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Abstract

In this thesis, we propose, analyse and implement numerical methods for time-dependent non-linear
parabolic and Schrödinger-type equations with uncertain parameters. The discretisation of the param-
eter space which incorporates the uncertainty of the problem is performed via single- and multi-level
collocation strategies. To deal with the possibly large dimension of the parameter space, sparse grid
collocation techniques are used to alleviate the curse of dimensionality to a certain extent. We prove that
the multi-level method is capable of reducing the overall computational costs significantly.

In the parabolic case, the time discretisation is performed via an implicit-explicit splitting strategy
of order two which consists shortly speaking of a combination of an implicit trapezoidal rule for the stiff
linear part and Heun’s method for the non-linear part. In the Schrödinger case, time is discretised via
the famous second-order Strang splitting method.

For both problem classes we review known error bounds for both discretizations and prove new error
bounds for the time discretisations which take the regularity in the parameter space into account. In
the parabolic case, a new error bound for the “implicit-explicit trapezoidal method” (IMEXT) method
is proved. To our knowledge, this error bound stating second-order convergence of the IMEXT method
closes a current gap in the literature.

Utilising the aforementioned new error bounds for both problem classes, we can rigorously prove
convergence of the single- and multi-level methods. Additionally, cost savings of the multi-level methods
compared to the single-level approach are predicted and verifed by numerical examples.

The results mentioned above are novel contributions in two areas of mathematics. The first one is
(analysis of) numerical methods for uncertainty quantification and the second one is numerical analysis
of time-integration schemes for PDEs.
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CHAPTER 1

Motivation and Introduction

The laws of physics, chemistry, finance, engineering and biology are often built on partial differential
equations (PDEs). Predicting the behaviour of systems from one of the aforementioned sciences by
numerical simulations is perhaps the most important task for mathematicians working on numerics and
applications. In the last decade the influence of unknown or uncertain parameters to the behaviour
and simulation of PDEs has received increasing attention. The main interest in the field of uncertainty
quantification (UQ) is to understand these influences in any imaginable PDE occuring from real-life
phenomena. We give a few examples now. The first three of them are treated in this thesis.

• In biology, predator-prey models describe the growth, interaction and possibly eradication of pop-
ulations of different species in a specified environment. Parameters like food supply for the prey,
social friction or environmental and human influences can almost never be quantified satisfactorily
and have to be considered with uncertainties to some extent. Clearly, these uncertainties influence
the size of the predator and prey populations in a complicated and usually non-linear way.

• In quantum mechanics, central equations of interest are linear Schrödinger equations describing
wave functions of quantum-mechanical systems. Uncertainties in such equations naturally arise
through the potential describing the environment of the system and through the unknown initial
state.

• A non-linear equation arising in the context of Bose–Einstein condensates is the Gross–Pitaevskii
equation which describes the ground state of a system of identical bosons. Here the non-linear
behaviour comes from the interaction of the particles. Again, the potential and initial state are
unknown.

• In electrodynamics, the Lugiato-Lefever equation describes the generation of frequency combs. This
equation is a damped non-linear Schrödinger equation with additional driving and detuning terms.
The Lugiato-Lefever equation can be used to model the data transmission rate through optical fibers.
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Dispersion, detuning and external field parameters heavily influence the shape and frequency range
of these combs. Thus, a reliable quantification of the uncertainties introduced by these parameters
is crucial for improving data transmission rates in practice.

These four examples (among many others which could have made the list above) demonstrate that
a reliable numerical treatment of uncertainties in parameters of PDE systems is both desirable and
necessary. Several textbooks offer a good introduction to the topic of uncertainty quantification, e.g.
[108, 11, 68]. The treatment of UQ in all of these books is somehow different and each of them presents
another perspective on the topic.

The most attractive methods for uncertainty quantification in PDEs are non-intrusive. This means
that these methods reuse existing (but often very sophisticated) solvers for PDEs with known and deter-
ministic (in contrast to unknown and uncertain) parameters. This procedure usually comes at the cost
of requiring a huge amount of simulations of deterministic systems. Hence the interesting and non-trivial
question is: “How can we use the deterministic solvers in an intelligent way to save a huge amount of
computing power?”

Certainly the most popular classes of non-intrusive methods are stochastic collocation methods and
Monte Carlo-type methods. For both of these methods, a large number of PDE solutions for different
parameters has to be computed. The difference between the two methods essentially lies in the choice
of the parameters for which the PDEs are solved. Loosely speaking, Monte Carlo-type methods always
use parameters or samples which are somehow randomised, while stochastic collocation methods rely on
parameters with specific approximation properties. For both methods, it is possible to compute impor-
tant quantities of the solution such as expectations, variances or higher-order moments. For stochastic
collocation methods, a surrogate for the unknown solution itself can be constructed by interpolation or
by using a generalised polynomial chaos expansion.

Seminal work on stochastic collocation methods can be attributed to Xiu and Hesthaven [117] and
Nobile and Tempone [83, 85, 3]. The literature on stochastic collocation methods will be discussed in
detail later in Chapter 3.

Monte Carlo methods, their extensions and numerous applications can be found in [66, 39, 12]. Each
of these books features a different point of view on Monte Carlo methods. Specifically for Quasi-Monte
Carlo methods, seminal work was done by Niederreiter, Sloan and Woźniakowski [82, 103], see also [102]
for further references. It should also be noted that the first successful attemps of using (Quasi-)Monte
Carlo methods for differential equations were made in finance, see [13, 94].

One of the most important extensions of the standard Monte Carlo method is the multi-level Monte
Carlo method by Heinrich [51] and Giles [36, 37, 38], where the number of samples is more carefully
chosen in dependency of the accuracy of the other discretisations involved. This multi-level strategy
usually leads to a significant reduction of the computational work. Major contributions on multi-level
Monte Carlo methods in the area of UQ can be attributed to Teckentrup, Scheichl and coworkers, see
e.g. [19, 15, 27] and [98].

A multi-level approach, however, is also possible for stochastic collocation methods, as introduced
and developed in [109, 49, 115]. In these references it was shown that multi-level stochastic collocation
(MLSC) methods have a much lower computational cost than standard collocation methods if a high
accuracy is required and the regularity of the solution with respect to the uncertain parameters is rather
low.
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In this thesis, we apply the multi-level stochastic collocation idea to parabolic and Schrödinger equa-
tions (linear and non-linear). Here, the second discretisation variable beside the stochastic variable is
the temporal variable, and not the spatial variable. Thus, the multi-level stochastic collocation approach
examined here combines the information from approximations computed with different temporal and
stochastic refinements via an intelligent strategy. The analysis of the interplay between stochastic and
temporal discretisations will require results from numerical analysis of time integration schemes, and in
fact a major part of this thesis is to establish such results. In the context of UQ, this interplay between
stochastic and temporal discretisation is seldom studied. Usually the focus is on combining different
refinement levels of the stochastic and spatial discretisations.

