On one hand,
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Fig. 8: Simplified example for the execution of the CPR which adds a component in
the Repository Model for a Java module.
if an element in the source code model is removed, corresponding elements in the
Repository Model are also removed. For example, if a set of classes relating to a
component is removed, the component and its interfaces are deleted. On the other
hand, CPRs for changes consider, for instance, renames (and rename corresponding
elements) or changes in methods with a corresponding SEFF to update it.

Regarding the SEFF reconstruction (3), CPRs respond to changes in method bodies
(e.g., adding or changing statements) by reconstructing the SEFF with an existing
reverse engineering tool (Krogmann, 2012). Our extension to this tool extracts the
mapping between source code statements and their related SEFF actions and stores
them in the Vitruvius correspondence model. The execution of the CPRs also keep
these mappings between the source code and the aPM up-to-date, which is necessary
for the consistency preservation process in Vitruvius on one hand. On the other
hand, we use the mapping for the following two processes: the Dev-time System Model
extraction (Section 5.5) and the adaptive instrumentation (Section 6).

5.4 Realization of the Instrumentation Model Update
For this step, we defined CPRs that react to changes in a SEFF. In these cases, the
CPRs generate or update probes in the IM for every SEFF action that is newly added
or whose corresponding source code statements have changed in the recent commit.
For deleted SEFF actions, the probes in the IM are also removed.

5.5 Realization of the System Model Extraction
In Section 5.5.1, we describe the SCG extraction at Dev-time exemplified for Java.
Subsequently, the example is extended to a more detailed System Model extraction
from the SCG in Section 5.5.2.

5.5.1 SCG Extraction at Dev-time
The extraction of the SCG begins with a code analysis that indicates the invocation
dependencies between Java methods (Vallée-Rai et al, 2010) and builds a method call
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Fig. 10: Example System Model for the TeaStore extracted from its truncated SCG.
graph. Utilizing the mapping between the source code model and the Repository
Model stored in Vitruvius (Section 5.3), the resulting method call graph is transformed
into an SCG including the service calls and their associated components. Figure 9
shows a truncated version of the SCG from our running TeaStore example.

It is important to note that uncertainties may arise during Dev-time. In particular,
in scenarios involving inheritance or conditions, the determination of specific call
paths becomes ambiguous. To address this issue, the SCG extraction at Dev-time
considers all potential execution semantics, leading to conflicts. This happens, for
example, if there are multiple components that provide a certain interface and it is
uncertain at Dev-time which component is actually used at Ops-time (e.g. strategy
pattern). Furthermore, during the development phase, the distribution of services and
components on resource containers in the production environment remains unknown.
Thus, this information is excluded. The conflicts require user intervention for resolution
as discussed in Section 5.5.2. This manual intervention is simplified by presenting all
possible options for resolving a conflict to the user, which makes it easy to identify
potential consequences. For example, if there are several components that provide a
particular interface, the user is given a description of the conflict and can choose from a
list of possible components. Once the desired resolution is selected, it is automatically
applied, eliminating the need for the user to perform the underlying modeling.

5.5.2 Exemplary System Model Extraction from an SCG
As outlined in Section 5.1, the System Model extraction starts with the selection of the
system’s interfaces. From our running example, we choose the CartActions interface,
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which exposes services for purchasing products and managing orders. Then, the
System Model extraction searches the Repository Model for components providing
the interface. In our example, the WebUI component provides the CartActions interface,
and no conflict occurs because it is the only component providing the interface. After
finding the components, instances of the components called assembly contexts are
created and linked to the provided interfaces. Therefore, an instance of the WebUI
component is created and added to the System Model as shown in Figure 10.

For the completion of the System Model, the required interfaces of the added
assembly contexts must be satisfied. Considering the SCG in Figure 9, the service
confirmOrder calls placeOrder. Here, the Registry component is detected based on
the Repository Model. If more than one component had provided the same required
interface, the user would have needed to resolve this conflict. This is not the case for
the Registry component. Next, an assembly context for the component is created
and added as there is none available. Otherwise, the user must resolve another conflict
by deciding whether to use the available assembly context or to add a new one.
Afterward, the extraction continues to satisfy the required interfaces of the recently
added assembly contexts. As a consequence, the required interfaces of the Registry
are satisfied by adding instances for the components providing them (i.e., Auth and
Persistence). Subsequently, the required interface of Auth should be satisfied since
Auth.placeOrder calls Registry.persistOrder as shown in Figure 9. In this case, a
conflict occurs because an instance of the Registry component is already available.
As shown in Figure 10, the user can resolve this conflict by using the existing instance
of the Registry instead of creating a new one. Subsequently, the extraction of the
System Model (see Figure 10) from the SCG (see Figure 9) is completed. Finally, the
decisions made by the users are stored so that they can be reused in future iterations.

To sum up, the system extraction is executed automatically, except for three types
of manual interventions that may occur:

• Selecting the system boundary: Users select the system’s interface through the
available provided interfaces of components.

• Selecting the component type: In cases where multiple component types provide
the same interface, users choose the specific type to include.

• Determining new or existing component instances: Users decide whether to create
a new instance of a component or use an existing one.

6 Adaptive Instrumentation
The adaptive instrumentation2 automatically detects and instruments changed parts of
the source code enabling the calibration of related PMPs. Thus, it minimizes expenses
and potential errors associated with manual instrumentation (PCost) while supporting
the enhancement of PMP accuracy (PInaccuracy). In our running example (Section 3),
if the Auth.placeOrder service is newly added, the adaptive instrumentation injects
monitoring probes to provide measurements for calibrating its PMPs: the resource

2In (Mazkatli et al, 2020), the initial idea of the adaptive instrumentation was introduced without
evaluation. In this paper, we go further by implementing it in a generalizable way, expanding the concept by
considering specific scenarios, integrating it into CI, and providing the first evaluation. This footnote will be
deleted later.
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demands of prepareOrder and finalizeOrder, the number of loop executions, and
the parameters of the Registry.persistOrder and Registry.persistOrderItem
external calls. If the source code of the remaining services has not been changed,
the old estimations of their related PMPs remain valid, and there is no need for
fine-grained instrumentation. Thus, only a coarse-grained instrumentation at the
service level is performed for the self-validation. In the following, we expand upon the
adaptive instrumentation concept introduced in (Mazkatli et al, 2020) to (1) enhance
its generalizability and (2) to propose general solutions for special cases that may
cause compilation errors.

Regarding the enhancement of the generalizability (1), our extension injects instru-
mentation statements at the model level to separate the instrumentation process from
implementation details such as a concrete monitoring tool. In order to support the
monitoring tool independence, we define a measurements metamodel consisting of
monitoring record types which correspond to the probe types defined in the IM:

• A service record monitors the input parameters for parametric dependency inves-
tigation, the caller for building an SCG, the current deployment for updating the
Allocation Model, and the service execution time for the self-validation.

• The internal action record tracks the execution time for internal actions to
estimate the related resource demands.

• A loop action record tracks the number of loop iterations.
• A branch action record monitors which branch is selected for conditional

statements.
The measurement metamodel can be implemented for various monitoring tools.

To implement our specific monitoring records, we use the instrumentation record
language (Jung et al, 2013) of Kieker (van Hoorn et al, 2012). A detailed description
and technical specifications can be found in the appendix (Appendix B).

The adaptive instrumentation process (presented as pseudocode in Algorithm
3) operates on the model level to generate instrumentation statements which are
responsible for capturing the measurements and creating monitoring records. The
process starts by generating the instrumentation code for each probe in the IM based
on the probe type. Subsequently, it injects this instrumentation code into a copy of
the source code model. To identify the appropriate locations for the instrumentation
code, the process relies on the mapping stored in the Vitruvius correspondence
model (Section 5.3). This mapping defines the relationship between the probes in the
IM and SEFF elements as well as the connection between SEFF elements and their
corresponding source code statements.

In certain scenarios, adjustments to the source code are necessary during the
injection of the instrumentation statements to prevent compilation errors. Therefore,
we identify these scenarios and define general solutions for each of them (2). For
instance, instrumentation statements should surround the changed parts of the source
code. Nevertheless, they cannot be added after a return statement. To address this
issue, the return value is stored in a new variable by an assignment statement. Then,
the instrumentation statements follow the assignment so that the final return statement
only gives the new variable back (cf. Appendix C for a code example).
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After completing the injection of the instrumentation code, the instrumented source
code model is ready to be printed and deployed in the test or production environment
to provide measurements for the calibration (Section 7).

Algorithm 3 Adaptive Instrumentation Process
1: function adaptiveInstrumentation(IM, sourceCodeModel, correspondence-

Model)
2: codeModelCopy ← copy(sourceCodeModel)
3: for all probe in IM do
4: code ← generateInstrumentationCode(probe.type)
5: locations ← findInstrumentationLocations(probe, codeModelCopy,
6: correspondenceModel)
7: injectInstrumentationCode(codeModelCopy, code, locations)
8: end for
9: printModel(codeModelCopy)

10: end function

11: function injectInstrumentationCode(codeModelCopy, code, locations)
12: if requiresAdjustments() then
13: adjustSourceCode(codeModelCopy, code, locations)
14: . Handles cases such as post-return injections.
15: end if
16: addInstrumenationCode(codeModelCopy, code, locations)
17: end function

7 Incremental Calibration of Performance Model
Parameters

After monitoring the adaptively instrumented source code, CIPM conducts the incre-
mental calibration of PMPs by analyzing the resulting measurements. The calibration
is incremental because only inaccurate PMPs are calibrated based on adaptive moni-
toring, instead of monitoring the entire system (PMonitoring−Overhead) and calibrating
all PMPs from scratch (PCost). Besides, this calibration aims to facilitate performance
predictions for unseen states by considering impacting parameters (PInaccuracy). This
capability enables the evaluation of design alternatives from a performance perspective,
thereby supporting design decision-making.

As described in Section 4.2, this process can be applied at Dev-time using mea-
surements from a test environment and at Ops-time using measurements from the
production environment. Applying this process at Dev-time allows for AbPP to assess
design alternatives such as deployment plans instead of relying on expensive test-
based predictions (PCost). However, the PMPs can be calibrated for the first time at
Ops-time as Section 9 explains.
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The incremental calibration of PMPs within abstract behaviors (SEFFs) considers
the parametric dependencies described in Section 2.2. The current implementation
considers the impact of the input parameters’ properties, such as their values, the
number of elements in a list parameter, or the size of a file parameter (Mazkatli
et al, 2020). The incremental calibration starts with calibrating SEFF loops, branch
transitions, and the parameters and return values of external calls. Calibration of
internal actions follows and requires traversing the SEFF control flow, relying on the
aforementioned estimated parameters. Resource demand estimations through adaptive
monitoring may lack necessary measurements, as not all services are monitored.
To overcome this challenge, the incremental calibration complements the available
measurements with predicted values derived from the previously calibrated PMPs.

For instance, the calibration of the PMPs of placeOrder shown in Figure 3 starts
with calibrating the LoopAction and examining whether there is a correlation between
the monitored iteration number and the input parameter items. In this scenario, a
relationship is indeed identified, as the loop iterates based on the number of items.
The calibration of both external call actions (persistOrder and persistOrderItem)
follows. The exploration of parametric dependencies also covers the relation between
the arguments of each ExternalCallAction and input data, as well as data flow
(Voneva et al, 2020). Afterward, CIPM estimates the resource demands of both internal
actions (prepareOrder and finalizeOrder) based on available monitoring data and
previous predictions. Similar to other PMPs, CIPM investigates whether the estimated
resource demands are dependent on the input parameter items. CIPM uses statistical
analysis to learn parametric dependencies (Mazkatli et al, 2020). It also optimizes
them based on a genetic algorithm if necessary (Voneva et al, 2020). As a result, CIPM
calibrates all PMPs concerning influential variables expressed as stochastic expressions.
This enables performance predictions for an unknown workload, such as estimating
the performance during an upcoming offer of discounts where the order of more items
is expected. This is feasible in our scenario since the performance parameters (e.g.,
the loop) are calibrated as a stochastic expression relating to the items variable.

8 Self-Validation
The self-validation (Mazkatli et al, 2020; Monschein et al, 2021) aims at continuously
evaluating the accuracy of the performance predictions related to the updated aPM
(PInaccuracy). To determine the prediction accuracy of a model, a baseline is required.
CIPM uses measurements from the real system as a reference, which are available from
the monitoring in test environments at Dev-time and the production environment at
Ops-time.

