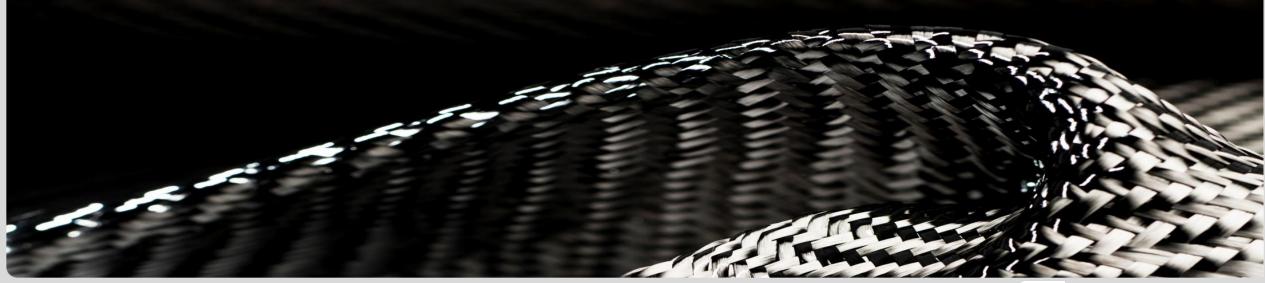


Zeit- und kosteneffiziente Prozess- und Produktentwicklung für den Hochleistungs-Faserverbundleichtbau unterstützt durch Techniken des Maschinellen Lernens

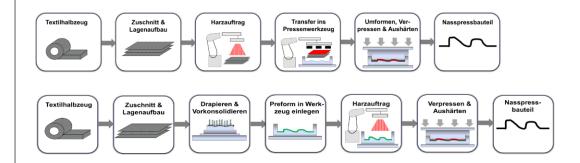

<u>Clemens Zimmerling</u>¹, Luise Kärger¹, Stefan Carosella², Peter Middendorf², Frank Henning¹

¹ Institut für Fahrzeugsystemtechnik – Leichtbautechnologie

KIT

² Institut für Flugzeugbau

Universität Stuttgart


Projektziele

Forschungsbrücke Karlsruhe-Stuttgart

Fachliche Ziele

- Vergleich und Bewertung zweier Prozessrouten
- Physikalisch-basiertes Prozessverständnis

- Methodenentwicklung zur kombinierten Umformungs- und Formfüllsimulation
- Ganzheitliche Prozess- und Produktoptimierung Anhand einer virtuellen Prozesskette