Important note: The spatial discretisation of PDEs is not the focus of this thesis and is only discussed
in sections where numerical experiments are shown. The rest of this thesis only deals with temporal
discretisations or discretisations of the stochastic/parameter space.

Structure of the thesis. This thesis is structured as follows: In Chapter 2, an introduction to the
topic of uncertainty quantification is given, targeted on the methods which are used later on. Chapter
3 discusses the class of (single- and multi-level) stochastic collocation methods. In Chapter 4, these
methods are applied to a class of parabolic problems. In Chapter 5, stochastic collocation methods are
applied to linear and non-linear Schrödinger equations. The thesis closes with a summary and outlook
in Chapter 6.

The links between the chapters are as follows: Chapter 4 and 5 rely on Chapter 2 and 3, although
Section 2.2 and 2.5 are not strictly required for Chapter 4 and 5 and are only added for the sake of
completeness. Chapter 4 and 5 can be read independently of each other, so Chapter 5 does not require
any of the results from Chapter 4 (and vice versa).

Prepublications. Some variants of the results from Chapter 5 in this thesis will appear in a similar
form in [61]. Moreover, a few text segments are almost identical to what can be found in the cited work.
Other segments in this thesis have already been published (with minor or major changes) in the preprint
[62]. We indicate the places where such segments appear.

Computer Architecture. Almost all implementations of the numerical methods in this thesis were
realised in Python code. The computations for the numerical experiments in Section 4.6, 4.7 and 5.6
were carried out on an AMD Ryzen Threadripper 2990WX 32-Core Processor machine (unless otherwise
stated).
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Notation.

• By I, we denote the identity operator or identity matrix (depending on the context).

• The closure and interior of a set A (in an underlying topological space) are denoted by A and
int(A), respectively.

• The p-norm in Rd or Cd is denoted by | · |p.

• The space of continuous maps X → Y between topological spaces is denoted by C(X,Y ). If X ̸= ∅
is compact and Y a normed space, then it is given the norm

∥u∥C(X,Y ) = sup
x∈X
∥u(x)∥Y

for u ∈ C(X,Y ).

• The space of linear and bounded operators X → Y between normed spaces is denoted by L(X ,Y)
and carries the norm

∥A∥L(X ,Y) = sup
∥x∥X ≤1

∥Ax∥Y , A ∈ L(X ,Y).

In the special case X = Y, we simply write L(X ) instead of L(X ,X ).

• For a linear operator A : X ⊇ D(A) → Y between Banach spaces X and Y, the domain D(A) is
usually equipped with the graph norm defined by

∥x∥D(A) = ∥x∥X + ∥Ax∥Y , x ∈ D(A).

The operator A is closed if and only if D(A) equipped with the graph norm is a Banach space.

• For a closed operator A : X ⊇ D(A)→ X , the resolvent set is defined as

ϱ(A) = {λ ∈ C | λI −A : D(A)→ X is bijective}.

• If X and Y are Banach spaces and O ⊆ X is an open set, then the derivative of a map f : O → Y
is denoted by f ′ and usually understood in the sense of Fréchet (unless otherwise stated). Thus, f
is (Fréchet) differentiable in x ∈ O if there exists A ∈ L(X ,Y) such that

lim
∥h∥X →0

∥f(x+ h)− f(x)−Ah∥Y
∥h∥X

= 0.

In this case, f ′(x) = A is the Fréchet derivative of f at x. If f is differentiable in every x ∈ O,
then f ′ defines a map f ′ : O → L(X ,Y). If this map f ′ is continuous, too, then we say that f is
continuously (Fréchet) differentiable and write f ∈ C1(O,Y).

Higher Fréchet derivatives are defined iteratively: Let Lm(X ,Y) denote the space of all continuous
m-linear maps

∏m
j=1 X → Y. With the identifications L0(X ,Y) ≃ Y and L(X ,Lm−1(X ,Y)) ≃

Lm(X ,Y) for m ≥ 1, we say that f is m times continuously differentiable if f ′, . . . , f (m) exist on O
and

f (m) : O → Lm(X ,Y)
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is continuous. If this is the case, then we write f ∈ Cm(O,Y). More details on this definition can
be found in [1, Chap. VIII, Sec. 5].

Partial Fréchet derivatives occur in some places, too. They are denoted as classical partial deriva-
tives, i.e. the partial derivative of f with respect to the variable u is denoted by ∂uf .

• For abstract probability spaces (Ω,Σ,P), Lp
P(Ω) denotes the Lp-space with respect to the measure

P. If no lower index is given and Ω ⊆ RN , then the underlying measure is the Lebesgue measure.

• For open Ω ⊆ RN , the space W k,p(Ω) is the Sobolev space of k times weakly differentiable functions
with derivatives in Lp(Ω).

• For multi-indices j = (j1, . . . , jd), k = (k1, . . . , kd) ∈ Nd
0, we write j ≤ k if jℓ ≤ kℓ for ℓ = 1, . . . , d.

• Let ∅ ≠ Γ ⊆ Rd be compact. For multi-indices k = (k1, . . . , kd) ∈ Nd
0, we define anisotropic spaces

of continuously differentiable functions by

Ck(Γ, X) =
{
w : Γ→ X

∣∣∣ ∂j
yw ∈ C(Γ, X), j = (j1, . . . , jd), 0 ≤ j ≤ k

}
with corresponding norm

∥w∥Ck(Γ,X) = max
0≤j≤k

∥∂j
yw∥C(Γ,X).

• The space of polynomials with real coefficients and degree not larger than k is denoted by Pk.
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CHAPTER 2

Uncertainty quantification (UQ)

Assume that we are given a general equation of the form

L(u, ω) = 0 (2.1)

with some operator L : X ×Ω→ X̃ which acts between Banach spaces X and X̃ and takes an additional
argument ω which belongs to a probability space (Ω,Σ,P). This argument ω accounts for the uncertainty
in the equation. As we are interested in the situation where L is a PDE (or a system of PDEs) with
spatial and temporal unknowns, let us think of the following situations: The uncertainty in L enters
through uncertain parameters of the equations, uncertain boundary or initial conditions, an unknown
spatial domain or some other influences on the equations. The latter might be of interest if it is not
clear whether L accurately models the underlying real-world problem under consideration or not. These
uncertainties occur naturally since precise knowledge of all these influences is usually not available (or it
is available, but either too complicated to be incorporated in the equation or we are too ignorant to do
so). Clearly, a solution u of (2.1) will depend on ω in general, i.e. u = u(ω). By a solution of (2.1) we
mean a function u which satisfies the equation P-almost surely.

