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Abstract
The partial representation extension problem generalizes the recognition problem for geometric
intersection graphs. The input consists of a graph G, a subgraph H ⊆ G and a representation H of
H. The question is whether G admits a representation G whose restriction to H is H. We study this
question for circle graphs, which are intersection graphs of chords of a circle. Their representations
are called chord diagrams.

We show that for a graph with n vertices and m edges the partial representation extension
problem can be solved in O((n+m)α(n+m)) time, where α is the inverse Ackermann function. This
improves over an O(n3)-time algorithm by Chaplick, Fulek and Klavík [2019]. The main technical
contributions are a canonical way of orienting chord diagrams and a novel compact representation of
the set of all canonically oriented chord diagrams that represent a given circle graph G, which is of
independent interest.
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1 Introduction

Geometric intersection representations of graphs are an important concept that establishes
a strong connection between geometry, combinatorics and graph theory. In an intersection
representation of a graph G = (V, E) each vertex v ∈ V is represented by a geometric
object R(v) whose intersections encode the edges of G, i.e., {u, v} ∈ E if and only if R(u)
and R(v) intersect. Different classes of graphs can be obtained by restricting the types of
geometric objects used for the representation. For example interval graphs are intersection
representations of intervals of the real line, string graphs are intersection graphs of curves in
the plane and circle graphs are intersection graphs of chords of a circle; see Figure 1.

For a fixed class C of intersection graphs a natural question is the recognition problem,
which asks whether a given graph G belongs to C. For circle graphs the recognition problem
has been studied for a long time, and has culminated in an algorithm with running time
O((n + m)α(n + m)) [10, 13], where n and m denote the number of vertices and edges of
the input graph, respectively, and α denotes the slowly growing inverse of the Ackermann
function. There is also an O(n2) time algorithm which is faster for very dense graphs [24].

A generalization of the basic recognition problem has attracted considerable attention:
the partial representation extension problem [19, 1, 23, 2, 9, 18, 17, 21]. In this problem, the
input consists of a triplet (G, H, R′), where G is a graph, H ⊆ G is an induced subgraph
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Figure 1 A graph G with good (a) and overlapping (b) splits. Only one side of each split is
marked. The square vertices in (a) are the boundary of the blue split. (c) an undirected chord
diagram of G (d) an oriented chord diagram of G with reference chord r.

of G, and R′ is an intersection representation of H. The question is whether there exists a
representation R of G that extends R′, i.e., its restriction to H coincides with R′. Following
the notation of Chaplick, Fulek and Klavík [4], for a class C of intersection graphs, we denote
the partial representation extension problem for C by RepExt(C).

Related Work

The recognition problem can be solved efficiently for a wide range of classes of intersection
graphs. The partial representation extension problem was introduced by Klavík et al. [20],
who gave an efficient algorithm for RepExt(

∫
), where

∫
denotes the class of interval graphs,

which they improved to linear running time in their full version [19]. Angelini et al. [1]
give a linear-time algorithm for planar topological graph drawings and Patrignani shows
NP-hardness for planar straight-line drawings [23]. Recently, the problem has also been
considered for simple topological and 1-planar drawings [2, 9]. In the meantime efficient
algorithms are known for proper and unit interval graphs [18], permutation graphs and
function graphs [17], as well as for trapezoid graphs [21]. Concerning the class Circle of
circle graphs, Chaplick et al. [4] gave the first efficient algorithm for RepExt(Circle) with
running time O(n3).

For other forms of representation, there are compact descriptions of all representations of
a graph G, e.g., SPQR-trees [22, 8] for planar graphs and modular decomposition trees [11]
for comparability graphs. Both descriptions express a representation of G by choosing
representations for small graphs that are associated to the nodes of a tree in such a way that
a bijection is obtained between the representations of G and the choices for the small graphs.
For circle graphs, Cunningham and Edmonds introduced split-trees [7] that decompose a
graph along its splits into smaller graphs from which G is assembled in a tree structure.
Gioan and Paul [12] described split-trees using graph-labeled trees. Gioan et al. [13] observed
that all possible chord diagrams of G can be obtained by choosing a chord diagram for each
of the small graphs associated to the nodes of the split-tree of G and combining them suitably
with each other.

Contribution and Outline

However, besides the choices of the chord diagrams, there are choices to be made when
combining those diagrams, which Gioan et al. [13] express by basically directing the individual
chords. These choices allow to obtain the same chord diagram starting with a different set
of directed chord diagrams for the nodes of the split-tree; see Figure 2. We strengthen this
connection by generalizing the concept of split-trees and introducing a canonical orientation
of chord diagrams. In particular, for the canonical split-trees of Cunningham and Edmonds,
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Figure 2 (a), (b) split-trees with different associated chord diagrams, only the relevant orientations
are shown (c) the chord diagram resulting from the join for (a) and (b).

we establish a situation analogous to SPQR-trees or modular decomposition trees: the
canonically oriented chord diagrams of G correspond bijectively to choices of canonically
oriented chord diagrams for the nodes of the canonical split-tree.