Forschungsbrücke Karlsruhe-Stuttgart

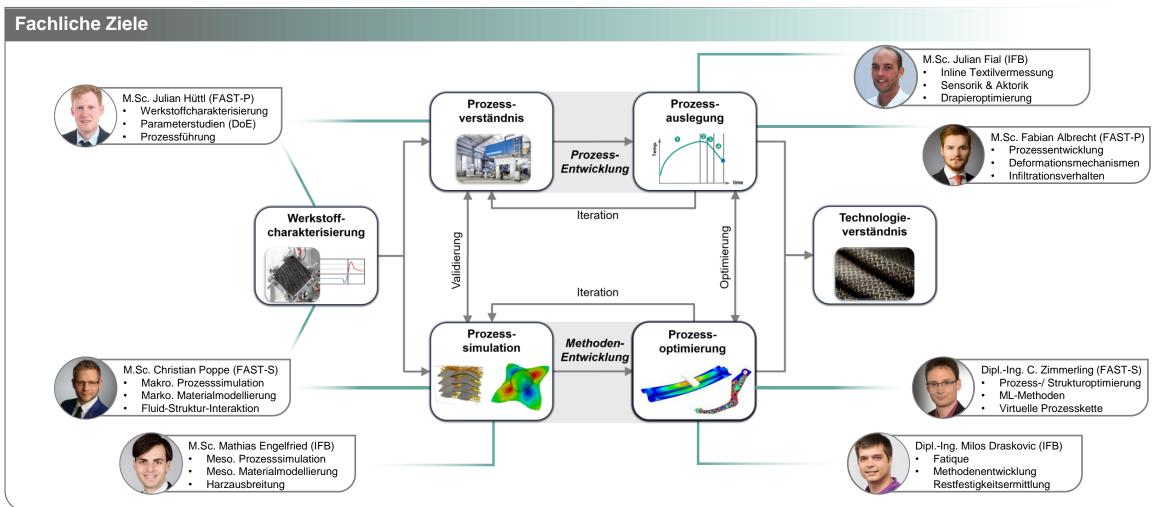
6. Technologietag Hybrider Leichtbau

Optimierte Bauteilauslegung inklusive Fatique-Betrachung

Strategische Ziele

- Kompetenzbündelung für den Leichtbau in BW
- Erhöhung der Sichtbarkeit

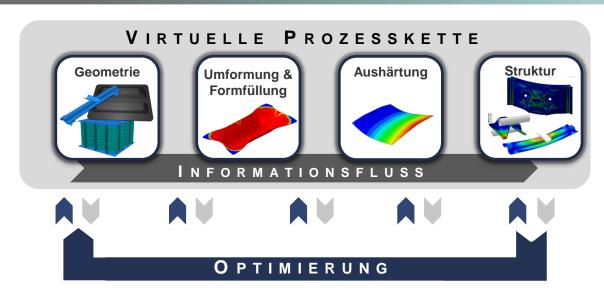
- Synergien nutzen und Redundanzen vermeiden
- Potential des Nasspressens für effiziente Prozesse aufzeigen
- Gemeinsame Drittmitteleinwerbung
- Stärkung der Industriekontakte
- Nutzen der Erfahrungen aus dem RTM-Prozess


Methodik

Forschungsbrücke Karlsruhe-Stuttgart

Forschungsbrücke Karlsruhe-Stuttgart

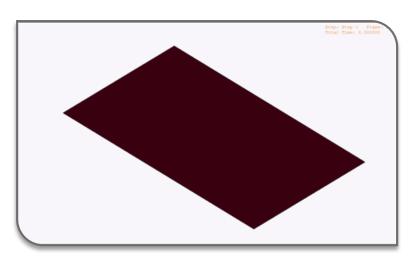
6. Technologietag Hybrider Leichtbau



Motivation

Virtuelle Prozesskette

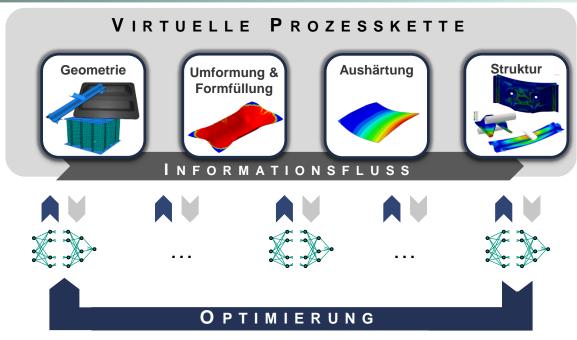
Simulationsmethoden


- Virtuelle Prozesskette zur Bewertung der Herstellbarkeit von FKV
- Berücksichtigung von Prozesseffekten in Struktursimulation

Forschungsbrücke Karlsruhe-Stuttgart

6. Technologietag Hybrider Leichtbau

Reduktion teurer Trial-Error-Versuche (Material, Werkzeuge)


Simulation Nasspressen: Simultane Umformung und Fluidausbreitung [1]

Motivation

Virtuelle Prozesskette

Prozessoptimierung

Ansatz zur weiteren Zeit- und Kostenreduktion

- Berücksichtigung verfügbaren Vorwissens in der virtuellen Produktentwicklung durch Techniken des Maschinenlernens (ML)
- Integration von ML-Methoden zur Prozessüberwachung und –steuerung (Sensorik, Aktorik)

Übersicht

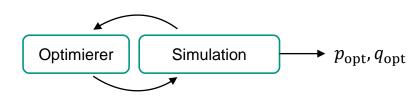
Ausgangssituation

Sicht auf Prozesssimulation

$$arphi_{ ext{sim}}: P \mapsto Q$$
Prozessparameter $P \mapsto Q$
Beobachtete Prozessantwort

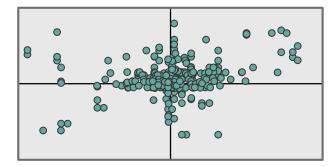
Optimaler Prozesspunkt Ziel:

$$p_{\mathrm{opt}} \in P$$
 mit $q_{\mathrm{opt}} = q(p_{\mathrm{opt}}) \stackrel{!}{\to} \max$, min


