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Abstract: Atmospheric aerosols can impact human health, necessitating the understanding of their
distribution determinants, especially in urban areas. The study discusses the relationships between
five major land cover types and aerosol optical depth (AOD) within a city combining the high-
resolution satellite-derived AOD products (derived from Sentinel-2) and land cover products (60 m
and 100 m, respectively) for Beijing and its surroundings from 2017 to 2019. Contribution analysis is
performed to quantitatively evaluate the influences of land cover on regional AOD over the study area.
Patterns of aerosol distribution remarkably vary in time and space. Statistics of seasonal average AOD
peak in spring and then progressively decline from summer through autumn to winter. High AOD
values coincide with a low normalized difference vegetation index (NDVI) and a high normalized
difference built-up index (NDBI). Urban and built-up land is a major contributor to regional AOD
in the study area, especially in spring; forest and grassland always reduce AOD. Anthropogenic
activities have a non-negligible influence on AOD and can even reverse the contribution of a land
cover type to aerosols. Insights of the study promote the comprehension of the impacts of land cover
on aerosols and air pollution and contribute to the planning of land use within a city.

Keywords: aerosol optical depth; land use; land cover; city scale; contribution; Sentinel-2; CGLS-
LC100

1. Introduction

Atmospheric aerosols are a main stressor of global climate change and exert a profound
impact on cloud properties and the land–atmosphere radiative balance [1,2]. Environmen-
tally, aerosols are recognized as one of the primary contributors to urban air pollution and
adversely affect human health, by causing, for example, respiratory infection, cardiovas-
cular morbidity, asthma, emphysema, and lung cancer [3–6]. Thus, an understanding of
the determinants of aerosol distribution is beneficial as a basis for improving air quality.
In a dynamic urban environment, patterns of aerosol distribution in time and space are
greatly shaped by land cover types. Land use change is the most remarkable feature of
urban development and causes various impacts of anthropogenic activities on the environ-
ment [7,8]. The change in land cover not only affects the distribution of emission sources,
but also drives regional climate change, thereby impacting the distribution of aerosols [3,9].

Satellite remote sensing enables continuous capture of the aerosol spatial distributions
and temporal variations from the regional to the global scale [10]. In the last few years,
numerous studies have been carried out on analyzing the influences of land cover on
aerosol distribution based on the satellite-derived aerosol products. Xie et al. combined the
Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products and land cover
classification derived from Landsat 8 images to examine the impacts of land cover on aerosol
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optical depth (AOD) [9]. Sun et al. analyzed the relationship between particulate pollution
and land cover for eight representative cities in China with the MODIS aerosol products
and land cover products (MOD04 and MOD12, respectively) [11]. Liu et al. used long-term
MODIS AOD products and land cover type products (MOD04 and MCD12C1, respectively)
to quantify the contributions of six major land cover types to AOD [8]. Feng et al. separated
the contributions of climatic and surface to aerosols and then estimated the actual surface
influence on atmospheric aerosols relying on a multilinear regression model [12].

Few studies have focused on the relationships between land cover types and aerosols
below city scales, since most aerosol products are limited to coarse spatial resolution
(several to tens of kilometers). Given the spatial heterogeneity of land cover, more spatial
detail in aerosol would be desirable. Hence, further studies of the effects of land cover on
aerosols below city scales are of great scientific interest. The purpose of this study is to
characterize the spatiotemporal distributions of AOD and to explore the contributions of
five major land cover types to aerosol distribution, with the high-resolution Sentinel-2 AOD
products and Copernicus Global Land Service land cover products (CGLS-LC100) (60 m and
100 m, respectively). Because built-up area and vegetation density are two major factors of
land cover, the relationships between vegetation coverage, building density (approximated
by normalized difference vegetation index (NDVI) and normalized difference built-up
index (NDBI), respectively) and aerosol are also investigated.

The study is structured as follows: Section 2 details with the study area and data sets.
Section 3 introduces the processing methodology. Section 4.1 discusses the spatiotemporal
patterns of AOD for the study area. The relationships between AOD, NDVI, and NDBI are
investigated in Section 4.2. Section 4.3 analyzes the influences of land cover types on AOD.
The contributions of land cover types to regional AOD are further presented in Section 4.4.
The conclusions are provided in Section 5.