In the O(n3)-time algorithm of Chaplick et al. [4] for RepExt(Circle), they characterize
all viable chord diagrams and solve the problem recursively, creating a decomposition that
appears to be similar to the decomposition in our representation. To illustrate the usefulness
of our representation, we improve over this result by showing how to extend partial chord
diagrams in near-linear time O((n + m)α(n + m)). This answers open questions of Chaplick
et al. [4] and Kalisz et al. [16] who specifically ask whether such a representation of all chord
diagrams exists and whether it can be used to solve RepExt(Circle) faster. We note that,
given the data structure computed by the fastest known recognition algorithm by Gioan et
al. [13], our algorithm runs in linear time.

We introduce notation and preliminary definitions in Section 2. In Section 3 we develop
the compact description of representations. Section 4 shows how these results can be used
to obtain an almost-linear time algorithm for RepExt(Circle). Lemmas and theorems
marked with (⋆) are proven in the full version.

2 Preliminaries

In this section we introduce important concepts that we use throughout the paper. In
particular, we recall the concepts of circle graphs and chord diagrams, and we introduce
a way to canonically orient them. Moreover, we also recall the notion of splits and split
decompositions, which are a classic tool in circle graph recognition algorithms.

Circle Graphs and Chord Diagrams

An (undirected) chord diagram D consists of a set C of chords of the unit circle, i.e.,
undirected straight-line segments that connect pairwise distinct points on the unit circle. A
chord diagram D naturally defines an intersection graph G(D) = (C, E) of its chords, where
{c, c′} ∈ E if and only if the chords c and c′ intersect in D, i.e., if and only if their endpoints
alternate around the unit circle. A graph G is a circle graph if it is an intersection graph of
the chords of a chord diagram.

While chord diagrams are geometric objects, we are mostly interested in their combinatorial
structure, i.e., we identify chord diagrams with the same order of chord ends on the circle.
To break certain symmetries we usually consider oriented chord diagrams, which additionally
have a chord end as a starting point. Then an oriented chord diagram D can be encoded as
the word over the set of chords C obtained by starting at the starting point and walking
around the unit circle in clockwise direction and recording the encountered chords. For
c ∈ C, we refer to the first end of c that we encounter with c̊ and to the second end with

MFCS 2022



25:4 Extending Partial Representations of Circle Graphs in Near-Linear Time

å
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Figure 3 The turn and rev operation on a chord diagram with reference chord a.

ĉ. We consider the chord c as directed from c̊ to ĉ in the geometric interpretation; see
Figure 3 (reference). Unless mentioned otherwise, chord diagrams are always considered
oriented and they are usually treated as their encodings.

We call the chord with the starting point the reference chord of D. We never change
the reference chord. In the following, we consider changes that can be applied to every
chord diagram without changing the represented graph or the reference chord. For a word
w we write wrev for the word obtained by reading w backwards. The reverse of a chord
diagram aρaσ is rev(aρaσ) = aσrevaρrev. Geometrically, this corresponds to mirroring the
chord diagram at the reference chord a; see Figure 3 (reversed). The turn of a chord
diagram aρaσ is turn(aρaσ) = aσaρ. Geometrically, this corresponds to choosing â as
the new starting point. In a sense, this turns the chord diagram by 180 degrees; see
Figure 3 (turned). Note that turn(turn(aρaσ)) = aρaσ, rev(rev(aρaσ)) = aρaσ and
turn(rev(aρaσ)) = turn(aσrevaρrev)) = aρrevaσrev = rev(aσaρ) = rev(turn(aρaσ)), i.e.,
turn and rev are selfinverse and commute.

Splits and Split-Trees

Let G = (V, E) be a graph. Consider a bipartition (X, Y ) of V with ∅ ⊊ X, Y ⊊ V and
let BX ⊆ X denote the subset of vertices of X that are adjacent to a vertex in Y and
let BY ⊆ Y denote the subset of vertices of Y that are adjacent to a vertex in X. The
bipartition (X, Y ) is called a split if all possible edges between BX and BY exist in G, i.e.,
{{x, y} | x ∈ BX , y ∈ BY } ⊆ E. Then (BX , BY ) is called the split boundary; see Figure 1.
Observe that if X and Y are not connected, then BX , BY are empty. A split (X, Y ) is trivial
if one of its sides consists of a single vertex. Following Courcelle [5], we call a split (X, Y )
good if it does not overlap any other split, in the sense that for any other split (W, Z) at least
one of X ∩ W , X ∩ Z, Y ∩ W , Y ∩ Z is empty. A graph is prime if all its splits are trivial,
and it is degenerate if every bipartition of the vertices yields a split. It is well known that
the connected degenerate graphs are precisely cliques and stars [6].