By comparing the simulation data of the models with the monitoring data, it can
be assessed how well the models represent the actually observed system in its current
state. In case of high deviations, it is possible to intervene. The simulation results
are grouped into so-called measuring points (i.e., the points at which measurements
were taken). For example, a typical measuring point is the response time of a service.
To align simulation results with monitoring data, we map the monitoring data to
corresponding measuring points based on the mapping between the Repository Model
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and the source code. After this mapping, the self-validation compares the resulting two
distributions with three metrics to assess the proximity of simulation results to actual
measurements. For the comparison, we employ the Wasserstein distance (Santambrogio,
2015), Kolmogorov–Smirnov test (Dodge, 2008), and conventional statistical measures
(e.g., average and quartiles). More details on the metrics are provided in Section 10.2.2.

The metrics give the user feedback on the accuracy of the aPM. If the model is
deemed accurate, developers can trust it to answer what-if performance questions.
Otherwise, the self-validation identifies inaccurate parts that need to be recalibrated.
The re-calibration can access the calculated metrics and use them to reduce the
deviation and improve the accuracy of the aPM. If the self-validation is executed in a
test environment and the re-calibration fails to increase the accuracy, the tester may
change the test configuration to obtain more representative measurements. Another
option is to wait for the Ops-time calibration, where measurements based on the real
usage of the system can be continuously taken until the accuracy is acceptable.

The resulting metrics are also utilized to adapt the monitoring granularity. Moni-
toring specific services can be turned off if a predefined accuracy threshold is reached,
reducing monitoring overhead. Contrarily, the self-validation may trigger the fine-
grained monitoring of services if the accuracy of their performance parameters is
deemed insufficient. If inaccurate parameters are not instrumented, new probes are
added to the IM for recalibration after the next deployment. This ensures a balance
between the aPM accuracy and necessary monitoring overhead.

9 Ops-time Calibration
The goal of the Ops-time calibration (Monschein et al, 2021) is to keep the consistency
between the aPM and monitoring data (PInconsistency) by updating the aPM based on
monitoring data from the production environment. Thus, we utilize a transformation
pipeline similar to iObserve (Heinrich, 2016), which is summarized in Figure 4. It con-
sists of seven transformations that are organized in a tee and join pipeline architecture
(Buschmann, 1998).

The first transformation within the pipeline, TP reprocess, filters monitoring data
and converts them into suitable data structures. Besides, the monitoring data is divided
into a set which is used as input for the following transformations (training set) and a
second set that is used for the validations of the architecture model (validation set).

Afterward, TResourceEnvironment updates the resource environment of the corre-
sponding aPM with CPRs based on the Vitruvius platform (Klare et al, 2021). Next,
TSystemComposition extracts a SCG from the monitoring data at first (Monschein et al,
2021). Then, using the SCG as input, it applies the same procedure as at Dev-time to
extract a System Model (Section 5.5.2). The subsequent transformation TRepository

calibrates inaccurate PMPs discovered by the self-validation. The calibration process
is similar to the process at Dev-time (Section 7) and optimizes the PMPs according to
the validation results either by regression analysis or by a genetic algorithm. In parallel
to the TRepository transformation, TUsage analyzes the user behavior and updates the
Usage Model based on iObserve (Heinrich, 2020).
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The final transformation of the pipeline, TF inalize, executes the self-validation
(Section 8). Based on the obtained results and configurable criteria, the granular-
ity of the monitoring is adjusted (i.e., fine-grained monitoring can be activated or
deactivated).

10 Evaluation
In our evaluation, we primarily focus on evaluating the new contributions, namely C1,
C2, and the scalability when applying C4 and C5. To avoid an excessively long paper,
experiments evaluating C3, C4, and C5 in detail (Mazkatli et al, 2020; Voneva et al,
2020; Monschein et al, 2021) have been excluded from this paper. However, we provide
a summary of their results regarding the prediction accuracy and monitoring overhead
to discuss the applicability of the extended MbDevOps pipeline (C6).

We adopt the Goal-Question-Metrics approach of van Solingen et al (2002). Based
on defined evaluation goals, we derive evaluation questions (EQs) that can check
whether the described goals are reached or not (cf. Section 10.1). In Section 10.2, we
define metrics that can answer the EQs. In Section 10.3, we introduce the cases used for
the evaluation and sum up the goals, questions, metrics, and cases for evaluating our
contributions (C1-C6) (cf. Table 1). Afterward, we performed goal-oriented experiments
to calculate the metrics and answer the EQs (cf. Section 10.4).

The results of our evaluation are described in three subsections that are related to
the evaluation goals: the accuracy of AbPP with the updated aPMs in Section 10.5,
the required monitoring overhead in Section 10.6, and the scalability of the approach
in Section 10.7. Finally, we discuss the threats of validity in Section 10.8 and the
results in a more general way in Section 10.9.

10.1 Evaluation Goals and Questions
The main goal of the evaluation is to investigate the applicability of the approach.
First, to be applicable in practice, an approach has to make predictions that are
reliably close to the actual performance to support developers in their decisions. Thus,
our first goal is to assess the accuracy (Goal 1, G1) of the approach, which includes
the accuracy of the models (G1.1) and the accuracy of the resulting AbPP (G1.2).
Second, especially when integrating our approach into CI pipelines in practice, the
monitoring overhead (G2) and scalability (G3) of the approach are essential to quickly
remove possible inconsistencies and enable a fast reaction to potential performance
issues without unnecessary strain on system resources.

We derive the following EQs to clarify whether the aforementioned goals are
achieved:

• G1.1: Accuracy of the incrementally updated models. The accuracy of the
incrementally updated models relates to whether the correct model elements have
been created and updated by CIPM. Thus, EQ-1.1, EQ-1.3, and EQ-1.4 ask
for the accuracy of updating the Source Code Model (SCM), IM, and different
models of the PCM. Regarding the novel CI-based consistency preservation (C1),
we additionally investigate whether the granularity of the commits affects the
accuracy in EQ-1.2. Finally, accurate instrumented source code is a precondition
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for accurate predictions. Thus, we investigate this aspect in EQ-1.5. The resulting
EQs are:
– EQ-1.1: How accurately does CIPM update the structure of the Repository

Model and its related models within the VSUM according to a Git commit?
– EQ-1.2: How accurately does CIPM update the VSUM models when it
aggregates multiple commits and propagates them as a single commit? An
accurate update of models by aggregating multiple commits allows users to
choose less frequent executions of CIPM, for example, nightly builds only.

– EQ-1.3: How accurately does CIPM extract the System Model at Dev-time?
– EQ-1.4: How accurately does CIPM update the Resource Environment

Model, the Allocation Model, and the System Model at Ops-time when
applying software adaption scenarios?

– EQ-1.5: How accurately does the adaptive instrumentation instrument the
source code based on the IM?

• G1.2: Accuracy of AbPP using the updated aPMs. The main aim of
CIPM is to enable accurate AbPP. Here, we study how accurate the predictions
are when the models are calibrated at Dev-time (EQ-1.6) and at Ops-time
where the self-validation updates PMPs based on measurements from production
environments (EQ-1.7). Additionally, for more trustworthy models that are valid
beyond the setting in which they have been calibrated, CIPM supports parametric
dependencies so that we validate their impact on the accuracy (EQ-1.8). The
resulting EQs are:
– EQ-1.6: How accurate is the AbPP using the incrementally updated aPM

at Dev-time?
– EQ-1.7: How accurate is the AbPP using the incrementally updated aPM
at Ops-time?

– EQ-1.8: How accurately can CIPM identify parametric dependencies, and
to what extent can their estimation improve the accuracy of the AbPP?

• G2: Monitoring Overhead. To reduce the monitoring overhead, CIPM uses
adaptive instrumentation and adaptive monitoring. Thus, we investigate how well
these two features can reduce the overall monitoring overhead. The resulting EQs
are:
– EQ-2.1: To what extent can the adaptive instrumentation reduce the
instrumentation probes?

– EQ-2.2: To what extent does the adaptive monitoring at Ops-time help to
reduce the monitoring overhead?

• G3: Scalability of the transformation pipeline. The scalability of the
MbDevOps pipeline during Dev-time is not critical as it can be scheduled nightly.
Thus, we only report how long the CIPM pipeline takes at Dev-time for various
cases (EQ-3.1). In contrast, scalability during operation is crucial for the appli-
cability of the CIPM approach, and its implementation should not impact the
performance of the running system. Thus, we study the scalability of CIPM at
Ops-time in more detail with varying numbers of model elements and monitoring
records (EQ-3.2). The resulting EQs are:
– EQ-3.1: How long does the CIPM pipeline take to execute at Dev-time?
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– EQ-3.2: How does the transformation pipeline of CIPM scale at Ops-time?

10.2 Evaluation Metrics
The evaluation metrics can be divided into the following three categories. First, we need
metrics to compare models to assess their accuracy, usually by a comparison against
reference models. Second, monitoring measurements need to be analyzed, which are
mostly characterized as distributions of numerical values. Third, we require a metric to
estimate the quality of the update of the IM which can be reduced to a classification
problem.

10.2.1 Model Conformity
The Jaccard similarity Coefficient (JC) (Eckey et al, 2002) calculates the similarity of
two sets (A and B) as follows:

JC(A,B) = |A ∩B|
|A ∪B|

(1)

The JC ranges from 0 to 1. A higher value indicates a greater similarity between the
two sets. The JC is 1 if the sets are identical and 0 if they have no common element.

As models can be considered to be sets of elements for the purpose of evaluating
accuracy (Heinrich, 2020), we also apply this concept in our case. Therefore, we utilize
algorithms that perform pairwise comparisons of model elements to find equal elements
between two models A and B. This comparison determines the equivalence of two
model elements based on different factors. At first, they need to have the same type
(i.e., two elements with different types can never be equal). Then, depending on the
type of the elements, further properties are checked. This can include: both elements
need to have the same name in case of named elements, certain referenced elements
need to be equal, or the elements need to be embedded in an equal model structure
(e.g., the same position in a list). Consequently, the comparisons result in a set of
equal model elements which we consider as the intersection of the models (A ∩B). In
contrast, the models’ union (A ∪B) consists of the equal elements and elements from
A and B without an equal element in the other model. By calculating the intersection
and union of two models, we can directly determine the JC for both models.

We implemented the JC to evaluate the equality of the Java models (cf.
Section 5.2), Lua models (Burgey, 2023, p. 31), Repository Models (Armbruster,
2021, p. 37), System Models, Allocation Models, and Resource Environment
Models (Monschein, 2020, p. 69).

10.2.2 Distribution Comparison
To compare distributions when evaluating the accuracy of performance predictions,
we use three types of metrics: conventional statistical measures (Upton and Cook,
2008), non-parametric tests (Kolmogorov-Smirnov-Test (KS)) (Sheskin, 2007), and
distance functions (Wasserstein) (Mémoli, 2011). These types of metrics were chosen
deliberately to address diverse aspects; each having unique advantages and flaws. This
multi-metric approach ensures a comprehensive evaluation, considering interpretability,
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robustness, and sensitivity to different distribution characteristics. The combination of
these types of metrics allows a thorough comparison of the distributions of monitored
response times (reality) with simulated response times (prediction).

The Kolmogorov-Smirnov-Test (KS) (Dodge, 2008) calculates the maximum dis-
tance between cumulative distribution functions. The minimum is 0 if both distributions
are perfectly identical. When the value approaches 1, it signifies an increasing dissimi-
larity between the observed distributions. The KS test is sensitive to the shifts and
shapes of the distributions, which may produce undesirable false positive alerts (high
values) (Huyen, 2022). For example, the KS test may result in a high value if two
distributions with the same mean have different shapes. Thus, we use the KS test in
combination with other metrics in our evaluation.

Wasserstein (Mémoli, 2011) measures the distance between distributions, describing
the effort to transform one into the other. An advantage of this metric is that, unlike
the KS test, it is insensitive to the distributions’ shapes. A drawback, however, is that
the Wasserstein distance is computationally expensive to calculate, and its result is an
absolute number that cannot be easily interpreted without a baseline.

Statistical measures, such as the mean or quartiles, are also calculated for both
distributions.

In our research, these three metrics are employed to quantify the accuracy of AbPP
by comparing predicted performance with measured performance. The comparison
centers on the cumulative distribution functions, depicting the predicted service
response times against the measured service response times. By employing these metrics,
an overview of the dissimilarities between the predicted and actual distributions can
be obtained, contributing to the assessment of AbPP accuracy.