2. Materials
2.1. Study Area

The study focuses on a small rectangular area (equal to the area covered by a Sentinel-2
image) around Beijing, China (Figure 1). Beijing is the capital of China with marked aerosol
pollution, heavy industrialization, complex surface conditions, and a dense population of
more than 10 million [13]. Central Beijing is a typical urban area with dense vegetation
surrounding the west, northwest, and northeast, and agricultural farmlands to the southeast.
The dominant land cover types in the study area are forest and urban and built-up land,
followed by cropland, grassland, and sparsely scattered open shrubland. Thus, the area is
suitable for understanding and quantifying the influences of land cover on AOD. In this
study, analysis is carried out on five main land cover types, i.e., cropland, grassland, forest,
urban and built-up land, and open shrubland. Barren land is excluded from the analysis to
avoid statistical inaccuracies resulting from the small area concerned.

2.2. Aerosol Data

AOD is an important indicator of aerosol loading, defined as the extinction of radiation
in an atmospheric column [14]. In this study, AOD is used as the proxy for aerosol presence.
Furthermore, high-resolution (original resolution of 60 m) AOD retrieved from Sentinel-2
measurements covering three years (2017−2019) are selected. The products are retrieved
by application of the Yang et al. algorithm, which combines surface reflectance correlations
and temporal signatures over the vegetated areas and bright areas to generate AOD [10].
Sentinel-2 AOD has been well validated and shown to have a good performance over
complex urban areas, with a correlation coefficient of 0.927 against Aerosol Robotic Network
(AERONET) measurements. Compared with the widely used MODIS AOD products
(i.e., MOD04_L2 and MCD19A2), Sentinel-2 AOD from the algorithm is superior in both
spatial resolution and accuracy. In order to match the resolution of the obtained land cover
maps, we downsample the Sentinel-2 AOD products to 100 m using the nearest-neighbor
(NN) method; NN is chosen here to be consistent with the resampling method used in
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Yang et al.’s research. Further information on quality and availability of the used Sentinel-2
AOD products can be found in Yang et al. [10].
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Figure 1. Land cover of the study area in 2017.

2.3. NDVI and NDBI

In a typical urban environment, land cover is significantly determined by the built-up
area and vegetation cover. In order to better comprehend the influences of land cover on
aerosols, the interactions between AOD, degree of built-up areas, and vegetation density are
discussed. Hereinafter, NDVI is used to approximate vegetation coverage, whereas NDBI
serves as the proxy of building density. Sentinel-2 Level-1C (L1C) products (downloaded at
https://earthexplorer.usgs.gov/, accessed on 31 August 2021) with the same overpass time
of the collected AOD products are obtained to calculate the NDVI and NDBI. Using the
nearest-neighbor method, both indices are then resampled to 100 m to match the resolution
of the acquired land cover maps.

NDVI quantifies vegetation and reflects its state by measuring the difference between
near-infrared (NIR) and red channels as:

NDVI =
ρ0.842 − ρ0.665

ρ0.842 + ρ0.665
(1)

where ρλ represents the Sentinel-2 reflectance at wavelength λ (µm). The NDVI values
given by Equation (1) range from −1 to 1, with vegetation coverage increasing from non-
vegetated to densely vegetated [15].

NDBI takes advantage of the shortwave infrared (SWIR) and NIR channels to empha-
size the manufactured built-up areas and quantify their density as:

NDBI =
ρ1.610 − ρ0.842

ρ1.610 + ρ0.842
(2)

The NDBI values also range from −1 to 1, with higher values corresponding to
increased building density. A positive value of NDBI represents urban land areas, whereas
a negative value of NDBI stands for non-urban land areas [16].

2.4. Land Cover Data

The CGLS-LC100 maps physical coverage of the Earth’s surface annually with a spatial
resolution of 100 m from 2015 to 2019 [17], accessed via https://lcviewer.vito.be/ download
on 24 November 2021. The discrete classification map layer, included in the CGLS-LC100

https://earthexplorer.usgs.gov/
https://lcviewer.vito.be/
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version (V) 3.0 product, supplies 23 discrete land cover classes under the definition of the
Land Cover Classification System (LCCS) scheme developed by the United Nations (UN)
Food and Agriculture Organization (FAO). Herein, the discrete classification map layers
in the CGLS-LC100 V3.0 products for the years 2017 to 2019 are selected and reclassified
into eight land cover types (Table 1) under the instruction of Liu et al. [8]. Analysis of the
influences on AOD is then performed on the five main land cover types, i.e., cropland,
grassland, forest, urban and built-up land, and open shrubland.