Next, we define split-trees, introduced by Cunningham and Edmonds [7] as decomposition
trees. We use the graph-labeled tree description of Gioan and Paul [12]. However we consider
graph-labeled trees that correspond to general decompositions in the sense of Cunningham
and Edmonds, while Gioan and Paul used the term split-tree for a unique structure which
we later define as the canonical split-tree. To avoid confusion with the vertices and edges of
our graphs, we refer to the vertices and edges of split-trees as nodes and arcs, respectively. A
split-tree T is a tree where each inner node µ has a skeleton graph skel(µ) and a bijection
corrµ from V (skel(µ)) to the nodes of T adjacent to µ; see Figure 4. Given an inner node µ

and a neighbor ν of µ, we often need to refer to the vertex v of skel(µ) that represents ν.
For convenience, we define vµ(ν) as the vertex v of skel(µ) with corrµ(v) = ν.
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Figure 4 Split-trees of the graph from Figure 1a. (a) shows the base case, in (b) the node λ

from (a) is decomposed into µ and ν along the split ({a, b}, {c, d, e, r, f}). In (c) the node µ from
(b) is further decomposed along the split that has {c, d, e} on one side.

We define split-trees inductively. Let G = (V, E) be a graph. In the base case; see
Figure 4a, a split-tree T of G consists of one inner node λ and one leaf for each vertex v ∈ V

that is adjacent to λ. We identify the leaves of T with the vertices in V . Define the skeleton
of λ as skel(λ) = G. For every vertex v ∈ V (skel(λ)), we define corrλ(v) as the leaf node v

of T .
We can further decompose such a split-tree. Let λ be an inner node and let (X, Y ) be a

non-trivial split of skel(λ). Let GX denote the graph obtained from skel(λ) by contracting
Y into a single vertex y. Symmetrically, let GY denote the graph obtained from skel(λ) by
contracting X into a single vertex x. Then λ can be split into two nodes µ, ν connected
by an arc {µ, ν}; see Figure 4b. Define skel(µ) = GX and skel(ν) = GY . Observe that y in
GX represents the graph GY and x in GY represents the graph GX . We define corrµ(y) = ν

and corrν(x) = µ. For any vertex v ∈ V (skel(λ)) we replace the arc {λ, corrλ(v)} with
{µ, corrλ(v)} if v ∈ X or {ν, corrλ(v)} if v ∈ Y . Finally, for each inner node κ adjacent to
λ consider the unique vertex v ∈ skel(κ) with corrκ(v) = λ. We redefine corrκ(v) = µ if
vλ(κ) ∈ X and corrκ(v) = ν if vλ(κ) ∈ Y . Observe that the result is still a tree and corrξ is
well defined for each inner node ξ. Hence, the inner nodes may be decomposed again. The
split-trees of G are the split-trees that can be obtained in this way.

The inverse of a decomposition is a join. Let G1, G2 be two (vertex-disjoint) graphs with
v2 ∈ G1, v1 ∈ G2. Then we define their join at v2,v1 as the graph obtained from G1 ∪ G2 by
connecting all neighbors of v2 in G1 with all neighbors of v1 in G2 and removing the vertices
v1, v2. We denote the resulting graph by G1 ⊕v2,v1 G2 = (V, E). For a split-tree T with an
arc {µ, ν} let b = vµ(ν), a = vν(µ). The nodes µ, ν can be joined into a single node λ with
skel(λ) = skel(µ) ⊕b,a skel(ν). Moreover, for any inner node κ adjacent to µ or ν and the
unique vertex v ∈ V (skel(κ)) with corrκ(v) ∈ {µ, ν} we redefine corrκ(v) = λ.

Let T denote a split-tree and let {µ, ν} be an arc of T . Removing {µ, ν} separates T

into two trees Tµ and Tν where Tµ contains the node µ and Tν contains the node ν. Let
L(Tµ) ⊆ V denote the set of leaves of Tµ. By construction of the split-tree (L(Tµ), L(Tν)) is
a split of G, which is induced by the arc {µ, ν}. For example, the blue split from Figure 1a is
represented by the arc {κ, ξ} in Figure 4c. Let (A, B) be a non-trivial split of skel(µ). This
split induces a split (LA, LB) of G with LA =

⋃
v∈A L(Tcorrµ(v)) and LB =

⋃
v∈B L(Tcorrµ(v)).