10.2.3 F-Score
The F-Score is a measure to assess the quality of a binary classification (Derczynski,
2016). Its calculation (Goutte and Gaussier, 2005) is based on the number of correctly
classified entities (True Positives if they belong to the given class and True Negatives
if they do not belong to the class) and incorrectly classified entities (False Positives if
they are assigned to the class and do not belong to the class and False Negatives if
they are not assigned to the class and belong to the class):

F − Score = (1 + β2) ∗ TP
(1 + β2) ∗ TP + β2 ∗ FN + FP

(2)

We use the F1-Score (F-Score with β = 1) to evaluate the update of the IM. Thus,
we take the Repository Model and IM after executing the CI-based update of the
aPM. For these models, we automatically count every SEFF and updated action with a
corresponding probe in the IM as True Positive. In contrast, every SEFF and updated
action without a corresponding probe in the IM is counted as False Negative. At last,
every probe in the IM without a corresponding SEFF or action is a False Positive.
Based on these numbers, we can calculate the F1-Score.

Figure 11 displays an exemplary Repository Model with two SEFFs of which each
has one SEFF action. All elements were added with the recent changes. The IM contains
two probes related to elements in the Repository Model and one probe without
any relation. This example has two True Positives because of the two corresponding
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Correspondence

Model

Repository Model

Instrumentation Model

p1: Probe

p2: Probe

p3: Probe

A: SEFF

B: SEFF

IA1: InternalAction

IA2: InternalAction

Fig. 11: Example of a Repository Model and IM with their correspondences.

SEFF elements in the Repository Model and probes in the IM. The number of
False Negatives is two (Two SEFF elements without a corresponding IM probe), and
the number of False Positives is one (One IM probe without a corresponding SEFF
element). As a result, the approximate F1-Score is 0.5714.

10.3 Evaluation Cases
In the following paragraphs, we provide details on the evaluation cases: TeaStore (von
Kistowski et al, 2018) which is introduced in Section 3, Common Component Modeling
Example (CoCoME) (Heinrich et al, 2015a), the real-world case “TEAMMATES”
(TEAMATES-Git, 2022), and two Lua-based industrial applications.

CoCoME is a trading system for supermarkets (Heinrich et al, 2015a). It supports
several processes, such as scanning products at a cash desk or processing sales with a
credit card. We used a cloud-based implementation of CoCoME where the enterprise
server and database are running in the cloud.

TEAMMATES is a cloud-based tool to manage students’ feedback with a web-
based frontend and a Java-based backend (TEAMATES-Git, 2022), on which we focus
in the evaluation.

The first Lua-based sensor application was developed by integrating four appli-
cations from the SICK AppSpace3. Its primary function is to capture images with a
camera module, recognize barcodes within these images, and, subsequently, transmit
the barcode information to a database. The second sensor application, also from SICK
AG, is designed for the detection and sorting of objects from images based on their
color. More details on the Lua cases are provided by Mazkatli et al (2023); Burgey
(2023). Table 1 shows in which experiment the cases were used4.

The selection of these cases considered (1) real-life contexts, (2) applicability, and
(3) the objectives of our study. Regarding real-life contexts (1), we aimed to choose
cases with real Git histories and available performance tests. The cases should represent
realistic usage scenarios for benchmarking purposes and for the industry. This ensures
that we evaluate the consistency preservation at Dev-time in real practical settings
of software development. Additionally, we observed the consistency preservation at

3See https://sick.com/.
4More information on the source code, replication packages, and experiments can be found on https:

//sdq.kastel.kit.edu/wiki/CIPM and https://doi.org/10.5281/zenodo.11236139.
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Table 1: GQM-based experimental evaluation of contributions with related cases.
Contribution Experiment Case GQM-G GQM-Q

C1 CI-based Update of
aPMs, including extended
SCM, parser, and CPRs

E1 TeaStore, TEAM-
MATES, Two
Lua-based sensor
applications

G1.1 EQ-1.1,
EQ-1.2

System Model Extraction
at Dev-time

Monschein
et al (2021)

TeaStore,
CoCoME

EQ-1.3

C2 Adaptive Instrumentation E1 TeaStore, TEAM-
MATES

G1.1, G2 EQ-1.5,
EQ-2.1

C3 Incremental Calibration
Process

Mazkatli
et al (2020),
Voneva
et al (2020)

TeaStore,
CoCoME,
Artificial example

G1.2, G2 EQ-1.6,
EQ-1.8

C4 Ops-time Calibration Monschein
et al (2021)

TeaStore,
CoCoME

G1 EQ-1.4,
EQ-1.7

Ops-time Calibration E2 Artificial
examples

G3 EQ-3.2

C5 Self-Validation Monschein
et al (2021)

TeaStore G1.2, G2 EQ-2.2

C6 MbDevOps Pipeline All All All All

Ops-time with real measurements of the system. This provided us insights that are
applicable to consistency preservation during real-world software operation.

For the applicability (2), we required cases written in programming languages for
which we have compatible parsers and printers, as our approach currently operates on
source code models. By extending the parser and printer for Java and implementing
both for Lua, we were able to select cases based on Java and Lua.

Regarding (3), the chosen cases needed to align with the objectives of our study. The
assessment of the CI-based update of aPMs (C1) required cases with real Git histories in
diverse programming languages and technologies. Consequently, we selected TeaStore,
TEAMMATES, and the Lua-based sensor applications. For a comprehensive analysis
of the incremental calibration (C3), we needed open source cases with performance
tests representing realistic contexts. Therefore, we utilized TeaStore and CoCoME, as
they are also well-suited for architecture-based performance prediction approaches.
In the context of the Ops-time calibration (C4 and C5), the use of a distributed
application with containerization facilitates the evaluation of the accuracy of updated
models following changes in the running system architecture. Therefore, TeaStore
as a microservice-based application using Docker was employed in more evaluation
scenarios than CoCoME.

Overall, all aspects of CIPM were evaluated with the TeaStore. However, an
exception is the evaluation of the scalability and adaptive optimization of PMPs.
Their goals necessitated the assessment of worst-case scenarios. Consequently, artificial
examples were employed in these scenarios.

10.4 Experiment Setup
For the evaluation’s primary focus on the new contributions, we conducted two
experiments, E1 and E2. As shown in Table 1, experiments evaluating other aspects of
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Table 2: The cases used by E1.
Case Interval Commits Added Lines Removed Lines

TeaStore

(I) 50 9,553 7,908
(II) 20 264 1
(III) 11 121 134
(VI) 100 215 227

(I)-(IV) 181 10,153 8,270

TEAMMATES

(I) 17,832 114,468 0
(II) 3 154 129
(III) 2 3,249 2,978
(IV) 2 502 340
(V) 20 3,457 1,293

(I)-(V) 17,859 121,830 4,740
Lua-based App 1 (I) 7 862 283
Lua-based App 2 (I) 12 6,651 2,663

C1, C3, C4, and C5 were conducted in previous work. Therefore, we briefly present
their results to provide a comprehensive overview of the CIPM approach, covering
the evaluation of the applicability in terms of accuracy of aPMs (G1.1), prediction
accuracy (G1.2), monitoring overhead (G2), and scalability (G3).

10.4.1 Experiment 1 (E1)
The objective of E1 is to assess the CI-based update of the aPM (C1) and adaptive
instrumentation (C2) and to answer EQ-1.1, EQ-1.2, and EQ-2.1. E1 simulates
the evolution at Dev-time by propagating parts of the Git history to CIPM that, in
turn, updates the aPM accordingly. To achieve this goal, we utilized the four cases
which have Git repositories with a sufficiently long development history: TeaStore,
TEAMMATES, and two Lua-based sensor applications. Table 2 shows the cases and
the considered Git histories.

E1 on TeaStore
We propagate the changes between version 1.1 and 1.3.1 of the TeaStore. The commits
from version 1.1 to version 1.3.1 can be split into four intervals (I) [1.1, 1.2], (II) [1.2,
1.2.1], (III) [1.2.1, 1.3], and (IV) [1.3, 1.3.1] (see Table 2). The first interval (I) consists
of 50 commits, of which 27 commits change 144 Java files with overall 9,553 added and
7,908 removed lines. The remaining commits affect the build, including configuration
files. Interval (II) contains 20 commits, of which 12 commits affect five Java files with
141 added lines and one removed line. Three Java files (123 lines in total) were added.
In interval (III), seven of 11 commits affect four Java files with overall 121 added and
134 removed lines, while nine Java files with overall 215 added and 227 removed lines
are affected by 12 of 100 commits in interval (IV).

The initial commit includes many architectural-relevant changes. By propagating
this commit, an incremental reverse engineering of the source code’s version 1.1 is
performed. Considering interval (I), it contains five architectural-relevant changes and
no changes in the dependencies. The successive commits in interval (II), on which we
concentrate in the following, include three architectural-relevant changes: (A) in the
Auth service (A1) and WebUI service (A2), a new REST endpoint for obtaining the
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readiness has been added, (B) a method corresponding to a SEFF was extended by one
statement, and (C), in a supporting service, a new class representing an interface has
been added which provides functions to control and access log files. Besides, there are
no changes in the dependencies. Both intervals (III) and (IV) contain no architectural-
relevant changes and no changes in the dependencies. Including these intervals allows
for evaluating the efficiency of adaptive instrumentation in reducing instrumentation
probes for the commits without architecturally relevant changes, where fine-grained
instrumentation is deactivated.

To initiate the propagation, we utilize the changes between an empty repository and
version 1.1 allowing CIPM to integrate them within Vitruvius. Then, we perform the
CI-based update of the models based on the commits that transform version 1.1 into
version 1.2. We also execute the adaptive instrumentation after the update process and
repeat the complete procedure for every interval. For every commit, components are
detected by the microservice-based strategy, and a build of the TeaStore is performed.
Only if the build succeeds, the commit is propagated.

In the next step, we evaluate whether the models of the VSUM are correctly updated
based on the changes in a commit. This applies to the (1) Source Code Model (SCM),
(2) the Repository Model (RepM), and (3) the IM. Afterward, we evaluate whether the
instrumented source code is correctly generated (4). Finally, we evaluate the reduction
of the monitoring overhead resulting from the adaptive instrumentation (5).

Regarding (1), an updated source code model in the VSUM shall be in the same
state as if the complete source code model of a commit would have been integrated
into the VSUM. Therefore, the source code of the last commit is parsed to generate a
reference model for the updated one in the VSUM. We compare the updated source
code model with the generated reference (SCM’) by calculating the JC metric.

To evaluate the automatically updated Repository Model (2), we compare it with
a manually updated Repository Model (RepM ′) used as a reference. For example, in
the manual update for (A1) and (A2), a new interface with one method is added for
each new REST endpoint. Furthermore, the WebUI and Auth components provide their
interface and contain a new SEFF for the method. The added statement by change (B)
is included in an internal action and requires no adjustment of the corresponding SEFF.
As a consequence of (C), a new interface is added, provided by the supporting service.
For a further evaluation of the CPRs for the Repository Model, we also propagate
version 1.3.1 as an initial commit to compare the resulting model with a completely
manually created one (Monschein, 2020).

The expected changes in the SEFFs should cause the generation of new probes in
the IM (3). Thus, we calculate the F-Score for the IM.

Regarding (4), we first check that no compilation errors occur because of the
instrumentation. Then, we check whether the instrumentation statements related to
the IM probes are correctly injected into the source code (EQ-1.5).

Regarding (5), we check to which extent the adaptive instrumentation can reduce
the monitoring overhead by calculating the ratio of adaptively instrumented probes to
all probes required to calibrate the whole aPM (EQ-2.1). We also calculate the ratio
of the fine-grained adaptively instrumented probes to all possible fine-grained probes.
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To answer EQ-1.2, for each interval, we propagate all commits individually and the
commits between two versions (V ) as one commit (e.g., the 20 commits between version
1.2 and 1.2.1 are propagated as a single commit). Then, we compare the resulting
Repository Model (RepM∑

V ) to the result of the incrementally propagated commits
(RepMVinc) and a manually updated Repository Model (RepM ′) with the JC. The
resulting source code model and IM are checked as in (1) and (3), respectively.

E1 on TEAMMATES
Similar to TeaStore, we replicated E1 with the real Git history of TEAMMATES. The
assessment covers 17,859 commits affecting 1,428 files, divided into five intervals (I)-(V)
(see Table 2). The selected commits are propagated in five steps, where the commits of
each interval are integrated and propagated as five separate commits. This approach
simplifies the presentation of the results, aligning with EQ-1.2which evaluates the
accuracy of integrating multiple commits. Consequently, we propagate commit 64842
(TM-0) as the initial commit integrating interval (I), followed by 48b67 (TM-1) for
interval (II), 83f51 (TM-2) for interval (III), f33d0 (TM-3) for interval (IV), and ce446
(TM-4) for interval (V) as subsequent commits.