Table 1. Original Labels and Aggregation of Copernicus Global Land Service Land Cover Product
(CGLS-LC100) Classes Used in the Study.

Code Label Original Labels Included

1 Cropland Cultivated and managed vegetation/agriculture

2 Grassland Herbaceous vegetation, herbaceous wetland,
moss, and lichen

3 Forest

Closed forest (evergreen needle leaf, deciduous
needle leaf, evergreen broad leaf, deciduous

broad leaf, mixed, unknown), open forest
(evergreen needle leaf, deciduous needle leaf,

evergreen broad leaf, deciduous broad leaf,
mixed, unknown)

4 Barren land Bare/sparse vegetation

5 Urban and built-up land Urban/built up

6 Open shrubland Shrubs

7 Water body Permanent water bodies, open sea

8 Others No input data available, snow and ice

3. Methodology

The AOD products and land cover type products are used from 2017 to 2019. The
study focuses on four main aspects: (1) the spatiotemporal patterns of AOD for the study
area; (2) the relationships between AOD, NDVI, and NDBI; (3) the impacts of the five main
land cover types on AOD; and (4) the contributions of land cover to regional AOD.

Monthly, seasonal, and annual mean AOD images are averaged from all Sentinel-
2 AOD products over a month, a season, and a calendar year, respectively. Three-year
mean AOD, NDVI, and NDBI images are acquired by averaging all the corresponding
images over the study period (2017−2019). In order to reduce the statistical uncertainties in
calculated monthly, seasonal, annual, and three-year mean values, pixels with less than two
observations available during the calculation period are removed. Averaging AOD values
for all pixels in the study area over a calendar year generates the annual mean AOD value.

Liu et al. proposed that the contribution of AOD from a land cover type to the regional
AOD can be estimated from [8]:

Ci = Si × dTi (3)

Where S is the percentage of a given land cover type; dT is the difference between the
average AOD for a given land cover type and the average AOD for the entire area; footer i
represents the land cover type; and C is the estimated contribution. Dividing the area of a
given land use type by the area of the entire study area obtains the percent S. Averaging
AOD values for all the pixels over the given land cover type and the entire study area
yields the land cover type mean AOD and the regional mean AOD, respectively. A positive
C reports that the given land cover type favors the regional AOD, whereas a negative C
indicates the opposite. The higher the value C, the greater positive effect of a given land
use type on the regional AOD.
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4. Results and Discussion
4.1. Spatiotemporal Characteristics of AOD

The spatial patterns of annual average AOD from 2017 to 2019 for the study area are
illustrated in Figure 2. High AOD values are found mainly in the central urban areas and a
small area in the northwest of the study area, where urban and built-up land and cropland
dominate. AOD values for areas covered mostly by forest and grassland are low, with most
of them under 0.5. The spatial differences in AOD distribution are consistent with an earlier
study and signal the influence of land cover on the spatial patterns of AOD [18].
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Figure 2. Spatial distributions of the annual average aerosol optical depth (AOD) for the study area
in (a) 2017, (b) 2018, and (c) 2019.

High AOD values for 2018 are observed mainly in the Southeastern area, around
Langfang city, Hebei Province, and decrease with distance from it. The observation suggests
that neighboring areas have a non-negligible influence on local aerosol distributions. The
annual average AOD for year 2018 (0.365) is higher than that for year 2017 (0.264) and 2019
(0.289), attributed to the low and non-uniform temporal resolution (≥10 days) of Sentinel-2
AOD products. We note that the applied Sentinel-2 aerosol retrieval algorithm has strict
cloud filtering (land cloud cover < 10%) and will not run on non-eligible products to ensure
the retrieval accuracy.

