KIT | KIT-Bibliothek | Impressum | Datenschutz

Transformer-based Fine-Grained Fungi Classification in an Open-Set Scenario

Wolf, Stefan ORCID iD icon 1; Beyerer, Jürgen 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Fine-grained fungi classification describes the task of estimating the species of a fungus. The FungiCLEF 2022 challenge started a competition for the best solution to solve this task in an open-set scenario. For our solution, we employ a modern transformer-based classification architecture, use a class-balanced training scheme to handle the class-imbalance and apply heavy data augmentation. We approach the open-set scenario by using the final confidence scores as an indicator for unknown species. With this classification model, we were able to achieve an F1 score of 80.6 and 77.5 on the challenge’s public and private test set, respectively. This resulted in achieving the 7th place in the FungiCLEF 2022 challenge. We provide code at https://github.com/wolfstefan/fungi-classification.


Verlagsausgabe §
DOI: 10.5445/IR/1000151183
Veröffentlicht am 05.10.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000151183
Erschienen in CLEF 2022 Working Notes: Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum ; Bologna, Italy, September 5th to 8th, 2022. Ed.: G. Faggioli
Veranstaltung 13th International Conference of the CLEF Initiative (CLEF 2022), Bologna, Italien, 05.09.2022 – 08.09.2022
Verlag CEUR-WS.org
Seiten 2219-2226
Serie CEUR Wokshop Proceedings ; 3180
Schlagwörter Fungi classification, Open-set classification, FungiCLEF, Vision transformer
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page