Herausforderung: Zahlreiche Iterationen für globale Optima → Rechenzeit steigt

Idee:

Integration von Vorwissen zur Konzentration teurer Simulationen auf meistversprechende Punkte


Forschungsbrücke Karlsruhe-Stuttgart

6. Technologietag Hybrider Leichtbau

Direkte Kopplung von Optimierer und Simulation

Verlauf der direkten Optimierung (Variation Angusspunkt) Zahlreiche "untaugliche" Lösungsvorschläge berechnet

Ansätze

ML-Integration in Prozessoptimierung

Vorwissen integrieren mit schnelles N\u00e4herungsmodell \u03c4_{ML}

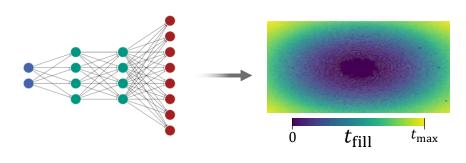
$$\mu_{\mathrm{ML}}: P \mapsto Q$$

mit
$$\mu_{\rm ML} \approx \varphi_{\rm sim}$$

Analytische N\u00e4herungen (Taylor-Reihe, ...) unzug\u00e4nglich
 → datengetriebene ML-Modelle

ID	p_1	p_2		p_k	0 € ≽ 0	ID	q_1	q_2		q_1
1	0.1	2.3		9.3	• • • • • • • • • • • • • • • • • • • •	1	2.8	2.3		3.
2	4.2	8.0		2.7		2	3.2	8.8		8.
					\					
n	9.5	2.8		6.5		n	0.5	6.5		5.3
Input P						Output 0				

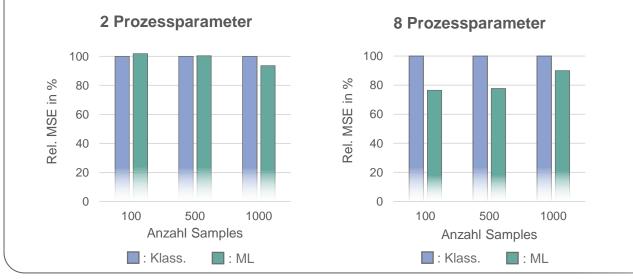
• Datensatz D_n mit n Beispielen (Samples)


Klassisch

Regressionsmodell für Performance-Skalar

Maschinenlern-Ansatz

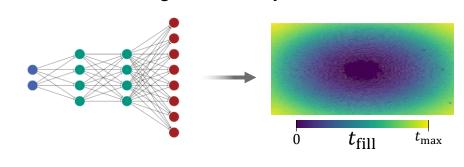
Erlernen des gesamten Systemverhaltens



Ansätze

ML-Integration in Prozessoptimierung

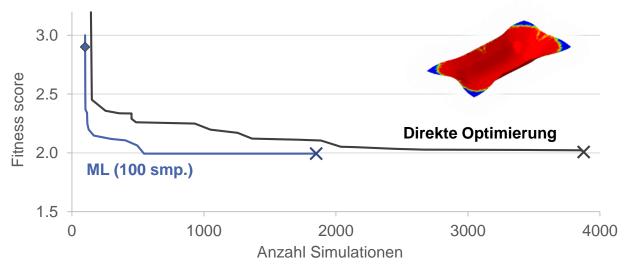
- ML-Algorithmen anstelle klassischer Regressionstechniken
- Verbesserte Ausnutzung verfügbarer Daten insbesondere bei ...
 - ... wenigen Samples
 - ... höheren Dimensionen
 - ... komplexere Dynamiken