While TM-0 spans 17,832 commits and adds 114,468 code lines in 709 Java files,
TM-1 spans three commits with 154 added and 129 removed lines in 122 Java files.
Between TM-0 and TM-1, the maintainer role was introduced. From TM-1 to TM-2,
public fields were made private, including the addition of corresponding get and/or set
methods and an adaptation of direct field accesses to the new methods. TM-2 spans
two commits with 3,249 added and 2,978 removed lines in 227 Java files. With TM-3,
two commits affected 65 Java files, adding 502 lines and removing 340 lines. Static
variables were made non-static while certain classes were converted to singletons. In
the last commit TM-4, JavaDoc was updated, and more classes were converted to
singletons. It spans 20 commits adding 3,457 and removing 1,293 lines in 147 Java files5.
As TeaStore, the objective of E1 on TEAMMATES is to answer EQ-1.1, EQ-1.5, and
EQ-2.1. To broaden the evaluation scope, we assess TEAMMATES under conditions
different from those of TeaStore: the components of TEAMMATES are identified by a
package-based strategy. Additionally, to expedite execution time, missing dependencies
in the source code model are recovered with the recovery strategy (Armbruster et al,
2023) mentioned in Section 5.2 instead of building TEAMMATES.

E1 on Lua-based Sensor Applications
We consider two Lua-based sensor application cases to evaluate CIPM for a new
programming language (Lua) and a new technology (sensor applications from SICK
AG). Similar to TeaStore and TEAMMATES, we propagate commits and assess the
models’ accuracy and the monitoring overhead.

From the first application, BarcodeReaderApp, detailed in Section D.3, we propagate
seven commits with 862 added and 283 removed lines, affecting one to four files. More
details on the considered commits are provided in Table 9.

Subsequently, we propagate 12 commits from the second application, ObjectClas-
sifierApp, detailed in Section D.4. These 12 commits include 6,651 added and 2,663

5For more details, see https://sdq.kastel.kit.edu/wiki/CIPM_Evaluation_Details
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removed lines, impacting one to 13 files. Additional details on the commits are provided
in Table 10.

In the next step, we evaluate the accuracy of the updated models, including the
(1) SCM, (2) RepM, and (3) IM. Regarding (2), we implemented specific CPRs for
sensor applications to expand the border of the evaluation.

However, we did not evaluate the adaptive instrumentation for Lua-based appli-
cations (4) since it is currently under development for a monitoring tool supporting
Them. In terms of the monitoring overhead, we assess the reduction in the number of
instrumentation probes achieved by a potential adaptive instrumentation (5); thus,
answering EQ-2.1.

10.4.2 Experiment 2 (E2)
In this experiment, we analyze the scalability at Ops-time. As mentioned in Section 9,
the Ops-time calibration is achieved by a transformation pipeline that updates
the Repository Model, Resource Environment Model, System Model, Allocation
Model, and Usage Model. The scalability of these transformations is analyzed in this
experiment in detail. It is important to note that there is no general benchmark for the
investigation of scalability in the context of our approach due to the specific structure
and parameters relevant in our approach. For this reason, we are establishing our own
benchmark based on synthetically generated monitoring data in order to reflect worst-
case scenarios. Thus, we first identify the parameters that influence the execution
times and, subsequently, generate the monitoring data in such a way that it produces
worst-case execution times of the transformation under observation. Here, we relied on
synthetic data generation, as it is not possible to reliably enforce worst-case scenarios
with real-world data. Based on this experiment, scalability questions with respect to
the identified parameters of our approach can be answered (EQ-3.2).

10.5 Results for Goal 1: Accuracy
In this section, we present the results of evaluating the accuracy of the updated aPM
in Section 10.5.1 and the related AbPP in Section 10.5.2.

10.5.1 Results for Goal 1.1: Model Accuracy
In this section, we present the evaluation of the models’ accuracy after changes at
Dev-time (E1) and changes at Ops-time (Monschein et al, 2021).

Regarding Dev-time, Table 3 shows an excerpt of the evaluation results for the
updated models of TeaStore in experiment E1. The excerpt includes the initial commits
of each interval and commits whose changes contain architectural-relevant changes.
The resulting RepMs are distinguished according to the version, interval, and commit
number. The results confirm the accuracy of the Java SCM, RepM, and IM, as indicated
by JC values of one for all model comparisons and F-Scores of one for the IM.

By comparing the integrated versions 1.2 and 1.3.1 with the manually created
Repository Model, we discovered that the models contain components for the microser-
vices and the interactions between them. However, the integrated Repository Models
include more technical details that are not present in the manually created one.
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Table 3: Excerpt of E1’s results for the TeaStore case.
JC(SCM, SCM′) Resulting RepM JC(RepM,RepM′) F (IM, IM′)

(I) 1 RepMI.3 1 1
1 RepMI.18 1 1

(II)

1 RepM1.2.1 1 1
1 RepMII.10 1 1
1 RepMII.11 1 1
1 RepMII.13 1 1
1 RepMII.18 1 1

(III) 1 RepM1.3 1 1
(IV) 1 RepM1.3.1 1 1

Execution time of incremental reverse engineering in average = 26.5 min
Update time average = 3.8 min

Instrumentation time average = 0.7 min

Table 4: E1’s results for the TEAMMATES case.
JC(SCM, SCM′) Resulting RepM JC(RepM,RepM′) F (IM, IM′)

(II) 1 RepMII 1 1
(III) 1 RepMIII 1 1
(IV) 1 RepMIV 1 1
(V) 1 RepMV 1 1

Execution time of incremental reverse engineering = 9.39 min
Update time average = 2.05 min

Instrumentation time average = 0.45 min

Additionally, Table 4 displays the results for TEAMMATES. The results in both
tables reveal that the calculated JC for the Java models is one (i.e., the source code
models in the VSUM are correctly updated). The comparison between the manually
and automatically updated Repository Model results in JC values of one. This means
the Repository Model is also correctly updated. Considering the IM, the evaluation
shows that the right probes are generated (i.e., the F-Score is one).

Concerning the Lua-based applications, accurate updates are observed in the first
application, BarcodeReaderApp, achieved through the propagation of seven commits.
For all commits, the resulting JC values for the SCM and RepM are one, and the
F-scores for the IM are one.

However, in the second application, ObjectClassifierApp, the accuracy of the Lua
model is slightly less than 100 % for six out of 12 commits (cf. Table 5): the JC
value is approximately 0.992 for commits 7 to 10 and 0.9472 for commits 11 and 12.
Consequently, the Lua models are nearly identical. An examination of the models
reveals that only a few elements are out of order in the VSUM source code model. This
also impacted the subsequent updates of the RepM and IM for those six commits.

Based on the results of the four cases, we can address EQ-1.1 as follows: CIPM
updated the SCM, RepM, and IM successfully and accurately for all commits related
to the Java-based cases and for the majority of commits related to the Lua-based
cases. In future work, the implemented hierarchical matching for Lua models will be
examined to understand the reasons for its inability to accurately match the order of
elements in certain cases.

Beside the models, we checked the instrumented source code for Java-based appli-
cations (TeaStore and TEAMMATES) generated during E1 to ensure that it includes
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Table 5: E1’s results for the Lua-based sensor applications.
Case Commits JC(SCM, SCM′) JC(RepM,RepM′) F (IM, IM′)

Lua-based BarcodeReaderApp
1-7 1 1 1

Execution time of incremental reverse engineering = 0.269 seconds
Update time average = 0.49 seconds

Lua-based ObjectClassifierApp

1-6 1 1 1
7-10 0.99 0.99 1
11 0.94 0.96 0.99
12 1 1

Execution time of incremental reverse engineering = 2.092 seconds
Update time average = 3.93 seconds

Table 6: Evaluation results for propagating TeaStore’s commits in the intervals
as one. It compares resulting Repository Models (RepM∑

V ) to manual
references (RepM ′) and incrementally updated ones (RepMVinc).

Versions (V) Version 1.1 Version 1.2.1 Version 1.3 Version 1.3.1
JC(SCM, SCM ′) 1.0 1.0 1.0 1.0

JC(RepM∑
V

, RepM ′) 1.0 1.0 1.0 1.0

JC(RepM∑
V

, RepMVinc
) 1.0 1.0 1.0 1.0

F (IM, IM ′) 1.0 1.0 1.0 1.0

all probes that were present in the IM. We found out that the source code is correctly
instrumented and has no compilation errors, which answers EQ-1.5.

The evaluation results for the propagation of the changes as one commit for
answering EQ-1.2 are visualized in Table 6. It shows that all models in the VSUM are
correctly updated. This indicates there is no difference for the resulting Repository
Model if multiple commits are propagated or if the commits are propagated as one
commit. As a result, developers can choose to propagate, for example, every or specific
commits. Considering the IM, there is a difference because the IM after the single
propagation contains all newly generated probes at once, while the IM is continuously
updated during the propagation of multiple commits.

To answer EQ-1.3, we sum up the results of a previous experiment that extracts
the System Model of CoCoMe and TeaStore at Dev-time (Monschein et al, 2021). The
findings in both cases show an identical model compared to the reference one, as the
JC equals one. Additionally, 68.75% of the System Model elements in the CoCoME
case and 72.3% in the TeaStore case were automatically extracted. Manual conflict
resolution (cf. Section 5.5.1) was required for the remaining elements, where the user
had to choose one of the suggested resolution choices. Existing methods do not support
the extraction of a System Model at Dev-time, which is discussed in more detail in
the following Section 11.1. Therefore, the automatic extraction of 68.75 % and 72.3 %
of the model elements presents a significant reduction of the required modeling effort.
In addition, our approach suggests potential options for the remaining model elements
(cf. Section 5.5.2), which is why the modeling effort and the resulting costs can be
further reduced. According to these results, EQ-1.3 can be answered, as the system
compositions were correctly reflected in the extracted System Models.
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Regarding EQ-1.4, another experiment by Monschein et al (2021) assessed the
accuracy of aPMs after simulating change scenarios along the operation, such as
replications, allocations, workload, and system composition changes. The accuracy
of affected parts of the aPM (System Model, Resource Environment Model, and
Allocation Model) is evaluated by comparing them to generated reference models.
The results indicate that they are correctly updated by the Ops-time calibration (C4)
to reflect the applied change scenarios, with a minimal JC equal to one. Consequently,
it can be concluded for EQ-1.4 that the change scenarios were recognized and correctly
propagated to the models.

Summary of the results for Goal 1.1: Model Accuracy. We conclude that
CIPM (mainly C1, C2, and C4) can update the software models automatically and accu-
rately. This applies to the following models: source code model (JaMoPP), instrumented
source code, Repository Model, System Model, Allocation Model, and Resource
Environment Model. An exceptional case was the update of the System Model and
Repository Model at Dev-time, where the update process is not fully automatic: the
user can be asked to confirm the detected components of the Repository Model or to
decide whether to create or reuse available component instances in the System Model.
In another exceptional case, the update of the Lua source code model encountered an
implementation issue related to matching out-of-order elements in minor cases, pre-
venting an identical update. Nevertheless, at least 94 % of the elements were accurately
updated. It is important to note that the matching issue is attributed to the implemen-
tation of the hierarchical matching algorithm and is not inherent to the CIPM concept
itself. While custom language-specific matching algorithms such as the one employed
for Lua provide accurate matching, their implementation poses a considerable effort
(Kolovos et al, 2009b) that can lead to deviations from the conceptual algorithms. It
should also be noted that comparing our results with other approaches is challenging
for several reasons. Firstly, the results depend on the experimental setup, which often
varies between studies. Secondly, some approaches utilize batch reverse engineering
techniques or do not incorporate a source code model, making direct comparisons
unfair.

10.5.2 Summary of the Results for Goal 1.2: Prediction Accuracy
The prediction accuracy is an important aspect for the applicability of the CIPM
approach within the proposed MbDevOps pipeline (C6). In previous work (Mazkatli
et al, 2020; Voneva et al, 2020; Monschein et al, 2021), we conducted various experiments
to evaluate the prediction accuracy of aPMs updated and calibrated by CIPM. These
experiments compared the performance predictions against real measurements as a
reference using the KS test, Wasserstein, and statistical measures. In this section, we
provide a summary of the results to confirm the applicability and to answer the related
EQs, namely EQ-1.6, EQ-1.7, and EQ-1.8.

