KIT | KIT-Bibliothek | Impressum | Datenschutz

A Facile Approach for 4D Microprinting of Multi‐Photoresponsive Actuators

Hsu, Li-Yun; Mainik, Philipp; Münchinger, Alexander 1; Lindenthal, Sebastian; Spratte, Tobias; Welle, Alexander ORCID iD icon 2,3; Zaumseil, Jana; Selhuber-Unkel, Christine; Wegener, Martin 1,4; Blasco, Eva 4
1 Institut für Angewandte Physik (APH), Karlsruher Institut für Technologie (KIT)
2 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
3 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
4 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

For microscale 4D photoresponsive actuators, light is crucial in two ways. First, the underlying additive manufacturing techniques rely on photopolymerization processes triggered by the absorption of light. Second, the absorption of light serves as the actuation stimulus. The two absorptions can be conflicting. While the microstructure requires strong absorption at the actuation wavelength(s), this absorption should not interfere with that of the manufacturing process. Herein, a simple strategy is proposed to overcome these limitations and allow for the fabrication of multi-photoresponsive 3D microstructures that can be actuated at different wavelengths of light. Two-photon 3D laser printing is selected as the fabrication technique and liquid crystalline (LC) elastomers as the functional materials. In a first step, 3D microstructures are fabricated using an aligned LC ink formulation. Thereafter, up to five different dyes exhibiting absorptions that extend over the entire visible regime (400–700 nm) are successfully incorporated into the LC microstructures by an exchange process enabling a programmable actuation by irradiating with the suitable wavelength. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000151138
Veröffentlicht am 04.10.2022
Originalveröffentlichung
DOI: 10.1002/admt.202200801
Scopus
Zitationen: 29
Web of Science
Zitationen: 22
Dimensions
Zitationen: 28
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Physik (APH)
Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 10.01.2023
Sprache Englisch
Identifikator ISSN: 2365-709X
KITopen-ID: 1000151138
HGF-Programm 43.32.01 (POF IV, LK 01) Molecular Materials Basis for Optics & Photonics
Weitere HGF-Programme 43.32.02 (POF IV, LK 01) Designed Optical Materials
Erschienen in Advanced Materials Technologies
Verlag John Wiley and Sons
Band 8
Heft 1
Seiten Art.Nr.: 2200801
Vorab online veröffentlicht am 03.10.2022
Schlagwörter 2022-027-031210 ToF-SIMS
Nachgewiesen in Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page