KIT | KIT-Bibliothek | Impressum | Datenschutz

A robust way to justify the Derivative NLS approximation

Heß, Max 1; Schneider, Guido 1
1 Universität Stuttgart (Uni Stuttgart)

Abstract:

The Derivative Nonlinear Schrödinger (DNLS) equation can be derived as an amplitude equation via multiple scaling perturbation analysis for the description of the slowly varying envelope of an underlying oscillating and traveling wave packet in dispersive wave systems. It appears in the degenerated situation when the cubic coefficient of the similarly derived NLS equation vanishes. It is the purpose of this paper to prove that the DNLS approximation makes correct predictions about the dynamics of the original system under rather weak assumptions on the original dispersive wave system if we assume that the initial conditions of the DNLS equation are analytic in a strip of the complex plane. The method is presented for a Klein Gordon model with a cubic nonlinearity.


Volltext §
DOI: 10.5445/IR/1000151190
Veröffentlicht am 07.10.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 30.09.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000151190
Umfang 30 S.
Serie CRC 1173 Preprint ; 2022/50
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Abstract/Volltext
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page