In this situation, we may loosely summarise the goal of uncertainty quantification as “understanding
the solution map S : Ω→ X , ω 7→ u(ω)”. Of course, different questions may be asked in order to gain this
understanding. But even if a specific question can be asked, there are usually numerous ways to approach
its answer. If we regard S as a random variable, one may ask for the probability density or distribution
function of S. For almost any problem of interest, these two questions are way too hard. Simpler tasks
could be to determine good approximations of stochastic moments of the random variable S, or other
statistical quantities. Another simplification of practical interest is not to ask for the solution itself, but
rather for a functional of the solution, i.e. the random variable ω 7→ Υ(u(ω)) for some explicitly known
Υ: X → R. Such a functional Υ is usually called a quantity of interest. Determining this random variable
is often a much simpler problem which can sometimes be solved up to an acceptable error. The total error
usually contains contributions from several discretisations, since spatial and temporal (or other types of)
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discretisations typically have to be combined with some kind of stochastic discretisation. As this work
focuses on numerical analysis, we are not only interested in the approximative solution or a functional
of it, but in error margins for this total error, too. In general, the relative or absolute error cannot be
predicted, but we can sometimes answer how much the error could be reduced by refining the involved
discretisations and how much work (meaning computational work, CPU time or simply wall time) is
necessary to achieve this.

Let us briefly acknowledge that the previously defined goal of uncertainty quantification is actually only
the goal of forward uncertainty quantification. Of course, it is also important to consider inverse problems
under the influence of uncertainty. This equally interesting topic of backward uncertainty quantification,
however, is not treated in this work.

2.1 From stochastic to parametric PDEs

Although the previous description uses probabilistic notions, a numerical treatment of (2.1) must be in
some way deterministic in order to perform meaningful and reproducible computations. The strategy to
arrive there is the following: First, we assume that the uncertainty or randomness in the model enters
only through a finite number of uncorrelated or even independent random variables. This is the finite-
dimensional noise assumption. These finitely many, say d, real-valued random variables Y1, . . . , Yd can
be characterised by a few rather general properties such as the range of values they take, their mean and
their variance. We explain the finite-dimensional noise assumption and why it is reasonable in detail later.
Among many references which discuss the finite-dimensional noise assumption, we refer to [5, Sec. 2.5],
[83, Sec. 1.1] and [3, Sec. 1.1].

Under the finite-dimensional noise assumption, we arrive at the problem of solving an equation1

L(ũ(ω), Y1(ω), . . . , Yd(ω)) = 0

for ũ and P-almost every ω ∈ Ω. For any joint realisation of Y1, . . . , Yd, say y1 = Y1(ω), . . . , yd = Yd(ω)
with ω ∈ Ω, the problem of finding ũ(ω) is then a deterministic one. Of course not every realisation of this
d-dimensional random vector Y = (Y1, . . . , Yd) is equally probable, so we have to somehow incorporate
the probability of this realisation in some way. We denote the set of realisations by Γ, i.e.

Γ = Y (Ω) = {(Y1(ω), . . . , Yd(ω)) : ω ∈ Ω}.

If we assume that Y admits a bounded and measurable probability density function ϱ : Γ→ [0,∞) with
respect to the Lebesgue measure on Rd, then we obtain the expected value of Y (if Y ∈ L1

P(Ω,Γ)) as

E[Y ] =
∫

Ω
Y (ω)dP(ω) =

∫
Γ
yϱ(y)dy

or the probability of a (measurable) event E ⊆ Γ as

P({ω ∈ Ω: Y (ω) ∈ E}) =
∫

E

ϱ(y)dy.

This procedure now allows us to replace the abstract probability space

(Ω,Σ,P) by (Γ,B(Γ), ϱ(y)dy), (2.2)
1strictly speaking, the function L differs from the one in (2.1) in the structure of its input arguments
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where B(Γ) denotes the σ-algebra of Borel sets on Γ. By Doob-Dynkin’s lemma (see e.g. [89, Lem. 2.1.2]),
the “former” solution map ũ : Ω → X is Y -measurable if and only if the “new” map u : Γ → X with
u(Y (ω)) = ũ(ω) is Borel measurable. Now the initial stochastic problem (2.1) has turned into a deter-
ministic one with an additional d-dimensional parameter. Thus, we search for a function u = u(y) such
that

L(u(y1, . . . , yd), y1, . . . , yd) = 0 or briefly L(u(y), y) = 0 (2.3)

holds for ϱ(y)dy-almost every y = (y1, . . . , yd) ∈ Γ.
Now we may regard the solution u as a function of y ∈ Γ instead of ω. The random variable ω 7→ ũ(ω)

is then completely determined (up to null sets) by y 7→ u(y). Thus, we have replaced the problem of
determining the first of these functions ũ by determining the second one u instead.

The reader may ask the legitimate question whether the finite-dimensional noise assumption is rea-
sonable. To legitimise it, we explain two common approaches to expand uncertain input parameters as
a series and how truncating this series leads to a problem which satisfies the finite-dimensional noise
assumption. The two approaches are Karhunen-Loève and (generalised) polynomial chaos expansions.
Both of them belong to the class of spectral expansions, see e.g. [108, Chap. 11]. The Karhunen-Loève
expansion is often used to represent input random variables of a given problem, whereas the polynomial
chaos expansion is usually used to represent the random variable/field/process which corresponds to the
solution. We give a reason for that in the end of Section 2.2.

If the finite-dimensional noise assumption is dropped and one considers infinitely many random vari-
ables instead (i.e. d =∞), then intelligent strategies to deal with infinitely many uncertain inputs have to
be derived since for numerical computations, the set of input random variables must always be truncated
somehow. Some works treat this case, see e.g. [21, 64, 16]. See also the review article [20] for a detailed
discussion on the treatment of general parametric (high-dimensional) PDEs.

We proceed with the explanation of the two aforementioned spectral expansions of random variables.

2.2 Karhunen-Loève expansions

The Karhunen-Loève expansion is a very practical representation of random fields as it naturally admits
a truncation. The truncated series then leads us to a substitute problem which automatically satisfies
the finite-dimensional noise assumption mentioned in the previous section.

For a classical introduction to the Karhunen-Loève expansion, see [69, §37.5], [108, Chap. 11.1], [112]
or [35, Chap. 2.3.1]. In the latter reference, a rather detailed derivation with most of the computations is
included. Our presentation here is more compact and similar to the ones given in [30, 4, 5] and [83]. Since
perfoming a Karhunen-Loève expansion is usually part of the process of replacing an abstract probability
space with a more usable one as in (2.2), it is reasonable to start with an abstract probability space here.

Thus, let (Ω,Σ,P) be a probability space and D ⊆ RN be a bounded domain. Let a : Ω×D → R be
a random field with continuous covariance function Cov[a] : D ×D → R defined by

Cov[a](x1, x2) = E
[
(a(·, x1)− E[a(·, x1)])(a(·, x2)− E[a(·, x2)])

]
for x1, x2 ∈ D. Then the compact selfadjoint covariance operator

L2(D)→ C(D) ↪→ L2(D), g 7→
∫

D

Cov[a](·, x)g(x)dx
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has a sequence of non-negative eigenvalues (λk)k∈N and corresponding mutually orthonormal eigenfunc-
tions (bk)k∈N. The non-negative eigenvalues can be arranged in such a way that

∥Cov[a]∥L2(D×D,R) ≥ λ1 ≥ λ2 ≥ · · · ≥ 0

and ∞∑
k=1

λk =
∫

D

V[a(·, x)](x)dx.