An example of this is the red split from Figure 1b that is represented by a non-trivial split
inside node ξ of Figure 4c. We call an inner node of a split-tree degenerate and prime, if
its skeleton graph is degenerate and prime, respectively. Observe that in the split-tree in
Figure 4c, the node κ is prime, and ν, ξ are degenerate.
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In a good-split-tree every inner arc {µ, ν} of T induces a good split. For a connected
graph G, a canonical split-tree is a good-split-tree such that no skeleton has a non-trivial
good split, no inner arc induces a trivial split, and any two arcs induce different splits. A
canonical split-tree is obtained by decomposing G (in arbitrary order) along all its good
splits. This is possible since the good splits form a laminar set. The resulting canonical
split-tree is denoted by ST(G). It was first defined by Cunningham and Edmonds [7]. We
use the graph-labeled-tree description by Gioan and Paul [12]. It is unique, and nodes have
connected skeletons that are either prime or degenerate. Moreover, if two adjacent nodes µ, ν

are both degenerate, then either one of them is a star and one is a clique, or they are both
stars and the vertices vµ(ν) and vν(µ) are either both leaves or both the star centers of their
respective skeletons. By the following useful property, ST(G) represents all splits of G.

▶ Proposition 1 ([6],[14, Theorem 2.18]). A partition (A, B) of the vertex set of a connected
graph G is a split of G if and only if it is induced by an arc of ST(G) or by a non-trivial
split of a (skeleton of a) degenerate node of ST(G).

3 Compact Representation of all Chord Diagrams

Let G = (V, E) be a circle graph. In Section 3.1 we establish a correspondence between the
chord diagrams of G and assignments of chord diagrams to the inner nodes of a split-tree
of G. For canonical split-trees, this correspondence turns out to be a bijection. We further
show that both directions of this bijection can be computed in linear time. In Section 3.2 we
describe the possible choices for the chord diagrams for nodes of a canonical split-tree of G.
Altogether, this gives the claimed compact representation for connected circle graphs.

3.1 Configurations of Split-Trees

Let G = (V, E) be a circle graph, let r ∈ V be the reference chord of G and let T be a
split-tree of G. We root T at r and direct all arcs away from the root. For each inner node ν

of T , we define the reference chord rν as the chord vν(µ) associated with the parent µ of ν. A
configuration c of T is a mapping that assigns to each inner node µ of T a chord diagram c(µ)
of skel(µ) with reference chord rµ; see Figure 5. We also refer to c(µ) as the configuration
of µ. Recall that a split decomposition can be used to split a node λ of T into two nodes µ, ν

connected by a (directed) arc (µ, ν). In the reverse direction, a join composition can be used
to join two nodes µ, ν connected by an arc (µ, ν) into a single node λ. The join operation
extends to configurations.

The configurations of µ and ν induce a unique configuration of λ as follows. Let v = vµ(ν)
and let c(ν) = rνρrνσ. The induced configuration c(λ) = c(µ) ⊕v,rν

c(ν) of λ is obtained
from c(µ) by replacing v̊ with ρ and v̂ with σ. See Figure 5b. The order of multiple joins
affects neither the resulting split-tree nor the resulting configuration. For a configuration c of
a split-tree T we denote by D(c) the chord diagram obtained by joining the configurations of
all inner nodes of T . For connected graphs, the two joined chord diagrams c(µ), c(ν) are fully
determined by their join c′(λ) since the four combined words ρ, σ, µ, ν are fully determined
by c′(λ). This implies that two different configurations yield two different chord diagrams.

If G is connected, a diagram D can be decomposed along a split (A, B) only if the
endpoints of the chords in A and B appear suitably in D. We say that D respects the split
(A, B) if D decomposes into two words over A and two words over B that alternate. Formally,
this means we have D = ρ1σ1ρ2σ2ρ3 where ρ2, (ρ3ρ1) and σ1, σ2 are words over A and B.
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Figure 6 (a) A star G with a non-good split ({r,a},{b,c}). (b) A split-tree T of G with an arc
corresponding to the bad split in (a). (c) A chord diagram of G that is not represented by T .

We show that a chord diagram can be recursively decomposed along several splits if it
respects each of them. This yields the following lemma.

▶ Lemma 2 (⋆). Let G be a (not necessarily connected) circle graph and let T be a split-tree
of G rooted at some reference chord r. Then the mapping D that maps configurations of T to
chord diagrams of G is surjective on the set of chord diagrams of G with reference chord r

that respect all splits induced by arcs of T .

Note that, for any configuration c of T , the chord diagram D(c) respects all splits induced
by arcs of T . Since it is known that a chord diagram D of a connected circle graph G respects
all good splits of G [5, Proposition 9], we conclude the following.

▶ Theorem 3. Let T be a good-split-tree of a connected circle graph G rooted at some
reference chord r ∈ V (G). Then the mapping D that maps configurations of T to chord
diagrams of G with reference chord r is a bijection.