In the study presented by Mazkatli et al (2020), we assessed the accuracy of
performance predictions employing aPMs that undergo incremental calibration at
Dev-time (C3). Our experiment applied incremental evolution scenarios to CoCoME
and TeaStore. According to these scenarios, the related aPMs were incrementally
calibrated, and the accuracy was quantified. The obtained KS test values, on average,
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did not exceed 0.16 and Wasserstein distances remained below 39.6 on average. These
relatively low values suggest a close alignment between the cumulative distribution
functions of the predicted response times and measured response times. Based on this
result, we can affirmatively answer EQ-1.6, stating that incremental calibration is
effective in achieving accurate performance predictions.

Furthermore, we performed an assessment of the accuracy achieved through
Ops-time calibration (C4) with self-validation (C5) (Monschein et al, 2021). This eval-
uation was conducted under worst-case scenarios, where aPMs were uncalibrated, and
all instrumentation probes were activated. We observed the prediction accuracy along
the execution time by comparison with measurements. Our findings confirm that the
prediction accuracy of aPMs at Ops-time improves progressively with the accumu-
lation of more monitoring data. After this learning process, the accuracy stabilizes
at an acceptable level. For instance, the results of CoCoME demonstrated a KS test
value below 0.1 and a Wasserstein distance under 20, with some fluctuations, after
20 minutes of the learning process. Results from the TeaStore case also confirm the
prediction accuracy, even when simulating changes in deployment, workload, and sys-
tem structure during the execution. The mean value of KS is 0.199 (σ = 0.131), while
Wasserstein shows a mean of 70.99 (σ = 68.542). Notably, initial data insufficiency
impacts the metric accuracy, resulting in higher values. However, the metrics reveal
an increasing accuracy trend over time, highlighting the system’s capacity to learn
from additional monitoring data and adapt to changes in operation. Based on these
findings, EQ-1.6 and EQ-1.7 can be answered: all metrics show that the derived
models represent the already observed behavior well and can also be used to predict
the performance for scenarios that have not been observed so far.

The experiments mentioned in this section also confirmed the detection of paramet-
ric dependencies. The advantage of parameterized models has been studied in detail
by Mazkatli et al (2020), where the experiment compared the prediction accuracy of
aPMs that CIPM parameterized with dependencies to the prediction accuracy of a
non-parameterized aPM. The results show that prediction accuracy of a parameterized
aPM is higher in the case of predicting the performance for unseen states. The accu-
racy is improved by 15.17 % considering the KS metric and by 22.85 % for Wasserstein
(EQ-1.8). Additionally, the incremental optimization of PMPs is evaluated in more
detail by Voneva et al (2020). The results indicate that the optimization can improve
the accuracy of AbPP for unseen states by approximately five times if the PMPs have
non-linear dependencies.

10.6 Results for Goal 2: Monitoring Overhead
Monitoring overhead reduction can be achieved by the adaptive instrumentation and
adaptive monitoring.

Firstly, adaptive instrumentation decreases the number of instrumentation probes,
focusing on monitoring only the necessary parts and, thereby, reducing overall moni-
toring overhead. This aligns with the first EQ (EQ-2.1). Here, we assess the reduction
in monitoring overhead through adaptive instrumentation by calculating the ratio of
reduced instrumentation probes during the final step of experiment E1 (5).
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Table 7: Results for EQ-2.1. Reduction of the number of instrumentation probes in
experiment E1.
Case Commit Reduction of instrumentation

probes
Reduction of fine-grained
instrumentation probes

Te
as
to
re

I.3 60.5 % 85.2 %
I.14 67.7 % 95.5 %
II.10 67.8 % 96.3 %
II.11 67.8 % 96.3 %
II.13 67.8 % 96.3 %
II.18 68.1 % 97.6 %
III 69 % 100 %
IV 69 % 100 %

T
E
A
M
-

M
A
T
E
S TM-1 57.1 % 89.5%

TM-2 47.3 % 73.2 %
TM-3 64.2 % 99.5 %
TM-4 62.0 % 96.5 %

Lu
a

A
pp

. BarcodeReaderApp 27.27 % - 68.75 % 52 % - 100 %
ObjectClassifierApp 12.6 % - 45.7 % 26.2 % - 100 %

Table 7 summarizes the results obtained from the four cases: TeaStore, TEAM-
MATES, BarcodeReaderApp, and ObjectClassifierApp. Regarding the Java-based
applications, Teastore and TEAMMATES, the results demonstrate significant reduc-
tions in monitoring overhead through adaptive instrumentation. Specifically, the
reduction ranges from 46.0 % to 69 % across all probes. Examining the fine-grained
probes shows a reduction ranging from 73.2 % to 100 %. 100 % reduction means that
no architectural changes require any fine-grained monitoring. Therefore, no fine-grained
monitoring is activated in these iterations.

The Lua-based applications, represented by BarcodeReaderApp and ObjectClassi-
fierApp, also exhibit notable reductions.BarcodeReaderApp shows a reduction in the
range of 27.27 % to 68.75 % for all probes and 52 % to 100 % for fine-grained probes
among six commits. Similarly, ObjectClassifierApp demonstrates a reduction in the
range of 12.6 % to 45.7 % for all probes and 26.2 % to 100 % for fine-grained probes
among 11 commits. It is worth noting that, as for TeaStore and TEAMMATES, we
exclude the initial commits from the discussion of the reduction of monitoring over-
head, as these commits represent a state where the source code is fully instrumented.
In conclusion, the results highlight the effectiveness of the adaptive instrumentation in
reducing monitoring overhead for both Java and Lua-based applications. The reduction
across various commits promises a reduction of monitoring overhead while running
the code at Ops-time. Detailed results about the Lua-based applications can be found
in Table 11 and Table 12.

Secondly, adaptive monitoring deactivates instrumentation probes related to accu-
rately calibrated parts to further reduce overhead. To show the reduction due to
the adaptive monitoring (EQ-2.2), the overall monitoring overhead is analyzed and
observed over time in the worst case where the source code of TeaStore is fully instru-
mented and Ops-time changes are simulated (Monschein et al, 2021). The results show
a reduction of 39.65 %, subsequent to the deactivation of all fine-grained probes via
adaptive monitoring and approximately 20 minutes of the experiment.

Summary of Results for Goal 2: Monitoring Overhead. Based on the evalu-
ation results, we can conclude that the adaptive instrumentation can remarkably reduce
the number of instrumentation probes based on the source code changes extracted
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from CI. Together with the evaluation results of the model and prediction accuracy,
it can also be concluded that the self-validation successfully identified services that
are accurately represented in the model and, then, reduced the monitoring granularity
accordingly. Ultimately, this leads to a significant reduction of the monitoring over-
head, even though the source code was fully instrumented for a worst-case analysis.
With adaptive instrumentation, we can anticipate further reductions in monitoring
overhead by decreasing the instrumentation probes.

10.7 Results for Goal 3: Scalability
The scalability of the MbDevOps pipeline during Dev-time is not critical and can be
scheduled nightly. However, we delve into this aspect in Section 10.7.1 to address
EQ-3.1. In contrast, scalability during Ops-time is crucial for the applicability of the
CIPM approach, and its implementation should not impact the performance of the
running system. Thus, to answer EQ-3.2, we conducted E2 to examine the scalability
properties of the different Ops-time calibration transformations: Repository Model
transformation (subsection 10.7.2), resource environment transformation (subsection
10.7.3), System Model and Allocation Model transformation (subsection 10.7.4), and
Usage Model transformation (subsection 10.7.5).

10.7.1 EQ-3.1: Scalability at Development Time
In this paper, we empirically identify the factors impacting scalability at Dev-time and
envision approaches to improve it. We measure the execution time during experiment
E1 and analyze the factors impacting it. Tables 3, 4, and 5 contain the execution
time for the initial commit and the average execution time for model updates and the
instrumentation.

The execution times differ primarily based on three factors: the parser, commit
size, and changes included in the commit. The incremental reverse engineering for
the initial commit represents the worst-case scenario. If the initial commit is not the
first one in the Git history, the size tends to be relatively large, accompanied by a
high number of changes that CIPM should detect and process. Regarding Java-based
applications, there is a notable difference in the execution time of the incremental
reverse engineering between TeaStore and TEAMMATES: it takes 17.11 minutes
longer in the case of TeaStore because the TeaStore code is built before it is parsed,
which results in a larger source code model. In TEAMMATES, we apply a recovery
strategy that we implemented to reduce the execution time by resolving dependencies
with synthetic elements (Armbruster et al, 2023). The implemented recovery strategy
also represents a significant step towards an incremental parsing approach, which we
envision for future work. In the current implementation, the entire system is parsed to
detect changes, but our plan involves replacing this behavior with parsing only the
modified files. Despite parsing the whole source code, the average execution time for
propagating commits is 4.24 minutes for TeaStore and 2.05 minutes for TEAMMATES.
This time is not critical for the development phase and should be significantly reduced
by implementing the suggested incremental parsing. The results from E1 also detect
a correlation between execution time and the number of affected lines, as well as
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Vitruvius changes, for both the TeaStore and TEAMMATES applications. If the
volume of affected lines or Vitruvius changes increases, the execution time rises
gradually, too. It should be noted that the impact of Vitruvius changes on the update
time is not only a matter of the number of changes, but also influenced by the types
of changes. The execution times of the CPRs vary based on the nature of the changes,
indicating that the type of change is a crucial factor.

In the case of Lua-based applications, the execution time of the incremental reverse
engineering is notably short, attributed to the efficiency of the Lua parser and the
smaller size of the Lua applications. The investigation also indicates that the number
of changes in a commit is an influential factor, as well as the applied changes. Since
the aPM of the first App is more complicated, the execution time for App 1 is higher.

Summary of Results for EQ-3.1: Scalability at Development Time. Based
on the provided information, the observed relationships suggest a gradual and pro-
portional impact of changes on execution time in the TeaStore, TEAMMATES, and
Lua-based applications. Besides, a further reduction in execution time for Java-based
applications is expected if the proposed incremental parsing is implemented. In general,
the results can confirm the applicability of the CIPM approach at Dev-time.

10.7.2 EQ-3.2: Scalability of the Repository Model Transformation
At first, the scalability of the Repository Model transformation has been analyzed.
The transformation can be roughly divided into two parts. In the first part, the
validation results are analyzed, and the results of this analysis are used as input for the
second step, which executes the optimizations. The analysis of the validation results
is irrelevant regarding the execution times. The results are iterated only once, and,
even if the simulations are configured with excessive simulation times and measuring
points, the execution time is negligible within the overall context. Therefore, we will
only consider the second part in the following scalability analysis.

In our evaluation, the optimization is performed based on regression. However, if
the genetic algorithm is applied (Voneva et al, 2020), it could be configured so that its
execution time does not exceed a specific threshold. As a result, there is a tradeoff
between the execution time and the accuracy of the resulting Repository Model,
requiring a more detailed scalability analysis that also considers possible side effects.
This point will be evaluated in future work. For these reasons, we focused here on the
scalability of the transformation when using the regression.

The regression is performed for each stochastic expression that needs to be cal-
ibrated. The number of data points within a regression is variable and depends on
the monitoring data. This can be well illustrated with the example of internal actions
whose resource demands need to be calibrated. Two factors influence the execution
time of the transformation: the number of internal actions that are observed and
the number of data points that are recorded for each internal action. The number
of observed internal actions corresponds to the number of triggered regressions, and
the number of data points directly affects the duration of the regressions. Based on
these factors, we built scenarios that are considered in the scalability analysis. First,
we examined the execution times of the transformation for an increasing number of
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internal actions. Subsequently, we observed the runtimes for an increasing number of
data points for a single internal action. The results are summarized in Figure 12.
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Fig. 12: Scalability analysis of the Repository Model transformation.

In both scenarios, it is apparent that the transformation duration grows propor-
tionally with increasing parameter values. Nevertheless, even a high number of internal
actions (a) does not lead to exceptionally high execution times. The same situation
can be observed when increasing the data points per internal action. In summary, it
can be concluded that no unexpected side effects emerge.