Moreover, there exists a sequence of random variables {Yk}∞
k=1 which are mutually uncorrelated, have

zero mean and unit variance such that

a(ω, x) = E[a(·, x)] +
∞∑

k=1

√
λkbk(x)Yk(ω),

with equality understood in the sense of convergence in L2
P(Ω, L2(D)). This is the Karhunen-Loève

expansion of the random field a. Whenever λk > 0, the random variables Yk can be written as

Yk(ω) = 1√
λk

∫
D

(a(ω, x)− E[a(·, x)])bk(x)dx.

The truncated Karhunen-Loève expansion is now defined as

aK : Ω×D → R, aK(ω, x) = E[a(·, x)] +
K∑

k=1

√
λkbk(x)Yk(ω). (2.4)

The question of convergence as K →∞ in some other norms beside ∥ · ∥L2
P(Ω,L2(D)) occurs naturally. The

answer is given by Mercer’s theorem, see [95, p. 245], [69, p. 145] or [108, Thm. 11.3]. (The formulation
of the theorem differs significantly from one source to the next.)

Theorem 2.2.1 (Mercer). Under the previous assumptions, the following statements hold.

(a) For K →∞, we have

sup
x∈D

E[(a(·, x)− aK(·, x))2] = sup
x∈D

(V[a(·, x)]− V[aK(·, x)]) = sup
x∈D

∞∑
k=K+1

λkb
2
k(x)→ 0.

(b) Under the additional assumptions that

• the sets Yk(Ω) are uniformly bounded in k ∈ N,

• the covariance function Cov[a] is smooth (meaning C∞) on D ×D and

• for some s > 1, √
λk∥bk∥L∞(D) = O

(
1

1 + ks

)
, k →∞,

we additionally obtain
∥a− aK∥L∞

P (Ω,L∞(D)) → 0, K →∞.

We stress that although the Karhunen-Loève expansion is rather simple to digest theoretically, its
practical usage is often limited by either correctly predicting the covariance function of a random field or
– if the covariance function is known – determining the eigenpairs of the covariance operator. Practical
ways to determine these eigenpairs are given in [30]. In the cited work, several estimates for the decay
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of the Karhunen-Loève series in dependency of the regularity of the covariance kernel Cov[a] are given,
too. They can be summarised as follows: The smoother the covariance kernel, the faster the decay of
the eigenvalues λk as k → ∞. If the covariance kernel is (real) analytic, then the eigenvalues decay
exponentially, but if Cov[a] has only finite Sobolev regularity, then the decay is only algebraic. Other
decay estimates for the Karhunen-Loève series are given in [99, 111]. Such results are important since
only a rapidly decaying Karhunen-Loève series allows us to choose a small value of K while keeping a
good approximation aK ≈ a.

In practice, a is not a quantity which is known or given. Instead, it is part of the modelling process to
determine a surrogate for the unavailable function a. Often, this is done in a somehow reversed process
with the following steps:

• Determine a reasonable covariance operator by measuring e.g. correlation lengths between points
(see the example below for the definition of “correlation length”).

• Determine the eigenpairs (λk, bk)∞
k=1 of this covariance operator.

• Define “standard” fluctuations Yk for k ∈ N, for example Yk ∼ U(0, 1) (uniform distribution) or
Yk ∼ N (0, 1) (normal distribution).

• Guess the expected value E[a(·, x)] for x ∈ D.

• Define a as the Karhunen-Loève expansion corresponding to (λk, bk, Yk)∞
k=1.

This procedure is backed by the preceding paragraph, as basically all sufficiently regular random fields
arise as a (in general infinite) Karhunen-Loève series.

Observe that the truncated Karhunen-Loève expansion (2.4) allows us to describe the random variable
a through the variables Y1, . . . , YK (at least approximately). Thus, let us briefly return to the context
of Section 2.1 and assume that the random variable a from before appears somewhere in L (for example
as a parameter in a PDE). Then it is clear that in the process of replacing a by Y1, . . . , YK , a larger
value of K corresponds to a larger dimension d of the resulting parameter space Γ. It is thus desirable
to have a rather small value of K to stay away from high-dimensional parameter spaces and the curse of
dimensionality.

Let us briefly discuss the most commonly used covariance functions.

Example 2.2.2.

In practice, one often encounters covariance functions of the form

Cov[a](x1, x2) = fa(|x1 − x2|2), x1, x2 ∈ D,

for a function fa : R+ → R+. A typical choice is the Gaussian kernel given by

fa(z) = σ2
a exp

(
− z2

γ2
aΛ2

D

)
. (2.5)

The quantities σa, γa and ΛD represent standard deviation and correlation length of a and the diameter
of the domain D. As Cov[a] with fa from (2.5) admits a holomorphic extension to Cd×Cd (not given by
the same formula due to the appearance of | · |2), the eigenvalues of the corresponding Karhunen-Loève
expansion decay exponentially, see [99, Prop. 2.19] for a precise statement. Moreover, the larger the
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correlation length γa is, the smoother is the covariance function and the faster is the convergence of the
Karhunen-Loève series.

A slightly more general example is obtained if fa is replaced by

fa,p(z) = σp
a exp

(
− zp

γp
aΛp

D

)
for 1 ≤ p < ∞. In the case p = 1 and D = [−b, b] with b > 0, the eigenpairs of the covariance function
can be written down explicitly, see the detailed explanation in [35, p. 26–33]. In this book, some other
covariance functions and their eigenpairs are also discussed. A short, but easily accessible explanation on
“How to compute eigenpairs of the covariance operator numerically?” for a generic covariance function
is given there, too.

For the examples considered in this thesis later on, we usually assume that the uncertain parameters
are already given in a simple Karhunen-Loève or polynomial chaos expansion (the latter is discussed in the
next section). Thus, we do not examine covariance functions which appear in specific applications, but
assume that we are already one step ahead in the modelling process and take some “artificial” uncertain
parameters as given.

As we have seen, knowledge of the covariance structure of the random field under consideration is an
essential requirement for performing a Karhunen-Loève expansion. Since the covariance structure of input
random variables of a given problem can often be guessed, these input variables are often represented via
Karhunen-Loève expansions. For solutions of forward UQ problems, the covariance structure is seldom
known and thus such solutions are usually represented via polynomial chaos expansions instead. These
are explained in the next section.

2.3 Polynomial chaos expansions

In the previous subsection, we expanded a random function in an affine-linear way in terms of certain
“basic” random variables Yk. Here we derive an expansion of higher polynomial degree with respect to
the random variables Yk. As before, the procedure is well-known and discussed in e.g. [118, 114] and
[108, Sec. 11.3]. The generalised polynomial chaos expansion we present here was introduced in [118] as
an extension to Wiener’s classical polynomial chaos expansion from [114].