Figure 3 shows the statistics of three-year averaged monthly mean AOD for the study
area. The monthly mean AOD is found to peak in spring (March and April), whereas it
touches the bottom in winter (December and January). Jiang et al. concluded that high
AOD in spring are mainly attributed to intensive and frequent dust storms in the Beijing-
Tianjin sand source region [19]. In addition, biomass burning and less dense vegetation
also contribute to the high spring AOD [20]. June and September also have high AOD
values. Abundant atmospheric water vapor linked to precipitation in summer may be
responsible for the high AOD values in June [21]. Moisture in the atmosphere leads to the
hygroscopic growth of particles (aerosol swelling), enhancing the scattering coefficient and
thereby increasing the AOD values [22]. Furthermore, the high temperature in summer
stimulates photochemical reactions and accelerates soil drying, resulting in increased
aerosol loading [23–25]. Harvesting possibly leads to high AOD in September. The climate
in Beijing in winter is dry and cold, condensing photochemical reactions, thereby decreasing
the AOD values in this season.
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Figure 3. Temporal pattern of monthly mean AOD values. Boxes show the lower to the upper quartile
value, with a black line at the median. Whiskers extend to most extreme mean AOD values within
a month.

The spatiotemporal patterns of AOD illustrate that (1) the central urban area has
higher AOD values than the surrounding rural area; (2) local aerosols are influenced by
regional air quality; (3) spring is the most polluted season for the study area; and (4)
anthropogenic activities, meteorological factors, land cover types, and other factors impact
aerosol distributions. In this study, we focus on land cover.

4.2. Relationships between AOD, NDVI, and NDBI

Land cover is closely associated with the NDVI and NDBI and can be derived from
the two indexes [11,26]. Therefore, the NDVI and NDBI are employed here to prelim-
inarily investigate the relationships between AOD and land cover types. Specifically,
AOD−NDVI relationship statistically model the correlation of AOD to vegetation coverage;
the AOD−NDBI relationship presents the impact of building density on AOD (Figure 4).
With increasing NDVI, AOD is shifted toward lower values, displaying a negative cor-
relation between the vegetation density and aerosol concentration. The dependence of
AOD on NDBI is opposite, with a high AOD value that coincides with a high NDBI. The
NDVI values are found mainly between 0.0 and 0.5; the NDBI values are mainly clustered
between −0.15 and 0.15. The determination coefficients (R2, calculated from the Pearson
correlation coefficient) of AOD−NDVI and −NDBI relationships are of 0.591 and 0.612,
respectively, revealing a reasonable correlation between AOD and NDVI/NDBI. Some
research also characterized the links between NDVI/NDBI and AOD amount; however,
they only found weak connections [3,9]. One possible reason behind this failure could be
coarse resolution (≥1 km) of the AOD products utilized in these studies. The method of
sorting and averaging AOD by NDVI/NDBI bins instead of the AOD−NDVI or –NDBI
pixel pairs employed by previous research also greatly contributes to the findings of rea-
sonable correlations. Obvious nonlinearity is observed in both AOD−NDVI and −NDBI
relationships, due to the contributions of other factors (for example, meteorological factors,
topography, and anthropogenic activities).
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difference built-up index (NDVI/NDBI). Three-year average AOD values are sorted by corresponding
NDVI or NDBI values and averaged into bins. Bubble represents a NDVI or NDBI bin (from −1 to 1,
with an interval of 0.02), with size indicating the number of available AOD retrievals in this bin. The
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value refers to the AOD mean of the bin.

NDVI interacts with NDBI. Thus, the dependency of AOD on combined NDVI and
NDBI is further emphasized in Figure 5. The contour can be coarsely divided into three
areas: red area on the top, yellow area on the left, and blue area on the right. The blue
area, dominated by low AOD values, highlights the negative effect of low to moderate
NDBI and high NDVI on AOD. In contrast, the red area exhibits a strong contribution of
moderate NDVI and high NDBI to high AOD in the study area. The influence of low to
moderate NDVI and NDBI on AOD (the yellow area) is complicated, suggesting that more
AOD determinants, i.e., meteorological factors, should be taken into account to explain the
AOD distributions over sparse vegetated and non-urban areas in full. In conclusion, high
NDVI combined with low NDBI is more likely to lead to a low AOD value. Equally, high
AOD tends to occur in areas with low NDVI and high NDBI values.
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4.3. Impacts of Land Cover on AOD