We can translate between configuration and chord diagram in linear time, which allows us
to use this result algorithmically. Note that in the following theorem the split-trees are not
required to be good-split-trees, which means there may be chord diagrams for their graph that
they do not represent; see Figure 6. This will be useful when dealing with RepExt(Circle).

▶ Theorem 4. Let T be a split-tree of a connected circle graph G rooted at some reference
chord r ∈ V (G). Then the mapping D can be computed in linear time. Conversely, given a
chord diagram D of G with reference chord r, it can be tested in linear time whether there
exists a configuration c of T with D(c) = D. If it exists, the configuration c can also be
computed in linear time.
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Proof. We store chord diagrams as circular doubly linked lists of endpoints of chords in
clockwise order. We assume that each chord endpoint is equipped with a pointer to the
corresponding vertex and each vertex has pointers to the two endpoints of its chord.

Let c be a configuration of T . We first store for each chord u in a chord diagram which
of its ends is ů. We then process the tree T in bottom-up order. If c contains only a single
inner node, then the configuration of this node is the desired diagram D(c). Otherwise let µ

be an inner node of T whose children are all leaves and let ν be its parent. Let T ′ be the
split tree obtained by replacing in T the node µ together with all its leaves by a single leaf v

and let c′ be the configuration of T ′ that coincides with c for all nodes of T ′. Clearly, c′

and T ′ can be computed from c and T in O(1) time. We now recursively compute D(c′) in
time linear in the size of T ′. To obtain D(c), we replace in D(c′) the endpoints v̊, v̂ of v by
the sequences π, σ, respectively, where c(µ) = rπrσ and r is the reference chord of µ. Since
we maintain the order of the endpoints in doubly linked lists, this can be done in O(1) time.
Therefore we only spend O(1) time per node of T .

Conversely assume that D is a chord diagram of G with reference chord r. We again
process the tree T in bottom-up order. As before, if T contains only a single inner node µ

then c(µ) = D is the desired configuration. Otherwise let µ be an inner node whose children
are all leaves. We denote the set of leaves of µ by L. Note that (L, V \ L) is a split of G. Let
T ′ be the tree obtained from T by replacing µ and its leaves by a single leaf v. Using simple
flags, we can decide for an endpoint of a chord of D in constant time whether it belongs to a
vertex of L and if so, whether it has already been processed. We now treat the endpoints
of the vertices in L one by one. For the first endpoint e we obtain in this way, we scan to
the left and right in the doubly linked list of D starting at e. In this way we determine a
maximal sublist [e1, e2] of D (containing all endpoints that lie clockwise between the first
and last points e1, e2 of that list) with e ∈ [e1, e2] such that all elements of [e1, e2] belong to
vertices of L. We mark all endpoints that we encounter in this way as processed. We then
scan further the leaves of L. We do find another endpoint f that is not yet processed since G

is connected. We similarly determine a sublist [f1, f2] around f so that all endpoints that lie
clockwise between f1, f2 belong to vertices of L and the predecessor of f1 and the successor
of f2 do not. If there is an unprocessed endpoint left, this means D does not respect split
(L, V \ L) and we can reject. Hence, assume no unprocessed endpoint remains.

We thus have partitioned the endpoints of the chords of L into two disjoint sublists [e1, e2]
and [f1, f2] of D. Then let D′ be the diagram obtained from D by replacing the sublists [e1, e2],
[f1, f2] each with v. We recursively compute a configuration c′ of T ′ with D(c′) = D′ where
for each chord u the end ů is stored. If this succeeds, we obtain the desired configuration
c as follows. For each inner node ν ̸= µ we set c(ν) = c′(ν). Since we know from each
predecessor and successor u of v̊, v̂ whether it is ů, we can set c(µ) = r[e1, e2]r[f1, f2] or
c(µ) = r[f1, f2]r[e1, e2] accordingly, where r is the reference chord of skel(µ). By construction
it is D(c) = D. Note that any other choice of c(µ) or D(c|T −µ) results in a chord diagram
different from D, since [e1, e2] and [f1, f2] are non-empty and separated by chords not in L.
We can then first iterate through the list of [e1, e2], [f1, f2] that replaces v̊ and then other
one to store each endpoint ů.

The time spent to compute T ′, D′ as well to modify c′ into c is proportional to |L|.
Therefore the algorithm runs in linear time. ◀

3.2 Configurations of Canonical Split-Trees
In a chord diagram D of a degenerate circle graph G, i.e., of a clique or a star, one half of D

determines the other half. More precisely, we can describe a chord diagram of a connected
degenerate circle graph G = (V, E) with reference chord r ∈ V with a cyclic permutation of V



G. Brückner, I. Rutter, and P. Stumpf 25:9

using the following mapping ϕG,r to chord diagrams of G with reference chord r. If G is a
clique, we set ϕG,r(rρ) = rρrρ. If G is a star with center x, we set ϕG,r(xρσ) = ρrevxρσxσrev

where ρ ends with r or is empty if x = r.