Here it is assumed that Y1, . . . , Yd are real-valued and stochastically independent random variables,
and that each Yn has a known probability density function ϱn : Γn → [0,∞) with respect to the Lebesgue
measure. The number of random variables d is denoted by the same letter as the stochastic dimension in
Section 2.1 for a good reason (and the index k for Yk from the previous section is replaced by n here). By
stochastically independent, we mean that for all positive measurable functions fn : Γn → R, n = 1, . . . , d,
we have

E[f1(Y1) · · · fd(Yd)] = E[f1(Y1)] · · ·E[fd(Yd)],

or – equivalently – the σ-algebras generated by fn for n = 1, . . . , d are independent. (See [108, Sec. 2.6]
for a brief introduction to stochastic independence.)

The remainder of this section appeared almost literally in [62, Sec. 3.2].
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For generalised polynomial chaos expansions, we consider random variables which have finite second
moments. Let n ∈ {1, . . . , d} and let L2

ϱn
(Γn) be the Hilbert space of measurable, square-integrable

functions on Γn. Since Y1, . . . , Yd are independent by assumption, the probability density function of
Y = (Y1, . . . , Yd) is given by the product

ϱ(y) = (ϱ1 ⊗ · · · ⊗ ϱd)(y) = ϱ1(y1) · · · ϱd(yd), y = (y1, . . . , yd) ∈ Γ,

where Γ = Γ1 × · · · × Γd. The space L2
ϱ(Γ) with norm ∥ · ∥ϱ induced by the inner product

⟨v, w⟩ϱ :=
∫
Γ

v(y)w(y)ϱ(y)dy (2.6)

is again a Hilbert space.
For n = 1, . . . , d, let (ϕn,j)j∈N0 be a complete set of real-valued orthonormal polynomials on L2

ϱn
(Γn)

with the properties deg(ϕn,j) = j and ϕn,0 ≡ 1. Such polynomials can be computed efficiently by three-
term recursions. Multivariate orthonormal polynomials in L2

ϱ(Γ) can be constructed via tensorisation: If
we let

ϕk(y) = (ϕ1,k1 ⊗ · · · ⊗ ϕd,kd
)(y) =

d∏
n=1

ϕn,kn(yn), y = (y1, . . . , yd), (2.7)

for a multi-index k = (k1, . . . , kd) ∈ Nd
0, then by construction we have ⟨ϕj , ϕk⟩ϱ = δjk for j,k ∈ Nd

0,
where δjk is the Kronecker delta. The generalised polynomial chaos expansion (gPCE) of u ∈ L2

ϱ(Γ) is
now given by

u(y) =
∑

k∈Nd
0

ukϕk(y), uk = ⟨u, ϕk⟩ϱ, (2.8)

where {ϕk | k ∈ Nd
0} is a complete set of orthogonal polynomials in L2

ϱ(Γ) and equality is understood in
the space L2

ϱ(Γ), cf. [118, 114]. The convergence of gPCEs can be established in many cases of interest,
since criteria are available which can be verified for most of the usual densities ϱ encountered in practice.
It should be noted, however, that for distribution functions that, for example, do not possess finite
moments of all orders, the above gPCE may not converge to the correct function. We refer to [29] for a
detailed discussion of convergence criteria for gPCEs.

From (2.8), the expectation and the variance of u can easily be derived: Setting 0 = (0, . . . , 0) ∈ Nd
0,

we get

E[u] =
∫

Γ
u(y)ϱ(y)dy =

∑
k∈Nd

0

uk

∫
Γ
ϕk(y)ϱ(y)dy = u0 (2.9)

and

V[u] =
∫

Γ

∣∣∣ ∑
k∈Nd

0\{0}
ukϕk(y)

∣∣∣2ϱ(y)dy =
∑

k∈Nd
0\{0}

|uk|2 (2.10)

due to u0 = ϕ0(y)u0 and ⟨ϕk, ϕ0⟩ϱ = δk0. From (2.8), one can also derive similar formulas for higher-
order moments and other statistical quantities of interest, such as the covariance function and the global
sensitivity coefficients, see e.g. [116].

Since only finitely many terms can be computed in practice, we also consider the truncated polynomial
chaos expansion given by

uΠ(y) =
∑
ϕ∈Π
⟨u, ϕ⟩ϱϕ(y) ≈ u(y) (2.11)
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for a set Π which consists of multivariate orthogonal polynomials corresponding to a finite set of multi-
indices in Nd

0 which is downward closed. This notion is defined as follows.

Definition 2.3.1. A subset Ξ ⊆ Nd
0 is called downward closed if it is finite and for each k ∈ Ξ the set

{k − en | n = 1, . . . , d with kn ≥ 1} belongs to Ξ. Here, en is the n-th canonical unit vector in Rd.

Typical choices for the set Π are:

(i) All polynomials up to degree K in all variables, i.e. ΠK,∞ = {ϕk : |k|∞ ≤ K}.

(ii) All polynomials up to total degree K, i.e. ΠK,1 = {ϕk : |k|1 ≤ K}.

The dimensions of the polynomial spaces in these two cases are

|ΠK,∞| = (K + 1)d and |ΠK,1| =
(
K + d

d

)
=
(
K + d

K

)
.

The first space grows like Kd as d → ∞, and the second one at most as2 exp(K)dK . Thus, the second
space is much smaller than the first one with increasing dimension. Both examples ΠK,∞ and ΠK,1 and a
third (more generic) choice are depicted in Figure 2.1. The more flexible notation with general Π allows
us later to include other polynomial sets which occur as exact sets of sparse grid interpolation operators,
such as the one in Figure 2.1(c).

A brief remark on the term “chaos expansion”: There is almost nothing “chaotic” in polynomial chaos
expansions besides the fact that they are used to represent random variables. Although the terminology
does not really fit the situation, it is kept for historical reasons and because it is so widely used in the
community that it does not make sense to change it.

Now that these tools are available, let us briefly connect the previous sections and explain the next
step towards numerical methods for uncertainty quantification.

2.4 The connection to the following chapters

As we have seen in the previous sections, one of the most important steps before carrying out numerical
simulations of stochastic systems such as (2.1) or (2.3), regardless of the form of numerical methods, is
to properly identify the basic random variables Y1, . . . , Yd so that the relevant input data uncertainty
is accurately incorporated in the formulation of the parametric problem. This task is often possible to
accomplish when the uncertain inputs are physically meaningful parameters of the system. In this case
it is relatively straightforward to identify the independent parameters and to model them as random
variables with appropriate distributions based on measurements, experience, or intuition. In Section 2.2,
we have seen that the knowledge of the covariance function of the parameters is a powerful tool to achieve
this. In this thesis, we will always assume that the random inputs have already been characterised by a
set of mutually independent random variables Y1, . . . , Yd with good accuracy and focus on the numerical
treatment of (2.3) for special classes of operators L.

