KIT | KIT-Bibliothek | Impressum | Datenschutz

Formability Assessment of Variable Geometries Using Machine Learning - Analysis of the Influence of the Database

Zimmerling, Clemens ORCID iD icon 1; Fengler, Benedikt 1; Kärger, Luise ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Surrogate modelling has proven to be an effective strategy for time-efficient analysis and optimisation of expensive functions such as manufacturing process simulations. However, most surrogate approaches generate problem-specific “one-off” models, which cannot be reused in other, even similar scenarios. Hence, variations of the problem, e.g. minor geometry changes, instantly invalidate the surrogate. Image-based machine learning (ML) techniques have been proposed as an option to train a surrogate for variable geometries. However, it is currently unclear how to construct a sufficiently diverse set of generic training geometries and what effect different databases have. This work investigates the effect of different databases on the prediction accuracy of an ML-assessment of component manufacturability. The considered use-case is textile forming (draping) of a woven fabric. Sampling plans generate different numbers of training geometries, which are in turn evaluated in draping simulations. An image-based ML-algorithm is trained on these process samples and evaluated on a set of validation geometries. Results show that the diversity of the training geometries has a greater impact on the prediction accuracy than the number of samples. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000151168
Veröffentlicht am 05.10.2022
Originalveröffentlichung
DOI: 10.4028/p-1o0007
Scopus
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2022
Sprache Englisch
Identifikator ISSN: 0252-1059, 1013-9826, 1662-9795, 1662-9809
KITopen-ID: 1000151168
Erschienen in Key Engineering Materials
Verlag Trans Tech Publications
Band 926
Seiten 2247–2257
Vorab online veröffentlicht am 22.07.2022
Nachgewiesen in Scopus
Dimensions
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page