10.7.3 EQ-3.2: Scalability of Resource Environment Transformation
The resource environment transformation identifies changes to the hosts and the
network connections within the Ops-time environment. The detected hosts and con-
nections are inserted into the Runtime Environment Model (REM). Using CPRs based
on Vitruvius, corresponding resource containers and linking resources are created
in the Resource Environment Model. The execution time of the transformation is
dominated by the change propagation of Vitruvius. In the following, we will examine
the execution times of the transformation with an increasing number of new hosts and
connections. Therefore, we consider two scenarios:
1. An increasing number of new hosts, each of which has only one network connection

(sparse meshed).
2. An increasing number of new hosts, each of which has a connection to all other

hosts (fully meshed).
The left chart in Figure 13 shows the scalability of sparse meshed Ops-time

environments. The execution time scales almost perfectly linear, with up to 180 new
hosts. For realistic values of approximately 20 new hosts or less (within a single
execution of the transformation), an execution time of two seconds is not exceeded in
our test setup. In contrast, the execution time rises exponentially when adding fully
meshed hosts, as the right chart in Figure 13 shows. This comes from the connections
between hosts that need to be synchronized one by one. The number of connections
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Fig. 13: Scalability analysis for transforming the Resource Environment Model with
an increasing number of hosts. On the left side (sparse meshed), each host has only
one network connection. On the right side (fully meshed), each host has a connection
to every other host.

increases exponentially with the number of hosts when considering a fully meshed
network. However, it can still be concluded that the transformation provides adequate
execution times for most use cases, as an appearance of more than 10 new fully meshed
hosts between two executions of the pipeline will rarely occur in practice. To recap,
the analysis results for the Resource Environment Model indicate that the execution
times scale appropriate for realistic use cases.

10.7.4 EQ-3.2: Scalability of System Model and Allocation Model
Transformation

The transformations that are responsible for updating the Allocation Model and
System Model are reviewed together within the scalability analyses. For the derivation
of updates in the System Model, the number of changes in the system composition is
crucial. On the other hand, for the derivation of updates in the Allocation Model, the
number of changes in the deployments is crucial. Consequently, these two parameters
determine the design of the scalability analysis. First, the number of changes is
determined, one half is populated with deployment changes and the other half with
changes to the system composition. These change scenarios are generated with different
sizes and used as input for the combination of both transformations (TSystemComposition

and TAllocation).
Figure 14 shows the cumulated execution times of both transformations for an

increasing number of changes. The chart shows that the execution times scale approx-
imately linearly, with a slightly lower slope at the beginning compared to a higher
but stable slope at around 500 changes and beyond. Even for a total number of 1,200
changes, the execution time is lower than four seconds. Because such a number of
changes between two pipeline executions probably never occurs in practice, it can be
concluded that both transformations scale well.
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Fig. 14: Execution times of the System Model transformation with an increasing
number of changes in the system composition.

10.7.5 EQ-3.2: Scalability of Usage Model Transformation
The Usage Model transformation is adopted from iObserve and ported to our moni-
toring data structure. Hence, both approaches are conceptually identical. A detailed
scalability analysis for iObserve is in (Heinrich, 2020).

The goal of the scalability analysis in the context of CIPM is to show that the
results are consistent with those of iObserve. We consider two different cases: first, an
increasing number of users, all of them triggering exactly one service call and, second,
an increasing number of service calls triggered by a single user. Figure 15 shows the
scalability analysis for both scenarios. Here, (a) shows the increase in execution times
for a rising number of users and (b) shows the growth for an increasing number of
service calls initiated by a single user. When looking at sub-figure (b), it should be
noted that the axes are scaled logarithmically. In this way, we wanted to ensure that
the results can be compared to those obtained from the iObserve scalability analysis.
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Fig. 15: Scalability analysis of the Usage Model transformation.
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The first experiment shows that the execution time scales almost perfectly linear
with an increasing number of users. The same conclusion can be drawn from the
results of iObserve’s scalability analysis (Heinrich, 2020). We also obtained consistent
results when analyzing the execution time for an increasing number of service calls
initiated by a single user. For 100 or less initiated service calls, the execution time
increases sublinearly and, thereafter, superlinearly, with a fast growth in execution
time above 10,000 initiated service calls. In the superlinear segment, the execution
time is dominated by the loop detection (Heinrich, 2020). The extreme increase in the
execution time with a high number of triggered service calls is not critical, because such
a user behavior is unlikely in practice. It can be stated that the results of our scalability
analysis are in line with those of iObserve. Therefore, it can also be concluded that
the execution times of the Usage Model transformation are appropriate.

Summary of the Results of EQ-3.2: Scalability of the Ops-time Pipeline.
Based on our findings, it can be inferred that all transformations demonstrate
appropriate scalability across various scenarios, which positively answers EQ-3.2.

10.8 Threats to Validity
The identification of the threats to validity is based on the guidelines by Wohlin et al
(2012). Therefore, we distinguish between three dimensions of validity: internal validity,
external validity, and construct validity.

Internal Validity
One concern is related to the selection of PCM reference models employed to evaluate
the initial commit in experiment E1. Thus, two strategies were applied to ensure the
accuracy of the selected models and to mitigate the subjectivity of the experiment
executor. First, a reference model was manually modeled based on available docu-
mentation and reviewed by individuals who were not involved in the execution of
the experiment. We applied this strategy to E1 on the TeaStore. Second, while we
automatically extracted the initial PCM model for TEAMMATES and modeled them
for the Lua applications, we later asked individuals who did not take part in the auto-
matic extraction or modeling process to review the resulting models to ensure their
quality. For instance, the automatically extracted PCM model from TEAMMATES
was checked by comparing it with the extensively documented architecture of TEAM-
MATES (TEAMATES-Git, 2022). Similarly, external individuals, such as those from
SICK AG, reviewed the initial models of the Lua applications. Both strategies aimed
to mitigate observer bias and increase the reliability of the evaluation process.

Another threat to internal validity concerns the evaluation of the System Model
extraction at Dev-time. The conflicts occurring during the execution were resolved
manually so that the outcome may depend on the person who conducted the experiment.
If this person had not known the system composition well enough and had made an
incorrect decision, the calculated JC would have been lower.

46



External Validity
A threat to external validity is the selection of cases. It may be possible that the
results obtained from the cases are not representative. To mitigate this threat, we
selected CoCoME, TeaStore, and TEAMMATES, which are widely used in research
and address common business use cases (Reussner et al, 2019; Keim et al, 2021;
Grohmann et al, 2019; von Kistowski et al, 2018; Horn et al, 2022; Elsaadawy et al,
2021; Sokolowski et al, 2021; Liao et al, 2021; Flora et al, 2021; Torquato et al, 2021;
Eismann et al, 2020; Caculo et al, 2020; Viktorsson et al, 2020; Martin et al, 2020).
Furthermore, we included two Lua-based applications to assess an industrial case based
on a different programming language and technology. By combining these cases, the
risk of non-representative results is further reduced.

Another threat to validity is the selection of the Git history. The Git history
should be representative and cover the predefined CPRs. Therefore, we selected 17,859
commits of the real application TEAMMATES, 181 of TeaStore, and 19 commits from
the Git histories of the Lua-based applications. The incremental reverse engineering of
the initial commits covers almost all CPRs adding elements. Propagating the following
commits covers most of the remaining CPRs. For instance, propagation of the commits
between TM-2 and TM-4 from TEAMMATES covers 41 % of the remaining CPRs.

Inconsistent experimental conditions can also impact the evaluation. Thus, a
common protocol for evaluating the updated models across all cases defined the criteria
for a consistent assessment of the models’ accuracy using different metrics. Besides,
identical experimental conditions were kept across all transformations of the Ops-time
calibration. Ensuring consistency in model evaluation minimizes the variability in
results, enhancing the reliability and validity of the research findings.

Construct Validity
A threat to the construct validity is the selection of metrics for the evaluation. To
compare distributions, we applied the Wasserstein distance, the KS test and conven-
tional statistical measures. These have been used in related studies in similar scenarios
(Eismann, 2023; Mellit and Pavan, 2010). By combining them, we minimize the risk
that a single metric distorts the evaluation results. The same applies for the JC, which
has also been used in related work of us (Adeagbo, 2019; Heinrich, 2020). Besides, in
the evaluation, we rely on a combination of synthetically generated monitoring data
and monitoring data generated by directly executing a system. For the synthetically
generated data, external factors such as the Ops-time environment or the type of load
testing can be excluded. When observing the system, however, the quality of the moni-
toring events must be ensured. Therefore, we decided to use the Kieker framework with
extensions that have already been implemented in a previous project (van Hoorn et al,
2012). Additionally, the experiments assessing the performance prediction accuracy
were repeated multiple times to mitigate outliers. Then, we utilized statistical analyses
to enhance the results’ confidence.
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10.9 Discussion
In this section, we discuss the evaluation results and their implications on CIPM.
Concretely, the evaluation results indicate that CIPM is applicable to software systems.
The current realization has some limitations which constrain the applicability.

At first, every programming language in which a part of a system is implemented
requires a modeling environment for its integration into CIPM. Such a modeling
environment consists of an explicit metamodel to express source code in a source
code model, a parser to generate these models, and a printer to output the models as
source code again. While we provide modeling environments for Java and Lua, other
programming languages usually have none for a direct usage in CIPM available. Thus,
the modeling environments need to be developed. This development effort varies and
depends on different factors, including the size of the language’s features. In future
work, we want to investigate how the development effort can be reduced and further
programming languages can be integrated more easily into CIPM as a consequence.

Moreover, in the evaluation, we considered systems which are only implemented in
one programming language and versioned in one repository. However, as our approach
is based on Vitruvius, it allows to easily integrate further source code models for
other programming languages and to use them at the same time. Then, if multiple
programming languages or repositories are involved in a software system, the infor-
mation for the aPM is distributed over the repositories and source code in different
programming languages so that the information needs to be combined. There are
different locations in the CIPM approach where this combination can take place. For
example, the whole source code can be directly input into CIPM resulting in one aPM
for the complete system. However, this prevents the analysis of single components (e.g.
single microservices). Therefore, as an alternative, disjoint parts of a system can be
analyzed independently of each other in separate CIPM pipelines. Then, to assess the
properties of the complete system, the partial aPMs are transformed into one. We
leave the comparison and evaluation of these possibilities for incorporating multiple
programming languages and repositories open for future work.

By employing technology-specific CPRs, CIPM supports multiple and different
technologies. This is also demonstrated in the evaluation: both TeaStore and TEAM-
MATES apply a few technologies, of which one, for instance, is reused. In general,
technology-specific CPRs allow their reuse in all cases, in which the technology is
applied. Nevertheless, if there is a new technology without CPRs, the CPRs require
an initial definition and implementation with associated effort and costs.

As part of future work, we want to look for general CPRs to reduce the effort, since
general CPRs could be applied for multiple and different technologies and programming
languages.

While we evaluated the scalability of the calibration transformations during
Ops-time, we gained first insights into the scalability of the CI-based update of the
aPM during Dev-time (cf. Section 10.7.1). TEAMMATES as a real case with 114,468
lines of code in its initial considered commit TM-0 suggests that the CI-based update
scales well for larger systems. However, it requires further evaluation in the future with
systems of varying sizes, multiple programming languages, and different technologies
to analyze the scalability. Moreover, we plan to evaluate the scalability of our approach
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in regard to the optimization with the genetic algorithm, since there are trade-offs
between the impact of the algorithm’s configuration on PMPs (in particular, their
accuracy) and the overhead required by this configuration.

Besides limitations, CIPM currently puts a few assumptions on a system for its
integration into CIPM. If they are not fulfilled, the system requires adaptations or
extensions. For the adaptive instrumentation and monitoring, a system needs tests for
a specified test environment. This allows to take measurements from the instrumented
source code and to calibrate the aPM.

To summarize, the evaluation suggests that CIPM is applicable to software systems.
Several limitations constrain these systems. In future work, we want to address the
limitations to improve the applicability of CIPM. The evaluation of Lua-based sensor
applications, for example, is a first step towards this goal due to the usage of another
programming language and other technologies.

11 Related Work
Many approaches aim to achieve the consistency between software artifacts automati-
cally. As explained in Section 1, these approaches belong to two main categories. In
the first one (A1), approaches generate up-to-date artifacts as a batch process (marked
as B in Table 8), for example, reverse engineering approaches. In the second category
(A2), approaches check the consistency and try to resolve inconsistencies (named as
incremental approaches and marked as inc in Table 8). Both A1 and A2 can also be
classified into three subcategories based on the phase in which the consistency is main-
tained: at Dev-time (Section 11.1), at Ops-time (Section 11.2), or both (Section 11.3).
Table 8 summarizes the related work and assigns them to these subcategories since
the main category is labeled as B for A1 and inc for A2. Related work on resource
demand, parametric dependencies, and instrumentation is discussed in Section 11.5,
Section 11.6, and Section 11.4.

11.1 Consistency Management at Dev-time
As shown in Table 8, many approaches focus on the consistency maintenance at
Dev-time. They either extract an architecture model or maintain an existing one
(A2). The reverse engineering approaches at Dev-time (A1) are based mainly on the
static analysis of source code. For example, SoMoX (Becker et al, 2010) and Extract
(Langhammer et al, 2016) extract parts of the PCM. Similarly, ROMANTIC-RCA
(Alae-Eddine El Hamdouni et al, 2010) extracts component-based architectures from
an object-oriented system based on relational concept analysis. A shortcoming of A1
approaches is that they ignore the possible manual optimization of the extracted model
in the next extraction.