To further explore the relationships between land cover and AOD, we divide AOD
values into two groups: ≤0.5 and >0.5 under the instruction of [27,28]. Percentages of
the AOD (seasonal AOD average image) groups for different land cover types in different
seasons are shown in Figure 6. AOD values for the study area are dominated by values
under 0.5, with domination increasing from spring (MAM), summer (JJA), autumn (SON)
to winter (DJF), consistent with Li et al. [29]. The percentage of high AOD values in
spring is far greater than in any other season, probably pointing to spring dust storms,
biomass burning, or the formation of secondary aerosols. Compared with the grassland
and forest, urban and built-up land, open shrubland, and cropland are more susceptible to
dust pollution, with a markedly higher >0.5 percentage in spring (Figure 6a).
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The fraction for the five main land cover types in the >0.5 group, from large to small,
are as follows: urban and built-up land > open shrubland > cropland > grassland > forest.
A different arrangement of high AOD value (>0.5) percentages between cropland and open
shrubland are found in spring, with higher percentage of AOD > 0.5 shown in cropland.
The dominant crop types are wheat and maize in Beijing, and the sowing dates are always
in or around April [8,30,31]. The booming sowing activity is responsible for the high
cropland AOD in spring.

The differences in AOD group percentages for different land cover types describe that
land cover types strongly modulate AOD distributions. Land cover type with infrequent
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anthropogenic interference and dense vegetation is more possibly accompanied by low
AOD values.

4.4. Contributions of Different Land Cover Types to AOD

The study quantitatively estimates the contributions of different land cover types
to regional AOD over the study area using Equation (3). Table 2 shows the estimated
contributions of the five main land cover types and the differences between average AOD
for a land cover type and average AOD for the entire study area. There was only one
Sentinel-2 AOD product available in summer 2018. To avoid statistical errors, dT and C for
summer 2018 are not provided here.

Table 2. Contributions of the Five Land Cover Types to AOD in the Study Area.

Land Cover
Type Year S (%)

Spring Summer Autumn Winter

dT C dT C dT C dT C

Cropland
2017 27.638 0.040 1.114 0.023 0.646 0.008 0.233 0.024 0.672
2018 27.533 0.048 1.334 / / 0.037 1.021 0.020 0.544
2019 27.455 0.037 1.009 −0.015 −0.418 0.017 0.471 0.019 0.514

Grassland
2017 5.950 −0.045 −0.269 −0.047 −0.279 −0.010 −0.062 −0.022 −0.130
2018 5.968 −0.016 −0.094 / / −0.009 −0.053 −0.014 −0.081
2019 5.918 −0.021 −0.122 −0.032 −0.190 −0.022 −0.129 −0.025 −0.149

Forest
2017 34.263 −0.124 −4.263 −0.066 −2.245 −0.052 −1.786 −0.064 −2.196
2018 34.240 −0.060 −2.067 / / −0.061 −2.104 −0.043 −1.482
2019 34.223 −0.088 −3.025 −0.033 −1.127 −0.062 −2.130 −0.038 −1.293

Urban and
Built-up

Land

2017 28.210 0.120 3.381 0.070 1.964 0.056 1.567 0.044 1.230
2018 28.241 0.028 0.794 / / 0.038 1.077 0.030 0.861
2019 28.299 0.074 2.092 0.061 1.729 0.062 1.768 0.027 0.766

Open
Shrubland

2017 2.829 0.036 0.103 0.006 0.018 0.016 0.045 0.010 0.027
2018 2.802 0.032 0.088 / / 0.019 0.054 0.018 0.050
2019 2.768 0.036 0.098 0.008 0.023 0.009 0.025 0.015 0.042

Grassland and forest always have negative dT, interpreting that the average AOD of
the two land cover types is lower than the regional AOD average. The negative dT also
implies that both forest and grassland function as aerosol decreasers due to the absorption,
blocking, and deposition of particles by vegetation. Multiplied by the corresponding land
cover type percentage, the contributions of the two land cover types are as follows: forest
< grassland, demonstrating that forest has a more pronounced decreasing function on
regional aerosols than grassland.

Positive values of dT are mostly driven by cropland, urban and built-up land, and
open shrubland. However, the open shrubland is supposed to have a negative value of
dT, since earlier studies suggested that the open shrubland serves as the vegetation barrier
against aerosols [8,32]. Unfortunately, the small area (S < 3%) and scattered pattern of open
shrubland masks this effect, resulting the positive values of dT and C. Overall, urban and
built-up land positively contribute most strongly to regional AOD, followed by cropland
and finally open shrubland.