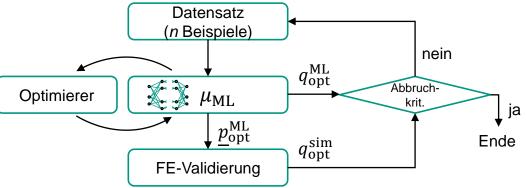

Klassisch

Regressionsmodell für Performance-Skalar

Maschinenlern-Ansatz

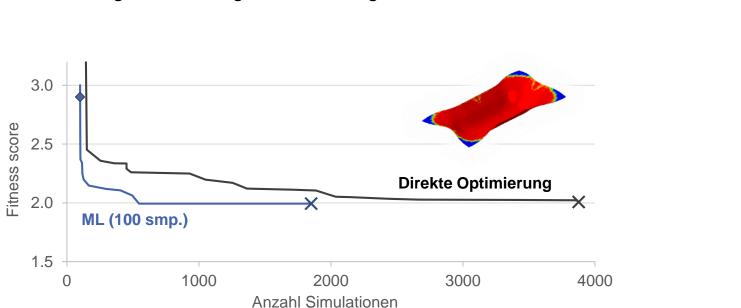
Erlernen des gesamten Systemverhaltens

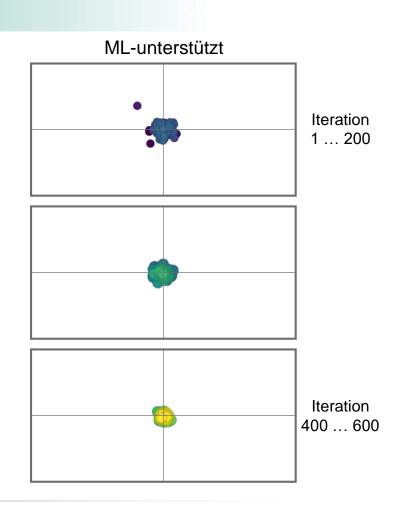



Beschleunigung der Optimierung

ML-Integration in Prozessoptimierung

- Optimierung auf Ersatzmodell
 - ML-Modell ,leitet die Suche des Optimierers
 - Rückführung in Datensatz
 - Sukzessive Verfeinerung des ML-Modells nahe Optima

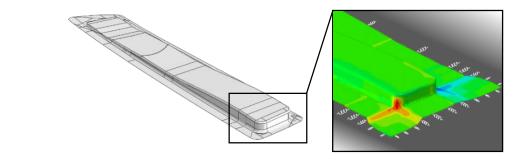

- Ergebnis
 - Weniger Simulationsaufrufe
 - Schneller als direkte Optimierung
 - Besseres Ergebnis gefunden

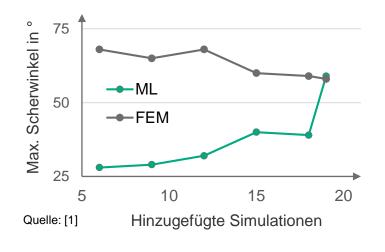

Übersicht

ML-Integration in Prozessoptimierung

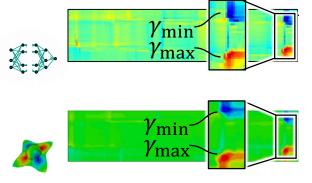
- Optimierung auf Ersatzmodell
 - Konzentration auf meistversprechende Parameterräume
 - Untaugliche Lösungen vorab ausgeschlossen

direkt


09


Umformung

ML-Integration in Prozessoptimierung


- Anwendung in der Textilumformung
- Optimierung Materialzuführung (Greifer)
 - 50 Rückhaltekräfte
 - Scherwinkel minimiert

Forschungsbrücke Karlsruhe-Stuttgart

6. Technologietag Hybrider Leichtbau

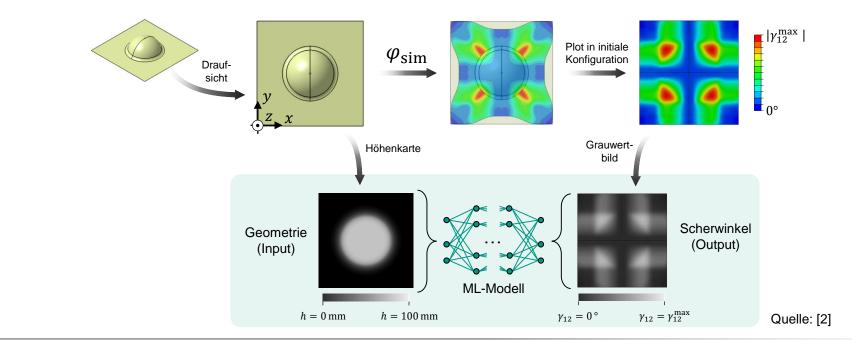
Vergleich ML-Modell und FE-Simulation

- Ergebnis
 - **ML-Algorithmus** sukzessive verfeinert
 - wenige Modellupdates ausreichend
 - Konzentration auf Optima