The incremental consistency maintenance at Dev-time (A2) includes approaches
that minimize, prevent, or repair architecture erosion. de Silva and Balasubramaniam
(2012) present a good summary of these approaches. Moreover, Jens and Daniel (2007)
compare approaches that minimize the architecture erosion by detecting architectural
violations at Dev-time. The JITTAC tool (Buckley et al, 2013), for instance, detects
inconsistencies between architecture models and source code, but does not eliminate

49



them automatically. Archimetrix (von Detten, 2012) also detects the most relevant
deficiencies through continuous architecture reconstruction based on reverse engineering.
Examples of A2 approaches that prevent the inconsistency between source code and
architecture model at Dev-time are the mbeddr approach of Voelter et al (2012) and
the Co-evolution approach of Langhammer (2017). The mbeddr approach uses a
single underlying model for implementing, testing, and verifying system artifacts (e.g.,
component-based architectures). Similarly, the Co-evolution approach uses a virtual
single underlying model to allow the co-evolution of the PCM and source code. The
Focus approach by Ding and Medvidovic (2001) avoids inconsistencies by recovering
the architecture and using it as a basis for the evolution of object-oriented applications.

The main limitation of the consistency management at Dev-time is that the
provided models are mostly considered as system documentation and should be enriched
with PMPs if AbPP should be supported. Therefore, some of these approaches are
extended to allow AbPP. For example, Langhammer calibrated co-evolved PCMs with
approximated resource demands (response times) to demonstrate that they can be used
for AbPP. Similarly, Krogmann et al extended SoMoX with a calibration of PMPs with
parametric dependencies based on dynamic analysis (Beagle approach (Krogmann,
2012)). However, the approach of Krogmann requires high monitoring overhead which
restricts the collection of monitoring data from the production environment rather than
from the test environment. Thus, we assign Krogmann’s approach to the Dev-time
approaches rather than the hybrid approaches. In general, the calibration of the whole
project after each adjustment in the models causes monitoring overhead and ignores
possible manual adjustments of PMPs, which our approach overcomes through the
incremental calibration. Moreover, all consistency management approaches at Dev-time
ignore the effect of adaptions at Ops-time on the accuracy of aPMs.

11.2 Consistency Management at Ops-time
Approaches that maintain the consistency at Ops-time are mainly based on the dynamic
analysis of monitoring events. For example, the approaches of Brosig et al (2011),
(Walter et al, 2017), and (Brunnert et al, 2013) are reverse engineering approaches
(A1) that extract parts of the PCM based on dynamic analysis for AbPP. Further-
more, the SLAstic approach (van Hoorn, 2014) extracts an aPM, can detect certain
changes at Ops-time (e.g., migrations), and reflects them in the model (A2). One
of our previous work, iObserve (Heinrich, 2020), can also respond to changes in the
deployment and usage by updating related parts in the PCM (A2), which we also
integrated into CIPM. Similar to iObserve, Cortellessa et al propose a model-driven
integrated approach that utilizes traceability relationships between monitoring data
and architectural models (UML profiles with MARTE) to identify design alternatives
for addressing performance issues (A2). Their goal is to enhance system performance
through continuous performance engineering based on an initial aPM. However, their
approach is limited to microservice-based systems and lacks the ability to observe
changes in the source code to update the UML model accordingly. Other approaches
that extract or update performance models at Ops-time are summarized by Szvetits
and Zdun (2016). Drawbacks of the Ops-time approaches are that a continuously high
monitoring effort is required to extract or update models. They cannot model the
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system’s parts that have not been called and, consequentially, are not covered by the
monitoring. Besides, these approaches ignore source code changes and do not validate
the accuracy of the resulting models.

11.3 Hybrid Approaches
The scope of hybrid approaches spans Dev-time and Ops-time. For example, Langham-
mer introduces a reverse engineering tool (EjbMox) (Langhammer, 2017, P. 140) that
extracts the behavior of underlying Enterprise Java Bean source code, by analyzing it
at Dev-time and calibrating it based on dynamic analysis at Ops-time. The approach
of Konersmann (2018) integrates annotations about the architecture model into source
code for a dynamic generation of an architecture model from the source code via trans-
formations. The approach of Konersmann also synchronizes allocation models with
running software (Konersmann and Holschbach, 2016). Spinner et al (2019) propose
an agent-based approach to update aPMs (A2). In their approach, a static analysis
of the source code is performed to detect the components and apply instrumentation.
However, the above-mentioned approaches show a much smaller scope of consistency
preservation (e.g., limited recognition of evolution and adaption scenarios).

11.4 Instrumentation
Similar to CIPM, Kiciman and Livshits (2010) propose a platform (AjaxScope) for
the instrumentation of JavaScript code to enable performance analyses and usability
evaluations. Based on coarse-grained monitoring, AjaxScope identifies where the source
code runs slowly and instruments it to find the cause of the slowness. AIM (Wert et al,
2015) provides an adaptable instrumentation of the services of the application under
test to obtain more accurate measurements for estimating the resource demands of an
aPM. Unlike existing work, our approach expects the source code changes from the CI
as input and automatically detects which parts should be instrumented fine-grained.
The measurements are collected from test or production environments.

11.5 Resource Demands
The related approaches estimate resource demands either based on coarse-grained
monitoring data (Spinner et al, 2015, 2014) or fine-grained data (Brosig et al, 2009;
Willnecker et al, 2015). The latter approaches yield a higher accuracy, but suffer from
the overhead of the instrumentation and monitoring. Our approach reduces the overhead
through the automatic adaptive instrumentation and monitoring. Similar to CIPM,
Grohmann et al (2021) update the resource demand continuously at Ops-time. To
achieve this, they tune, select, and execute an ensemble of resource demand estimation
approaches to adapt to changes at Ops-time. The resulting estimation is a constant
value. In contrast, CIPM considers the parametric dependencies and optimizes the
estimated stochastic expression at Ops-time.
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Table 8: An Overview of the Related Work.
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11.6 Parametric dependencies
In addition to the approach of Krogmann (2012) (SoMoX+Beagle), the work of
Ackermann et al (2018) and Courtois and Woodside (2000) characterize parametric
dependencies. Grohmann et al (2019) also consider the characterization of parametric
dependencies in performance models at Ops-time. Similarly, CIPM characterizes
parametric dependencies during updates and calibrations of aPMs at Ops-time.

12 Conclusion
The consideration of software architecture models increases the understandability
as well as the productivity in software development (Olsson et al, 2017). Moreover,
applying AbPP promises the proactive detection of performance problems by simulation
instead of the expensive measurement-based performance prediction.

In this article, we presented the Continuous Integration of architectural Performance
Models (CIPM) approach, which keeps aPMs continuously up-to-date. Our approach
maintains the consistency between software artifacts at Dev-time and Ops-time. It
updates the aPM after the evolution and adaptation of the system.

At Dev-time, our novel commit-based strategy extracts source code changes from
commits to apply a CI-based consistency preservation on software models. Consequen-
tially, this process updates the aPM, including its structure, abstract behavior, and
system composition. Moreover, CIPM applies adaptive instrumentation to the changed
parts of the source code. To allow the simulation of the aPM, our calibration estimates
the parameterized PMPs incrementally and uses an incremental resource demand
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estimation based on adaptive monitoring. The calibration identifies the parametric
dependencies and optimizes them based on a genetic algorithm.

In addition to PMPs, the Ops-time calibration observes the adaptive changes and
updates the affected parts of the aPM accordingly. This applies to changes in the
deployment, resource environment, usage, and even system composition. The proposed
self-validation continuously analyzes the accuracy of the AbPP. The results of the
self-validation are utilized to manage the monitoring and calibration of the aPM at
Ops-time.

We have implemented our approach for Java-based applications and the Palladio
simulator. Additionally, we have tailored the CIPM approach to be applicable to Lua-
based industrial sensor applications at SICK AG. It aims to assess CIPM’s effectiveness
in other programming languages and technologies. Our adaptations include the parsing
of Lua source code, modifications of CPRs to identify SICK AppSpace apps as
components, and updating the models in the VSUM.

For the evaluation, we performed various experiments based on five cases:
CoCoME (Heinrich et al, 2015a), TeaStore (von Kistowski et al, 2018), TEAMMATES
(TEAMATES-Git, 2022), and two Lua-based sensor applications from SICK AG
(Mazkatli et al, 2023). We were able to update the structure of the aPM based on
Git commits. The accuracy of the updated models and the applicability of the con-
sistency maintenance process were demonstrated. Furthermore, we demonstrated a
decrease in monitoring probes accomplished by the adaptive instrumentation. Accord-
ing to our cases, CIPM’s adaptive instrumentation reduced the number of required
instrumentation probes between 12.6 % and 69 %. Beyond the influence of adaptive
instrumentation, the overhead can also be reduced through adaptive monitoring, which
dynamically adjusts the monitoring based on validation results. Finally, we analyzed
the factors impacting the execution time at Dev-time as well as the scalability charac-
teristics of the transformation pipeline at Ops-time. We found that the execution time
of CIPM during development is acceptable and that the approach scales adequately at
operational time with an increasing number of monitoring data.

Currently, we are working on completing the Lua-based prototype to enable the
adaptive instrumentation and conduct further evaluation at Dev-time and Ops-time.
In future work, we plan to evaluate the scalability of our approach for different
scenarios (e.g., for the optimization with the genetic algorithm, multiple programming
languages, and others). A limitation of our implementation is that the CPRs are
specific to programming languages and technologies. While our approach is based
on the Vitruvius platform which allows the integration of further metamodels for
additional programming languages and CPRs for new technologies (Klare et al, 2021),
we investigate different approaches to simplify these integrations and, hence, to improve
the applicability of CIPM.
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Appendix
A Acronyms
CI Continuous Integration . . . . . . . . . . . . . . . . . . . . . 2

CoCoME Common Component Modeling Example . . . . . . . . . . . . 30

CIPM Continuous Integration of Performance Models . . . . . . . . 3

PMP Performance Model Parameter . . . . . . . . . . . . . . . . . 2

aPM architectural Performance Model . . . . . . . . . . . . . . . . 2

CPR Consistency Preservation Rule . . . . . . . . . . . . . . . . . 7

CPU Central Processing Unit . . . . . . . . . . . . . . . . . . . . . 6

Dev-time Development time . . . . . . . . . . . . . . . . . . . . . . . . 2

Ops-time Operation time . . . . . . . . . . . . . . . . . . . . . . . . . . 2

EQ evaluation question . . . . . . . . . . . . . . . . . . . . . . . . 26

SCM Source Code Model . . . . . . . . . . . . . . . . . . . . . . . . 26

RepM Repository Model . . . . . . . . . . . . . . . . . . . . . . . . 33

HTTP Hypertext Transfer Protocol . . . . . . . . . . . . . . . . . . 68

IM Instrumentation Model . . . . . . . . . . . . . . . . . . . . . 11

JaMoPP Java Model Parser and Printer . . . . . . . . . . . . . . . . . 15

JC Jaccard similarity Coefficient . . . . . . . . . . . . . . . . . . 28

KS Kolmogorov-Smirnov-Test . . . . . . . . . . . . . . . . . . . . 28

AbPP Architecture-based Performance Prediction . . . . . . . . . . 2

MbDevOps Model-based DevOps . . . . . . . . . . . . . . . . . . . . . . . 10

PCM Palladio Component Model . . . . . . . . . . . . . . . . . . . 6

REST Representational State Transfer . . . . . . . . . . . . . . . . . 8
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SCG Service-Call-Graph . . . . . . . . . . . . . . . . . . . . . . . . 14

SEFF Service Effect Specification . . . . . . . . . . . . . . . . . . . 6

VSUM Virtual Single Underlying Model . . . . . . . . . . . . . . . . 7

B Measurement Metamodel
This section provides an in-depth description of the measurements metamodel intro-
duced in Section 6. The metamodel comprises several monitoring record types, each
aligned with the probe types defined in the IM (cf. Section 5.4). The graphical
representation of the measurements metamodel (Figure 16) shows the following records:

InternalActionRecordInternalActionRecord
ServiceContextRecord

PCMContextRecordPCMContextRecord

SessionContextRecordSessionContextRecord

+ sessionID: String

+ exitTime: long

+ requestedResourceID: String

+ callerExecutionID: String

+ parameters: String

+ serviceID: String

+ exitTime: long

+ entryTime: long

+ internalActionID: String

LoopActionRecordLoopActionRecord

+ loopIterationCount: long

InternalActionRecordInternalActionRecord

+ executedBranchID: String

+ branchID: String

+ loopID: String

+ entryTime: long

+ externalCallID: String

HostContextRecordHostContextRecord

+ hostID: String

+ hostName: String

ResourceUtilizationRecordResourceUtilizationRecord

+ resourceID: String

+ timestamp: long

+ utilization: double

+ returnValue: String

Fig. 16: The Measurements Metamodel.
• ServiceContextRecord monitors the following features of a service:

– serviceID: Identifier for the service.
– executionID: Identifier for each service execution.
– parameters: Input parameter properties (e.g., type, value, number of list
elements, etc.) as candidates for parametric dependency investigation.