Before we continue, we stress that by the transformation and simplification from (2.1) to (2.3), we
clearly change the solution we initially searched for, too. One may legitimately ask the question why
ignoring additional stochastic influences does not fundamentally change the behaviour of the problem

2This can be improved significantly, but for the discussion of the limit d → ∞ this crude bound is sufficient.
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(a) Maximum degree set Π8,∞
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(b) Total degree set Π8,1
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(c) Generic (isotropic) set Π

Figure 2.1: Different polynomial spaces span(Π) for the truncation of the gPCE (d = 2); pictures (b) and
(c) are taken from [62, Fig. 1–2].
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or its solution. The answer to this question is somehow unsatisfactory: In almost all scenarios it is too
hard to properly quantify the error of replacing the initial stochastic problem with a finite-dimensional
parametric one. A noteable exception is the by far most studied example of forward UQ – an elliptic PDE
with an uncertain diffusion coefficient. In this setting there are some articles by Schwab and coworkers
which examine this type of error, see e.g. [30, 111, 52, 16].

Now we continue with the finite-dimensional parametric problem setting from (2.3). We state the first
general assumption which remains throughout this thesis:

Assumption A1. The parameter set Γ = {(Y1(ω), . . . , Yd(ω)) : ω ∈ Ω} is given by Γ = [−1, 1]d and the
variable y ∈ Γ corresponds to a realisation of a random variable Y ∼ U(−1, 1)d with uniform probability
density ϱ(y) = 2−d.

The reader may be surprised about this restrictive assumption, so let us justify this choice. Assumption
A1 is mainly made in order to use available estimates for the sparse grid interpolation error in the norm
of L2

ϱ(Γ), given later in Section 2.6. For the choices Γ = [−1, 1]d and ϱ(y) = 2−d from Assumption A1,
such error estimates are well-known. Many of our results could also be adapted to other choices of Γ and
ϱ as soon as corresponding estimates are available. Every bounded probability density ϱ̂ on the same
set Γ could be handled without much effort, since it defines a weaker norm. If ϱ̂ is also bounded from
below, then the induced norms are even equivalent. For other parameter spaces and probabiliy densities,
the estimates are different and our procedure has to be adapted, although it would probably yield rather
similar results in the end. In some places we make use of the product structure of [−1, 1]d and thus it is
natural to assume that Y1, . . . , Yd are independent. (A sketch on the procedure if the random variables
are not independent is given in Remark 3.1.2 later.) The requirement that Γ is compact, however, must
not be removed. Since practical considerations often make it reasonable to set some (perhaps generous)
limits to the random input vector Y , Assumption A1 is not too restrictive from a practical point of view.
We stress that this choice of ϱ and Γ guarantees that the generalised polynomial chaos expansion from
(2.8) is indeed convergent with the correct limit for any function u ∈ L2

ϱ(Γ). (One can easily verify the
requirements from [29, Thm. 3.6] to see this.)

Now we turn to the discretisation of the finite-dimensional parameter space Γ. More specifically, we
continue with the discussion of Monte Carlo methods and sparse grids.

2.5 Monte Carlo and Quasi-Monte Carlo integration

Although Monte Carlo and Quasi-Monte Carlo methods for integration and other purposes are very
important classes of methods by themselves, we only describe them very briefly and take one of their
disadvantages as a motivation for the construction of sparse grids. It should be noted that Monte Carlo
methods are nevertheless very important and they can by no means be entirely replaced by sparse grid
techniques. We indicate the limitations of sparse grids and the situations where they are inferior to Monte
Carlo methods in the end of this section. Our presentation here follows [108, Sec. 9.5]. Readers familiar
with Monte Carlo and Quasi-Monte Carlo methods may skip this section and may wish to continue
reading in Section 2.6, since the results below are only presented as a motivation for sparse grids and are
not referenced in the remainder of this thesis.
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2.5.1 The “vanilla” Monte Carlo method

Suppose (Ω,Σ,P) is a probability space and Y : Ω→ Γ is a µ-distributed random variable. The “vanilla”3

Monte Carlo method computes approximations to the expected value of a random variable ω 7→ f(Y (ω)),
where f : Γ → R is a function which has to be integrated with respect to the density ϱ of Y (e.g. an
observable of a solution to a PDE with uncertain parameters). The well-known approximation is

En(f) = 1
n

n∑
i=1

f(Y (i)) ≈ E[f(Y )] =
∫

Ω
f(Y (ω))dP(ω) =

∫
Γ
f(y)ϱ(y)dy, (2.12)

where Y (i), i = 1, . . . , n, are independent and identically distributed samples drawn from µ.
Observe that this approximation requires drawing independent samples from µ. This is not always

possible and one has to use an intelligent strategy such as a Metropolis–Hastings Markov chain Monte
Carlo method to overcome this problem. In such an algorithm, a Markov chain is constructed which has
µ as its equilibrium distribution. The state of the chain after sufficiently many steps can be used as a
replacement for a sample from µ. Details can be found in, e.g., [108, Sec. 9.5].

The second observation is that the formula for En(f) always computes an approximation to some
expected value of a random variable, whereas other methods such as the later explained stochastic
collocation method compute approximations to the random variable f(Y ) itself.

The error of the Monte Carlo integration (2.12) can be quantified as follows. Because of

E[En(f)] = E[f(Y )] and V[En(f)] = V[f(Y )]
n

for any n ∈ N, we have

E[(En(f)− E[f(Y )])2] = V[En(f)− E[f(Y )]] = 1
n2

n∑
i=1

V[f(Y (i))] = 1
n
V[f(Y )].

The root mean-square error is thus given by

√
E[(En(f)− E[f(Y )])2] = 1√

n

√
V[f(Y )]

for n ∈ N. This means that the convergence rate of the Monte Carlo approximation is proportional to
n−1/2. This slow convergence of Monte Carlo integration with respect to n is the main disadvantage which
sparse grid integration techniques can repair to some extent. We stress that the convergence rate does
not depend on the dimension of the domain of f , which is a crucial advantage of the Monte Carlo method
no other standard method can offer. This is the reason why Monte Carlo methods are unrivalled for very
high-dimensional problems. The variance of f(Y ), however, is usually dependent on the dimension.

The convergence rate does not depend on the smoothness of the function f , either. This is often
considered a disadvantage if Monte Carlo methods are applied to UQ problems, since many uncertain
PDEs (such as the ones considered in this thesis) have solutions which inherently have more smoothness
with respect to their uncertain parameters.

Next, we discuss how the convergence rate of Monte Carlo methods can be improved.

3the term “vanilla” is taken from [108, Sec. 9.5]
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2.5.2 Quasi-Monte Carlo methods

The purpose of Quasi-Monte Carlo methods is to improve the convergence rate n−1/2 of the vanilla Monte
Carlo method. One standard approach to do this is the usage of low-discrepancy sequences instead of
randomly chosen samples Y (i) as before. Suppose for simplicity that ϱ ≡ 1 and Γ = [0, 1]d.