▶ Lemma 5 (⋆). For a clique or a star G = (V, E) with r ∈ V the map ϕG,r is a bijection.

Bouchet [3] showed that the undirected chord diagram of a connected prime circle graph
is unique up to reversal. We can additionally choose the orientation of the reference chord.
As a shorthand, we set tr = {id, turn, rev, turn(rev)} and for any chord diagram D we set
tr(D) = {D, turn(D), rev(D), turn(rev(D))}. Note that we can have | tr(D)| < 4, e.g., for
cliques we have turn(D) = D.

▶ Lemma 6 (⋆). Let G be a connected prime circle graph, r ∈ V (G), and D a chord diagram
with reference chord r. Then | tr(D)| = 4 and tr(D) is the set of chord diagrams of G with
reference chord r.

By combining Theorem 3 with Lemmas 5, 6 we obtain the claimed compact representation
of all chord diagrams of a connected circle graph G.

▶ Theorem 7. Let G be a connected circle graph and let T be the canonical split-tree of G

with reference chord r ∈ V (G). Let each prime node µ be equipped with a chord diagram
of skel(µ) with reference chord rµ. There is a bijection between the chord diagrams of G with
reference chord r and the choices of (i) applying an operation τµ ∈ tr to each prime node µ

and (ii) choosing a cyclic permutation of V (skel(µ)) for each degenerate node µ.

4 Partial Representation Extension

In this section, we solve RepExt(Circle) for a given circle graph G = (V, E) and a chord
diagram DH of an induced subgraph H ⊆ G in near-linear time. The idea is the following.
Assume G is connected and let T be the canonical split-tree of G. By Theorem 3, all chord
diagrams of G are represented by T . We project T and its configurations in a sense on H

and obtain an enriched split-tree TH of H. We show that TH describes exactly the chord
diagrams of H that can be extended to G. This means we just need to check whether TH

describes the given chord diagram DH .
If G is disconnected and there is a connected component C with two predrawn chord ends

a, b, and a distinct connected component C ′ with two predrawn chord ends c, d in DH such
that a, b and c, d alternate in DH , then there is no extension of DH to G since C, C ′ need
to cross each other (even though the crossing chords might not be predrawn). Chaplick et
al. [4] argue that otherwise an extension exists if and only if each connected component of G

admits an extension. Testing this requirement as well as combining representation extensions
of the different components can be done in linear time. Hence, we assume in the following
that G is connected. Note that H may still be disconnected.

We start with a canonical split-tree T of G rooted at a reference chord r ∈ V (H), which
by Theorem 3 represents all chord diagrams of G. For a chord diagram D of G let D|H
denote the chord diagram for H induced by D (i.e., the chords of H are placed as in D with
the same starting point). Let TH be the subtree of T whose leaves are the vertices of H and
whose inner nodes are the inner nodes of T that lie on a path from r to some leaf in V (H).
For each inner node of TH , we define skelTH

(µ) as the subgraph of skelT (µ) induced by the
vertices vµ(V (TH)), i.e., we keep exactly those chords that represent nodes that lead to at
least one vertex of H (see Figure 7). Finally, we suppress nodes with K2 as skeleton in TH
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(a)

ν′

µ′

κ′

λ′ (b)

κ

µ

λ

Figure 7 (a) Configuration of a canonical split-tree T . Leaves in V (H) are blue squares. (b)
split-tree TH with the corresponding configuration. Node µ is degenerate in TH while µ′ is prime in
T . skel(κ) is an isolated set while skel(κ′) is a star.

by (iteratively) joining them with one of their neighbors. Note that TH is a split-tree of H

rooted at r, and each inner node µ of TH stems from exactly one inner node µ′ of T . We
call TH the projection of T onto H.

Let now c be a configuration of T . We define its projection cH by setting cH(µ) =
c(µ′)|skelTH

(µ) for each node µ of TH , i.e., it is the restriction of the chord diagram c(µ′)
to skelTH

(µ). Observe that the reference chord is not removed, and therefore cH(µ) has the
same reference chord as c(µ′), i.e., cH is a configuration of TH . The following lemma shows
that the projection (T, c) 7→ (TH , cH) commutes with all relevant operations.

▶ Lemma 8. We have (i) D(c)|H = D(cH) and (ii) for every inner node µ of TH ,
turn(cH(µ)) = turn(c(µ′))|skelTH

(µ) and rev(cH(µ)) = rev(c(µ′))|skelTH
(µ).

Proof. For Property (i) observe that it suffices to show that joining two diagrams commutes
with the projection to a subgraph H. It then follows that D(c)|H , where the join is projected
to H, is the same as D(cH), where the skeletons are projected before the join, coincide.