[2]: Zimmerling C. et al.: "An approach for rapid prediction of textile draping results for variable composite component geometries using deep neural networks", AIP Conference Proceedings, 2019, accepted for publication

Geometriebewertung

Umformung


Berücksichtigung flexibler Geometrien

- Flexible Geometrien
 - Räumlicher Zusammenhang zwischen Bauteilkrümmung und Materialdehnung

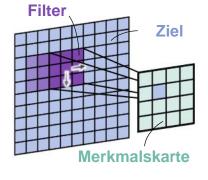
Forschungsbrücke Karlsruhe-Stuttgart

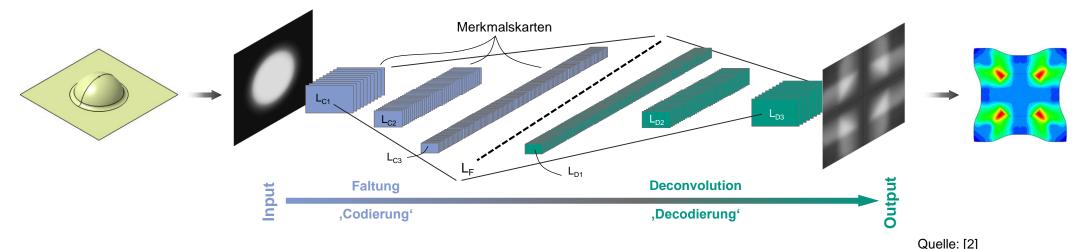
6. Technologietag Hybrider Leichtbau

Pixelbasierte Datenstruktur ermöglicht Einsatz von ML-Techniken der Bildverarbeitung

Geometriebewertung

Umformung

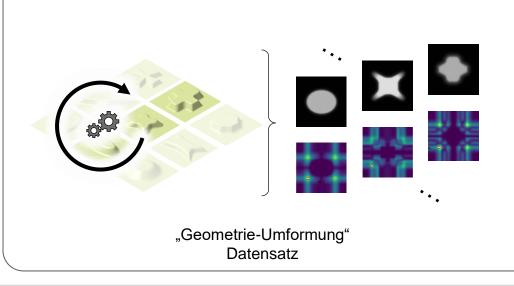

Berücksichtigung flexibler Geometrien

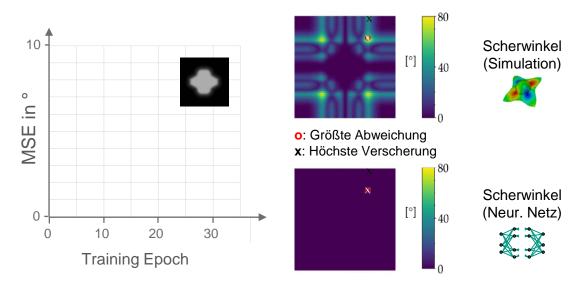

- Neuronale Faltungsnetze zur Bildregression
 - Filtern von Eingangsdaten mit Kernel-Matrizen (,Schablone') (Convolution)
 - Übereinstimmungen aktivieren Neuronen in nächster Schicht

Forschungsbrücke Karlsruhe-Stuttgart

6. Technologietag Hybrider Leichtbau

- Schichtweise Komprimieren (,Codieren') drapierrelevanter Geometrieinformationen
- Interpretation der codierten Informationen durch Umkehroperationen (Deconvolution)


Geometriebewertung


Umformung

Berücksichtigung flexibler Geometrien

- Training der Algorithmen
 - Drapiersimulationen f
 ür verschiedene Geometrien (einfach/doppelt gekr
 ümmt, Konvex/Konkav,...)
 - Training: Anpassung der Filtermatrizen und neuronalen Gewichtsfaktoren
 - Schrittweise Minimierung des Vorhersageabweichung (Mean Square Error)

