KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning tree structures from leaves for particle decay reconstruction

Kahn, James ORCID iD icon 1; Tsaklidis, Ilias ; Taubert, Oskar ORCID iD icon 1; Reuter, Lea 2; Dujany, Giulio; Boeckh, Tobias; Thaller, Arthur; Goldenzweig, Pablo 2; Bernlochner, Florian; Streit, Achim ORCID iD icon 1; Götz, Markus ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)
2 Institut für Experimentelle Teilchenphysik (ETP), Karlsruher Institut für Technologie (KIT)

Abstract:

In this work, we present a neural approach to reconstructing rooted tree graphs describing hierarchical interactions, using a novel representation we term the lowest common ancestor generations (LCAG) matrix. This compact formulation is equivalent to the adjacency matrix, but enables learning a tree's structure from its leaves alone without the prior assumptions required if using the adjacency matrix directly. Employing the LCAG therefore enables the first end-to-end trainable solution which learns the hierarchical structure of varying tree sizes directly, using only the terminal tree leaves to do so. In the case of high-energy particle physics, a particle decay forms a hierarchical tree structure of which only the final products can be observed experimentally, and the large combinatorial space of possible trees makes an analytic solution intractable. We demonstrate the use of the LCAG as a target in the task of predicting simulated particle physics decay structures using both a Transformer encoder and a neural relational inference encoder graph neural network. With this approach, we are able to correctly predict the LCAG purely from leaf features for a maximum tree-depth of 8 in 92.5% of cases for trees up to 6 leaves (including) and 59.7% for trees up to 10 in our simulated dataset.


Verlagsausgabe §
DOI: 10.5445/IR/1000151242
Veröffentlicht am 07.10.2022
Originalveröffentlichung
DOI: 10.1088/2632-2153/ac8de0
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.09.2022
Sprache Englisch
Identifikator ISSN: 2632-2153
KITopen-ID: 1000151242
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Erschienen in Machine Learning: Science and Technology
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 3
Heft 3
Seiten Art.Nr. 035012
Nachgewiesen in Dimensions
Scopus
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page