More formally, let H1, H2 be two induced subgraphs of graphs G1, G2, respectively, and
let H = H1 ⊕v2,v1 H2 and G = G1 ⊕v2,v1 G2. We show that for any chord diagrams D1, D2
of G1, G2, respectively, it is (D1 ⊕v2,v1 D2)|H = D1|H1 ⊕v2,v1 D2|H2 . To see this, let D1 =
αv2βv2γ and D2 = v1ρv1σ and let α′, β′, γ′, ρ′, σ′ be the words obtained from α, β, γ, ρ, σ by
removing all symbols for chords that are not in V (H). Then we have (D1 ⊕v2,v1 D2)|H =
(αρβσγ)|H = α′ρ′β′σ′γ′. On the other hand, it is D1|H1 ⊕v2,v1 D2|H2 = α′v2β′v2γ′ ⊕v2,v1

v1ρ′v1σ′ = α′ρ′β′σ′γ′.
For Property (ii), let H be an induced subgraph of G. Let D = rρrσ be a chord diagram

for G with reference chord r and let ρ′, σ′ be the restrictions of ρ, σ to H, respectively.
Then turn(D)|H = turn(rρrσ)|H = (rσrρ)|H = rσ′rρ′ = turn(rρ′rσ′) = turn((rρrσ)|H) =
turn(D|H) and rev(D)|H = rev(rρrσ)|H = (rσrevrρrev)|H = rσrevrρrev|H = rσ′revrρ′rev =
rev(rρ′rσ′) = rev(D|H). ◀

Let DH be a chord diagram of H. By Theorem 3 there exists a chord diagram of G

that extends DH if and only if there exists a configuration c of T with D(c)|H = DH . By
Lemma 8(i) this holds if and only if there exists a configuration c of T whose projection cH

satisfies D(cH) = D(c)|H = DH . We aim to find such a configuration c. To do this, we make
use of the property from Lemma 8(ii) as follows. Let c′ be an arbitrary configuration of
T . By Theorem 7, the configuration c is obtained from c′ by (i) choosing a configuration
for each degenerate node of T and (ii) by choosing for each prime node µ one of the
diagrams c(µ) ∈ tr(c′(µ)). Note that induced subgraphs of cliques are themselves cliques
and an induced subgraph of a star is either a star or an independent set. In the latter case
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Figure 8 (a) a restricted split-tree for a graph H (b) a chord diagram DH for H where the chord
ends of the leaves of µ are contiguous. (c) the chord diagram we wish to create from DH by replacing
b,c by v. Note that the position of v̂ is not neighboring the position of any leaf of µ in (b).

an induced chord diagram has the form ρrevρσσrev where the center of the original star has
one end between ρrev and ρ and one end between σ and σrev. By Lemma 8(ii) it follows
that cH is obtained from c′

H by (i) arbitrarily choosing a configuration for each node of TH

that stems from a degenerate node of T and is connected, (ii) choosing a configuration of
the form ρrevρσσrev for each node of TH that stems from a degenerate node of T and is an
independent set and (iii) by choosing for each node µ of TH that stems from a prime node
in T one of the diagrams cH(µ) ∈ tr(c′

H(µ)).
We condense these rules as follows. We label the nodes of TH as degenerate if they stem

from a degenerate node in T and as prime if they stem from a prime node of T . We call two
configuration cH , c′

H of TH equivalent if cH(µ) ∈ tr(c′
H(µ)) for each prime-labeled node, and

for each degenerate-labeled node ν where skel(ν) is an independent set, cH(ν) is of the form
ρrevρσσrev. We call (TH , c′

H) the restricted split-tree of H with respect to G and say that
(TH , c′

H) represents a diagram DH of H if DH = D(cH) for some configuration cH that is
equivalent to c′

H . By the above observations, DH can be extended to a diagram of G if and
only if DH is represented by (TH , c′

H), where c′
H is the projection of a configuration of T .

If H is connected, this condition can be tested in linear time by computing the unique
configuration cH of TH with D(cH) = DH using Theorem 4 and then checking whether it is
equivalent to c′

H . If H is not connected, we use the following lemma to test whether (TH , c′
H)

represents DH and to obtain a corresponding configuration cH of TH in that case.

▶ Lemma 9 (⋆). Let (TH , c′
H) be a restricted split-tree of a graph H with respect to a

connected graph G and let DH be a chord diagram of H with the root r of TH as reference
chord. It can be tested in linear time whether (TH , c′

H) represents DH . If so, a corresponding
configuration cH can also be computed in linear time.