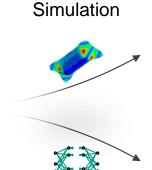
Geometriebewertung

Umformung

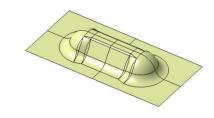
Berücksichtigung flexibler Geometrien

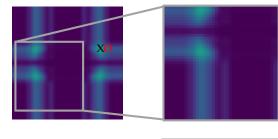
- Unbekannte Geometrien
 - Test an Double-Dome-Geometrie (Drapier-Benchmark)
 - Keine Teilmenge der Trainingsdaten
 - Zufriedenstellende Übereinstimmung zwischen Simulation und ML-Schätzung

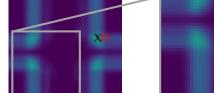
Forschungsbrücke Karlsruhe-Stuttgart 6. Technologietag Hybrider Leichtbau


•
$$\Delta(\gamma_{\text{max}}) = 2.06^{\circ}$$

•
$$\Delta_{\rm rel}(\gamma_{\rm max}) = 4.6\%$$


Bildbasierte Geometriebewertung grundsätzlich generalisierungsfähig

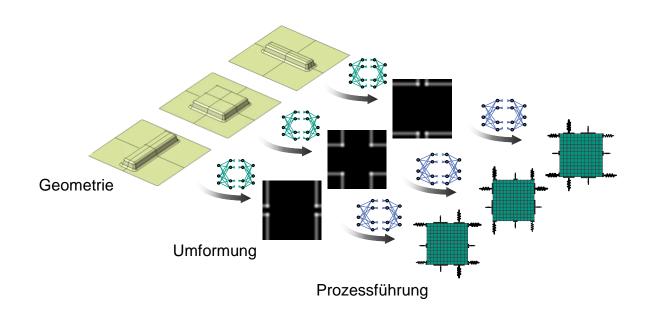




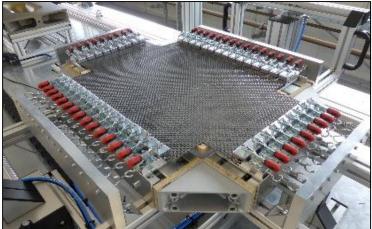
CNN

$$\gamma_{\text{max}}^{\text{sim}} = 44.12^{\circ}$$

o: Größte Abweichung x: Höchste Verscherung


$$\gamma_{\text{max}}^{\text{ML}} = 42.06^{\circ}$$

Flexible Geometrien


Aktuelle Arbeiten

- Günstige Prozessführung schätzen mit ML
 - Materialzuführung lokal manipulierbar über Greifer
 - Kopplung ML-Geometriebewertung mit ML-Prozessempfehlung

Forschungsbrücke Karlsruhe-Stuttgart

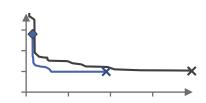
6. Technologietag Hybrider Leichtbau

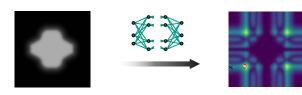
Drapier-Prüfstand

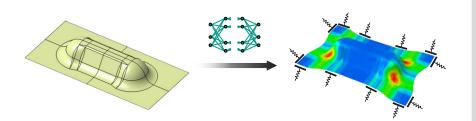
Zusammenfassung

Maschinenlernen in der Prozessauslegung

Zusammenfassung


- Beschleunigung von Optimierungsrechnungen
 - ML-Modelle leiten den Optimierer
 - Konzentration ,teurer' Simulationen auf meistversprechende Varianten




- Pixelbasierte Datendarstellung ermöglicht Geometriebewertung
- Numerisch effizient

- Pixelbasierte Interpretation von Umformergebnissen
- Geometrieübergreifende Empfehlung von Prozessparametern
- Ausblick
 - Algorithmen-Verfeinerung und Erweiterung Trainingsdaten
 - Praktische Erprobung

Vielen Dank

Baden-Württemberg

MINISTERIUM FÜR WISSENSCHAFT, FORSCHUNG UND KUNST

Ansprechpartner

Dipl.-Ing. Clemens Zimmerling

clemens.zimmerling@kit.edu

+49 721 608-45409

Forschungsbrücke Karlsruhe-Stuttgart

6. Technologietag Hybrider Leichtbau

KIT | Karlsruher Institut für Technologie Institut für Fahrzeugsystemtechnik – Teilinstitut für Leichtbautechnologie Rintheimer-Querallee 2 | Geb. 70.04 76131 Karlsruhe