The remarkable Koksma-Hlawka theorem [108, Thm. 9.23] states that for any function f : [0, 1]d → R
with finite Hardy-Krause variation V HK(f), the inequality∣∣∣∣∣ 1n

n∑
i=1

f(y(i))−
∫

[0,1]d

f(y)dy
∣∣∣∣∣ ≤ V HK(f)D∗(y(1), . . . , y(n))

holds for any y(1), . . . , y(n) ∈ [0, 1)d. The quantity D∗(y(1), . . . , y(n)) is the star-discrepancy of the points
y(1), . . . , y(n) defined by

D∗(y(1), . . . , y(n)) = sup
R∈R∗

∣∣∣∣∣ 1n
n∑

i=1
1R(y(i))−

∫
[0,1]d

1R(y)dy
∣∣∣∣∣ ,

where R∗ is the set of all rectangles of the form [0, b1)× · · · × [0, bd) with 0 ≤ bi < 1 and 1R denotes the
characteristic function of R. The star discrepancy measures roughly speaking how uniformly the points
y(1), . . . , y(n) are distributed inside the cube [0, 1]d. The Hardy-Krause variation is defined in a more
complicated way not outlined here4, but at least we note that it does not require differentiability of f
and thus no additional smoothness.

Famous low-discrepancy sequences such as the ones of van der Corput, Halton and Sobol achieve
D∗(y(1), . . . , y(n)) ≤ C(log(n))d/n and if one uses these sequences instead of random samples, one can
improve the error estimate of the Monte Carlo approximation (2.12) to∣∣∣∣∣ 1n

n∑
i=1

f(y(i))−
∫

[0,1]d

f(y)dy
∣∣∣∣∣ ≤ CV HK(f) log(n)d

n
.

This special choice of nodes y(1), . . . , y(n) makes it a Quasi-Monte Carlo method. In Figure 2.2, we show
three sequences of two-dimensional pseudo- or quasi-random vectors. The first one was generated with a
standard random number generator (Mersenne Twister), the second one is an extract of a Halton sequence
and the third one an extract of the Sobol sequence. From each of the sequences, 256 points are depicted.

Although there is nothing “random” about low-discrepancy sequences, they can loosely be seen as more
strategically chosen (pseudo-)random point sets. This can also be verified visually from the pictures in
Figure 2.2, since the two low-discrepancy sequences clearly fill the unit cube in a somehow less chaotic
way. The reason for this behaviour lies in the number-theoretic properties of these sequences. Sparse
grids have intrinsically even more structure and thus offer even better approximation properties, but they
require more smoothness of the function f . They are discussed in the next section.

Finally we note that the choice of a uniform measure in the above discussion is not a severe restriction
since point sets from the cube can often be transformed to the support of other measures (with correct
distribution). This is explained in [108, Sec. 9.5].

4The Hardy-Krause variation coincides for d = 1 with the total variation of the function f . For a general definition of
the Hardy-Krause variation, see [108, Def. 9.21].
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(c) Sobol sequence

Figure 2.2: Two-dimensional pseudo-random and low-discrepancy sequences. The images were generated
using SciPy’s Quasi-Monte Carlo submodule scipy.stats.qmc, see [100].

2.6 Sparse grids

Sparse grids were originally introduced in the context of (spatial) approximation theory on rectangular
domains [104, 119], and their usability for UQ was recognized many years later. Nowadays they are
well-known and discussed in a plethora of articles, including [34, 113, 86, 87, 88, 14, 107, 6]. In order
to have a consistent notation in this thesis, we repeat their construction here. After that, we discuss
the approximation properties of sparse grids which are relevant for us and explain how sparse grids
can be used for multivariate integration, where they compete with (Quasi-)Monte Carlo methods. Our
presentation and notation follow Teckentrup et al. [109, Sec. 5] and Babǔska, Nobile and Tempone [3,
Sec. 6.1].

2.6.1 Construction of sparse grids

Here we present the construction of sparse grids for the purpose of interpolation (in contrast to the
previous section, where (Quasi-)Monte Carlo methods were used as a method of integration instead).
Integration with sparse grids is discussed later in Section 2.6.3.

Consider the d-dimensional rectangle Γ = [−1, 1]d as in Assumption A1 and one-dimensional interpo-
lation operators for 1 ≤ n ≤ d,

Up(ℓ)
n : C([−1, 1])→ Pp(ℓ)−1,

to be defined shortly. The integer ℓ will control the accuracy of the interpolation operator. The function
p : N→ N is called the growth rule and must have the properties

p(1) = 1 and p(ℓ) < p(ℓ+ 1), ℓ = 1, 2, . . . (2.13)

Clearly, p is strictly increasing. The (given) interpolation nodes of Up(ℓ)
n are denoted by(

y
(ℓ)
n,j

)p(ℓ)
j=1.

With the Lagrange polynomials L(ℓ)
n,j , j = 1, . . . , p(ℓ), corresponding to exactly these interpolation nodes,
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the one-dimensional interpolation operator Up(ℓ)
n is defined as

Up(ℓ)
n v(yn) =

p(ℓ)∑
j=1

v(y(ℓ)
n,j)L(ℓ)

n,j(yn) (2.14)

for v ∈ C([−1, 1]).
Now consider the multivariate case. Smolyak’s idea [104] was to combine certain full tensor grids with

few nodes to obtain a sparse grid whose number of points does not grow too fast with the dimension d.
For ease of notation, we set Up(0)

n = 0 and define the difference operator ∆p(ℓ)
n as

∆p(ℓ)
n = Up(ℓ)

n − Up(ℓ−1)
n .

Let ℓ = (ℓ1, . . . , ℓd) ∈ Nd and L ∈ N. The quantity L will be called the depth5 of the sparse grid and
determines the accuracy. The generalised sparse grid interpolant is defined as

Ip,g
L v =

∑
g(ℓ)≤L

(∆p(ℓ1)
1 ⊗ · · · ⊗∆p(ℓd)

d )v for v ∈ C(Γ), (2.15)

where the function g : Nd → N is yet to be specified. So far, we only assume that g is strictly increasing.
The sparse grid which corresponds to this definition is given by the set

Hp,g
L =

⋃
ℓ∈JL

d∏
n=1

{
y

(ℓn)
n,j

}p(ℓn)

j=1
with JL = {ℓ ∈ Nd : L− d+ 1 ≤ g(ℓ) ≤ L}. (2.16)

The cardinality of Hp,g
L is denoted by ηp,g

L .
We briefly state the four most common choices for the functions p and g in Table 2.1, although we

will use only the “classical” Smolyak choice in this thesis. (The meaning of the last column and Ep,g
L will

be explained soon.)

Approximation type p(ℓ) g(ℓ) yk1
1 · · · ykd

d ∈ E
p,g
L

Tensor product ℓ maxd
n=1(ℓn − 1) maxd

n=1 kn ≤ L
Total degree ℓ

∑d
n=1(ℓn − 1)

∑d
n=1 kn ≤ L

Hyperbolic cross ℓ
(∏d

n=1 ℓn

)
− 1

∏d
n=1(kn + 1) ≤ L+ 1

Smolyak6 7 2ℓ−1 + 1
∑d

n=1(ℓn − 1)
∑d

n=1 f(kn) ≤ f(L)

Table 2.1: Common choices of p and g for Ip,g
L . The table is taken from [6, Table 1].