Maximum and minimum C are observed in spring, for urban and built-up land and
forest, respectively. The dust storms occur in spring in the study area. The observations
show that urban and built-up land are strongly susceptible to dust storms. Moreover, the
complex composition of aerosols and heavy industrial emissions in urban and built-up
land may also partially contribute to the maximum C. The minimum C reflects that forest
is very efficient at weakening aerosol pollution due to deposition. Dense vegetation can
also suppress the aerosol dispersion by reducing wind speed.

During summer, the dT value of cropland changes from positive to negative, from
2017 to 2019, thereby leading to a change in the direction of contribution C. The abnormal
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change presented here explains a contradictory function of cropland on aerosols. The
2019 world horticultural exposition held in Yanqing District, Beijing (Expo 2019 Beijing)
may be responsible for the negative contribution. Yanqing District is in northwest Beijing,
in the cropland region seen in the upper left of Figure 1. To cater the theme—“Live
Green, Live Better”, Expo 2019 Beijing did great environmental friendly efforts, including
adopting a 100% green transportation mode in the Expo 2019 park, constructing low-energy
buildings, making full use of renewable energy, and transforming the Expo 2019 park into
a regional large-scale (area of approximately 5.03 km2) ecological park after the conference
(cf. “International Horticultural Exhibition 2019 Beijing China”, Construction21, 30 July
2019). In return, artificially reversing the contribution value C of cropland from positive
to negative.

In summary, the variations in dT and C quantify a close relationship between regional
AOD and land cover types, with grassland and forest consistently reducing regional AOD,
whereas cropland, urban and built-up land, and open shrubland being positive contributors
to regional AOD. Particularly, the variations in AOD of different land cover highlight the
importance of anthropogenic agency on regional aerosols: high AOD observations coincide
with frequent anthropogenic interferences. The results presented in this section also imply
that the landscape pattern of land cover impacts aerosols.

5. Conclusions

Satellite-derived AOD and land cover data for Beijing and its surrounding areas from
2017 to 2019 are used to explore the influences of land cover types on atmospheric aerosols
below city scales. The study characterizes the spatiotemporal patterns of aerosol for the
study area. The AOD distributions exhibit obvious annual and seasonal variations. In addi-
tion, local aerosols are impacted by regional air quality. Compared with the surrounding
rural areas, central urban areas have a higher AOD.

Investigations are also performed to the relationships between AOD, NDVI, and
NDBI, and suggest that both NDVI and NDBI are correlated to AOD. However, NDVI or
NDBI alone cannot explain the aerosol distribution. In combination, land cover types with
prevailing high NDBI and low NDVI values have a higher probability to cause high AOD,
whereas land cover dominated by low NDBI and high NDVI values tends to cause low
AOD. Vegetation is of great importance for decreasing AOD; urbanization increases the
aerosol pollution instead.

In terms of the influences of the five major land cover types on AOD, the urban and
built-up land is most likely to feature high AOD, followed by open shrubland and cropland.
In contrast, grassland and forests are limited to lower AOD. For environmental policy
makers, the three pollution-susceptible areas, i.e., urban and built-up land, open shrubland,
and cropland, worth priority, especially in spring.

The study quantifies the contributions of different land cover types to the regional
AOD for the study area. Generally, land cover types affected by anthropogenic activities
(i.e., cropland, urban and built-up land, and open shrubland) are positive contributors to
regional AOD. Grassland and forest, dominated by dense vegetation, consistently help to
alleviate regional AOD. Maximum and minimum contributions are found in spring, for
urban and built-up land and forest, respectively.

We note that Sentinel-2B was launched in 2017, whereas the CGLS-LC100 product
was only available until 2019. Although we collect as much data (i.e., the Sentinel-2
AOD products and CGLS-LC100 products) as possible, results presented in the study are
inevitably subject to statistical errors. Nevertheless, our results advance the understanding
of the impacts of land cover types on atmospheric aerosols below city scales and facilitate
land use decision making within a city. Future analyses should further focus on the roles of
meteorological factors, topography, and landscape patterns on aerosols.
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