Sketch of proof. We use a bottom-up approach as in the proof of Theorem 4 to find cH .
Recall that in the proof of Theorem 4, we iteratively processed an inner node µ with only
leaves as children and searched for subwords of DH that correspond to a chord diagram
Dµ of skel(µ) to check whether Dµ can be part of a configuration and then replace these
subwords with a chord that represents µ as a leave for the remaining split-tree. To find these
subwords we started at arbitrary leaves of µ to find contiguous sublists of such leaves in DH .
However, if H is not connected, it can happen that when processing a node µ, all its leaves
are contiguous in DH ; see Figure 8. For example, this happens if µ is a leftmost leaf of a
star node in T that lost its center in TH (something similar can happen in prime-labeled
nodes). In this case the first found sublist [e1, e2] of leaves of µ already contains all leaves
of µ and we do not find a second sublist [f1, f2]. This means that we have no pointer to
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the correct place in the new chord diagram D′ for the second end of the leaf chord v that
replaces µ. We thus allow DH to be a relaxed chord diagram where for some chords only
one end is fixed. We then use the characterization of inner nodes of restricted split-trees to
compute configurations for those nodes that match the given relaxed chord diagrams.

For example, if µ is a labeled degenerate and skel(µ) is a star with center x, we start at
an end of x in DH and traverse simultaneously in both directions until all ends are traversed
(except possibly the second end of x). At each end of a chord v with no second end, insert
that second end where the other traversal is at that moment. When a chord with two ends
is reached, wait in front of that chord until the other traversal also reaches that chord and
then skip that chord in both traversals. If the traversals wait at different chords we reject.
In that case DH induces the subword xaabb (or some cyclic shifted version of that word)
which cannot be realized by a star with center x. If x has a second end, the traversals meet
and end there. Otherwise, add the second end of x where the traversals meet. Thereby, all
chords for leaves intersect x and no other intersection occurs. By construction we obtain a
chord diagram cH(µ) that realizes DH .

Note that both ends of v can be neighbors in D(cH |TH −µ). Then, moving the end r̂ of the
reference chord in cH(µ) does not change D(cH) and cH is no longer required to be unique. ◀

▶ Theorem 10. Given T = ST(G) and a chord diagram D of G, RepExt(Circle) can
be solved in linear time. In the positive case a representation of G that extends the given
diagram DH of H can be computed in the same running time.

Proof. From D we compute in linear time a configuration c′ of T with D(c′) = D using
Theorem 4. From T and c′, we compute in linear time the projection to the restricted
split-tree (TH , c′

H) of H. With Lemma 9, we test whether it represents the given diagram
DH of H and obtain a configuration cH equivalent to c′

H with D(cH) = DH . We now define
a configuration c of T as follows. For each prime-labeled node µ of TH , we define c(µ′) =
τ(c′(µ′)) where τ ∈ tr such that cH(µ) = τ(c′

H(µ)). For each degenerate-labeled node µ

of TH , we choose a configuration as follows. If skelH(µ) is connected we can extend c′(µ)
arbitrarily. For a precise argument, we have by Lemma 5, cH(µ) = ϕskelH (µ),r(σ) for
some cyclic permutation σ of V (skelTH

(µ)). We create a permutation σ′ of V (skelT (µ))
by appending the elements of V (skelT (µ′)) \ V (skelTH

(µ)) to σ in an arbitrary order. We
then set c(µ′) = ϕH,r(σ′). If skelTH

(µ) is not connected, then skelT (µ′) is a star where the
reference chord rµ′ is not the center x and skelTH

(µ) does not contain x. In that case cH(µ)
is of the form cH(µ) = ρrevρσσrev and we have to insert the other chords in parallel, such
that x can intersect all chords. Then set c(µ′) = ρrevxρσαxαrev, where α are the elements of
V (skelT (µ)) \ V (skelTH

(µ)) \ {x}. Finally, for each node µ′ of T that is not contained in TH ,
we set c(µ′) = c′(µ′). By construction, we have that cH is the projection of c, and therefore
D(c)|H = D(cH) = DH , i.e., D(c) is the desired representation of G. Clearly the amount of
work per skeleton is linear, and therefore the overall running time is linear. ◀

Theorem 10 assumes that ST(G) and a chord diagram of G are available. If not, we can
compute them in O((n + m)α(n + m)) time [13, 14].

▶ Corollary 11. RepExt(Circle) can be solved in O((n + m)α(n + m)) time.

5 Conclusion

We have developed a data structure that compactly represents all chord diagrams for
a connected circle graph. As an application, we have shown how to solve the partial
representation extension problem for circle graphs in almost linear time, improving over
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the O(n3) algorithm of Chaplick et al. [4]. Using a reduction of Chaplick et al. this also
solves the extension problem for permutation graphs in near linear time, improving over two
different O(n3) algorithms [4], [17]. Our data structure may also be useful when seeking
restricted chord diagrams that satisfy additional constraints. For example, we believe that it
is possible to significantly simplify the circular-arc graph recognition of Hsu et al. [15].
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