– callerExecutionID: The caller of this service execution supporting the
construction of an SCG.

– externalCallID: Identifier of the external call to which this execution
belongs. It is necessary for calibrating the SEFF external call. Note that a
service can be called from multiple services using multiple external calls.

– entryTime, exitTime: The service execution time serving as a reference for
the self-validation.
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• HostContextRecord monitors the host properties such as hostID or hostName
determining the deployment location of the component offering this service. This
information is later used for the Ops-time calibration.

• ResourceUtilizationRecord monitors the utilization of a resource
(resourceID) at a specific time (timestamp).

• InternalActionRecord monitors the execution time of internal actions
(entryTime, exitTime) to estimate their resource demands on a resource
(requestedResourceID).

• LoopActionRecord monitors the number of loop iterations
(loopIterationCount).

• BranchActionRecord monitors the selected branch (executedBranchID).

C Example of the Adaptive Instrumentation
In this example, we consider the adaptive instrumentation of the clearAllCaches
service from our running example TeaStore. Initially, the method’s InternalAction
is instrumented with enter and exit statements to monitor the response time and to
report the “ID” of this internal action, as shown in Listing 2. During instrumentation,
the unique identifier of an internal action (e.g., _YHXHhwzdEeyhr8BpjC) is typically
included in the monitoring records. This ID serves as a reference point within the
monitoring system, facilitating the mapping between monitoring data and correlated
internal actions that need to be calibrated based on this data.

To ensure that the instrumented code compiles, adjustments are necessary since
the exit statement is located after a return statement. Thus, as depicted in Listing 3,
the return value is stored in a local variable (resp1) which is returned after the exit
statement. This allows to compile the instrumented code while capturing the necessary
monitoring data during the execution of the method.

1 monitoringController.enterInternalAction("_YHXHhwzdEeyhr8BpjC");//
instrumentation code

2 return Response.ok("cleared").build();
3 monitoringController.exitInternalAction("_YHXHhwzdEeyhr8BpjC");//

instrumentation code

Listing 2: Direct instrumentation of the InternalAction of clearAllCaches.

1 monitoringController.enterInternalAction("_YHXHhwzdEeyhr8BpjC");//
instrumentation code

2 Response resp1 = Response.ok("cleared").build();
3 monitoringController.exitInternalAction("_YHXHhwzdEeyhr8BpjC");//

instrumentation code
4 return resp1;

Listing 3: Corrected instrumentation of the InternalAction of clearAllCaches.
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D Evaluation Cases
In this section, we provide more details on the cases used in our evaluation, focusing
on the goal of selecting the case, its structure, and the technologies used. We exclude
TeaStore since it is presented in Section 3.

D.1 TEAMMATES
TEAMMATES is a tool for confidentially managing students’ peer evaluations, instruc-
tor comments, and feedback. For this goal, hundreds of universities around the world
use TEAMMATES as a free online cloud-based service. TEAMMATES is a realistic
open source application with a long history, making it suitable for evaluating C1 and
C2.

Goal: The reason for choosing TEAMMATES in our evaluation is to evaluate
CIPM with a real tool and a real Git history. Significantly, evaluating the CI-based
update of aPMs requires an existing real Git history. TEAMMATES is used for
evaluating the accuracy of updated models (G1) and the reduced instrumentation
probes (G2). The TEAMMATES tool consists of two parts: a web-based frontend and
a Java-based backend. Our evaluation covers the backend part over a Git history of
17859 real commits and changes related to 1428 files.

Structure and Technology: According to the well-documented architecture 6, the
backend part of the TEAMMATES tool consists of the following four main components:
First, UI represents the entry point for the application backend. UI is based on the
RESTful controller. It ensures the separation between the access control and execution
logic. The second component Logic handles the business logic of the tool. It processes
various data and can access data from the Storage component. The third component
Storage is responsible for CRUD (Create, Read, Update, Delete) operations on data
entities. For that, it uses Google Cloud Datastore. The last component Common includes
the required common utilities.

D.2 Sick Sensor Applications
In this case study, we examine the applicability of CIPM approach in the context of
two industrial applications from SICK 7.

Goal: The goal of using Lua-based sensor applications as a case study is to
investigate the applicability of CIPM for an industrial case with a new technology and
a new programming language. Hence, we evaluate CIPM based on the Git history of
two sensor applications. Particularly, we evaluate the CI-based update of aPMs for
evaluating the accuracy of updated models (G1) and the reduced instrumentation
probes (G2). In general, applying CIPM for sensor applications allows developers to
address the challenges facing the development of these applications by assessing the
design decision through AbPP.

Technology: The sensors by SICK, both programmable and non-programmable,
can be effectively utilized to create customized solutions through Lua applications,
known as SensorApps. SICK AppSpace, a commercial sensor application ecosystem

6See https://teammates.github.io/teammates/design.html
7See https://www.sick.com/
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8, enables the development of individualized SensorApps. These SensorApps are
specific software applications that are developed to work with sensors. Even non-
programmable sensors find a smooth integration path into the system by employing a
Sensor Integration Machine (SIM) and various network protocols 9.

The AppEngine executes these SensorApps and operates them on programmable
sensors and SIM 10. Beyond execution, the AppEngine plays an essential role by
providing infrastructure for SensorApps, including low-level interfacing with sensor
hardware and network communication with other devices. One important feature of
this technology is Common Reusable Objects Wired by Name (CROWN), essentially
serving as APIs, by SensorApps and AppEngine. These CROWN simplify the creation
of more complex applications through dependency injection of SensorApps.

Using this technology, the following two applications were developed. These
applications are the cases for our evaluation.

D.3 Barcode Reader Application
The BarcodeReaderApp that we use in our case study is developed from sample apps.
It consists of 7 commits, involving a total of 862 lines added and 283 lines removed
across one to four files. The BarcodeReaderApp example was developed by combining
existing AppSpace samples regarding the component-based architecture, and it serves
as a realistic use case for the industrial Internet of Things (IoT) setting (Burgey, 2023).
The application involves capturing images using a camera module, detecting barcodes
in the images, and sending the barcode information to a database via HTTP. The
application is composed of four AppSpace samples from SICK, including a barcode
scanner app, an HTTP client app, an HTTP server app, and a database app. The
barcode scanner app detects barcodes in images. The HTTP client app submits the
information to a web server. The HTTP server app receives the information and
forwards it to the database app, which inserts the information into the database and
provides a web interface for users to view the scanned barcodes. To simplify the setup,
a directory image provider was used instead of a camera module. More detail on the
example is on (Burgey, 2023).

D.4 Object Classifier Application
The ObjectClassifierApp represents a real-world use case involving the detection and
sorting of objects from images based on color recognition. The considered develop-
ment history spans 12 commits and encompasses a significant codebase adjustment,
with 6651 lines added and 2663 lines removed across one to thirteen files. Unlike Bar-
codeReaderApp, this real-world scenario offers a more complex and dynamic testing
ground for CIPM. The tasks performed by this application involve the identification
and categorization of objects within images based on their color properties. More
information about this real-world application can be found in (Burgey, 2023).

8See https://www.sick.com/de/de/sick-appspace/c/g555725?q=:Def_Type:ProductFamily
9See https://www.sick.com/de/de/integrationsprodukte/sensor-integration-machine/c/g386451
10See https://www.sick.com/de/en/sick-appspace/sick-appspace-software-tools/sick-appengine/c/

g547567
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D.5 CoCoME
CoCoME (Heinrich et al, 2015a,b) is a trading system for handling sales in a super-
market chain. It supports several sales processes at each store of the supermarket
chain, such as scanning products at a cash desk, processing sales using a credit card
or inventory reporting.

Technology: In our evaluation, we used the cloud variant of CoCoME11, where
the enterprise server and the database are running in the cloud. This version of
CoCoME is based on Java Enterprise Edition (Java EE) and uses Maven to manage sub-
projects and configure the deployment. Goal: There are two goals of using CoCoME
in the evaluation: CoCoME is a distributed system, so which makes it suitable for
evaluating the extraction of system composition. Therefore, it is used for the evaluation
of the accuracy of System Model (G1). The second reason for using CoCoME by
the evaluation is that several quality properties can be affected by the evolution of
such distributed systems. Therefore, it is suitable for evaluating the accuracy of the
performance prediction (G1) and the required monitoring overhead (G2).

CoCoME is used for evaluating several approaches like iObserve (Heinrich, 2020)
and the proposed platform for empirical research on information system evolution
(Heinrich et al, 2015b). Similar to TeaStore, CoCoME is suitable for the evaluation
of C3, C4, and C5 since it includes the required benchmark and a manually modeled
PCM. Structure:

The CoCoME structure consists of three main layers: the GUI layer containing com-
ponents for ordering and reporting sales, the Application layer containing components
for the main logic and the Data layer containing components for the communication
with the database. The architecture of PCM is modeled by Palladio (Heinrich et al,
2015a,b). The Application.Store component of the Application layer provides a
StoreIf interface for storing the sales.

E Additional Details on Experiment 1 Design
In this section, we provide more details on the E1 design. Table 9 includes details on
the considered Commits of BarcodeReaderApp.

Commit Index Hash Added Lines Removed Lines Changed Files Description
1 e25fb6b 575 0 4 Adding BarcodeReader, Hypertext Transfer Protocol (HTTP)Client, and HTTPServer.
2 7126aab 204 0 1 Adding DatabaseAPI.
3 d92b459 76 81 3 Removal of irrelevant functionality from DatabaseAPI.
4 e6d87e0 4 1 1 Conditional to prevent empty barcode API submission.
5 542d2e9 2 0 1 Message added for empty API objects.
6 6b7b35f 1 21 2 Removal of serve calls from DatabaseAPI.
7 1f2fb08 0 180 1 Complete removal of DatabaseAPI from the application.

Table 9: The commits of the BarcodeReaderApp.

Similarly, Table 10 includes details on Commits of ObjectClassifierApp.

11see https://github.com/CIPM-tools/cocome-cloud-jee-platform-migration
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Commit Index Hash Added Lines Removed Lines Changed Files Short Description
1 f713180 1855 0 7 Import of existing app
2 1466c57 3 1 2 Minor text changes
3 f57823c 10 4 3 Bug fix
4 40bf36e 451 122 7 New features and improvements
5 473c9d9 1 1 1 Minor bug fix
6 995ecc0 505 187 7 LED and camera mode changes
7 956aeb9 448 234 7 Minor bug fix for version 2.6.0
8 0da3169 88 19 3 Features and bug fixes for version 2.7.0
9 00b44f8 60 44 3 UI improvements for version 3.0.0

10 88d005a 41 14 1 Features and bug fixes for version 3.1.0
11 92cb3bc 3188 2036 13 Code refactoring and new features
12 916fc52 1 1 1 Minor bug fix

Table 10: The selected Git commit history of ObjectClassifierApp.

F Detailed Results of E1 on Lua-based Applications:
The reduction of instrumentation probes by E1 on BarcodeReaderApp are provided in
both Table 11 and Table 12, based on (Burgey, 2023).

Commit Overall Reduction (%) Fine-Grained Reduction (%)
2 56.2 90.0
3 27.3 52.9
4 47.1 88.9
5 51.4 94.7
6 66.7 100.0
7 68.8 100.0

Table 11: The reduction of the instrumentation probes that
the adaptive instrumentation achieved during Experiment1 on
BarcodeReaderApp.

Commit Total Reduction (%) Fine-Grained Reduction (%)
2 36.17 98.55
3 35.64 97.10
4 22.79 62.82
5 36.28 100.00
6 20.94 56.98
7 21.43 60.00
8 31.66 88.17
9 33.21 92.55
10 32.95 94.51
11 12.62 26.21
12 45.79 95.15

Table 12: The reduction of the instrumentation probes that the
adaptive instrumentation achieved during E1 on ObjectClassifier-
App.
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