We stress that these spaces and hence the resulting grids are all isotropic in the sense that all d
dimensions are equally enriched. Only the refinement along the “diagonals” is different, see Figure 2.3.
One may define anisotropic sparse grids by using functions g = gα which treat the input variables
differently, for example

gα(ℓ) =
d∑

n=1

αn

mind
m=1 αm

(ℓn − 1), α = (α1, . . . , αd) ∈ (0,∞)d,

5Perhaps the term “level” would be more appropriate than “depth”, but we do not wish to confuse the reader later when
another notion of level (in the context of single-level and multi-level collocation methods) appears. Thus, we use “depth”
for the parameter which determines the accuracy of a sparse grid.

6The given formula for p(ℓ) is to be understood as stated except for ℓ = 1, where we set p(1) = 1 as required.
7Here, f is defined by f(0) = 0, f(1) = 1 and f(p) = ⌈log2(p)⌉ for p ≥ 2.
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which corresponds to g for the total degree space if α = (1, . . . , 1). See [6, p. 49] for anisotropic versions
of the other functions g from Table 2.1. More details on anisotropic sparse grids are given in [3, Sec. 6.1],
[84] and [109, Rem. 5.7].

Observe that the sparse grid Hp,g
L from (2.16) is a union of different tensorised one-dimensional grids.

An analogous statement holds for the multivariate polynomial sets Ep,g
L on which the corresponding

interpolation operators are exact (meaning Ip,g
L f = f), see Figure 2.4 for a visual representation of these

facts and [8, Lem. 2 and Prop. 3] for precise statements. Now the meaning of the last column in Table 2.1
should be clear, too.

A word of warning about calling Ip,g
L an interpolant: It is actually not clear from definition (2.15)

whether Ip,g
L is interpolatory in the nodes Hp,g

L or not. In [8, Prop. 6], it was shown that Ip,g
L is

interpolatory whenever the one-dimensional grids are nested. Now we give an example for this situation.
By far the most common choice of interpolation nodes is y(1)

n,1 = 0 and

y
(ℓ)
n,j = − cos

(
π(j − 1)
p(ℓ)− 1

)
, j = 1, . . . , p(ℓ), (2.17)

for ℓ ≥ 2. These are the extrema of the Chebyshev polynomials (including the endpoints) and often called
Clenshaw-Curtis abscissas since they are also the nodes of the famous Clenshaw-Curtis quadrature rule
[18]. Combined with the “Smolyak” choice from Table 2.1, the abscissas become nested, i.e.{

y
(ℓ)
n,j

}p(ℓ)

j=1
⊊
{
y

(ℓ+1)
n,j

}p(ℓ+1)

j=1
,

and thus also the corresponding sparse grids,

Hp,g
L ⊆ Hp,g

L+1.

For sake of completeness, we note that if the function g is chosen as in the “Smolyak” case (but not
necessarily the function p, too), then the general formula for the sparse-grid interpolant becomes

Ip,g
L v =

∑
ℓ∈JL

c(ℓ)(Up(ℓ1)
1 ⊗ · · · ⊗ Up(ℓd)

d )(v), (2.18)

where

c(ℓ) = (−1)L+d−|ℓ|
(

d− 1
L+ d− |ℓ|

)
and JL = {ℓ ∈ Nd | L+ 1 ≤ |ℓ| ≤ L+ d}.

This formula is also common and appears in many classical articles on sparse grids, among them [8, 23,
34, 86, 87, 88, 113], and it is in fact more suitable for implementation than the (error-prone) difference
representation (2.15). For general functions g, similar formulas can be derived from which it is clear
that Ip,g

L is just a linear combination of tensor product interpolation operators (which do not contain
the difference operators ∆p(ℓn)

n anymore). We do not state these formulas here since we do not use them
throughout our work. The interested reader is referred to [3, Eq. (6.2)].

Remark 2.6.1 (Dimension- and depth-dependence of sparse grids). Although sparse grids were invented
to reduce the amount of nodes required to approximate functions on d-dimensional rectangles, they still
require too many nodes with increasing depth and/or dimension (although less than tensor grids, of
course). To give the reader an impression of the growth of ηp,g

L , Table 2.2 shows the number of nodes in



22 Chapter 2. Uncertainty quantification (UQ)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) Tensor product with L = 7

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(b) Total degree with L = 7

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(c) Hyperbolic cross with L = 7

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(d) Smolyak with L = 4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(e) Smolyak with L = 7

Figure 2.3: Different types of two-dimensional sparse grids based on Clenshaw-Curtis abscissas. The
images were generated using the Tasmanian libraries, see [106, 105].
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Figure 2.4: Clenshaw-Curtis tensor grid and Smolyak sparse grid of depth L = 4 (d = 2)
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L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8

d = 2 5 13 29 65 145 321 705 1537
d = 5 11 61 241 801 2433 6993 19313 51713
d = 10 21 221 1581 8801 41265 171425 652065 2320385
d = 20 41 841 11561 120401 1018129 7314609 46106289 261163009

Table 2.2: Growth of ηp,g
L with d and L

isotropic sparse grids with Smolyak polynomial space and Clenshaw-Curtis abscissas in dependency of d
and L.

Especially for dimension d = 20, the usage of grids of depths ≥ 4 seems to be rather unpractical, since
more than 100.000 stochastic degrees of freedom are usually not feasible in costly PDE simulations. This
clearly indicates that isotropic sparse grids still suffer from a mitigated curse of dimensionality. ⋄

2.6.2 Approximation properties of sparse grids

Infinite regularity. Here we examine the approximation properties of generalised sparse grids for
functions with infinite regularity, meaning analytic functions on a complex polyellipse.

We remind the reader of the fact from complex analysis that for functions Σ→ X with open Σ ⊆ Cd

and a complex Banach space X , the terms “analytic” and “holomorphic” are equivalent. So if such a
function has one complex derivative, then it is analytic.

Consider for σ = (σ1, . . . , σd) ∈ (1,∞)d the set

Σ(σ) =
d∏

n=1
Σ(σn) ⊆ Cd, (2.19)

where Σ(σn) denotes the closed region bounded by the Bernstein ellipse

∂Σ(σn) =
{

1
2(z + z−1) : z ∈ C, |z| = σn

}
,

see Figure 2.5 for a visualisation.
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Figure 2.5: Bernstein ellipses ∂Σ(σ) for different values of σ > 1
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The set Σ(σ) is the cartesian product of ellipses (“polyellipse”) in the complex plane with foci ±1.
An analytic extension to such a polyellipse is advantageous for global polynomial interpolation. In the
context of sparse grid interpolation, the following theorem from [109, Thm. 5.5] holds for Clenshaw-Curtis
abscissas, see also [83, Thm. 3.10 and 3.11] for a more detailed statement with proof, explicit constant and
rate. Recall the definition of Ip,g

L from (2.15). Here we choose the functions p and g from the “Smolyak”
case in Table 2.1.

Theorem 2.6.2. Let X be a Banach space and let v : Σ(σ)→ X be analytic. Setting σmin = mind
n=1 σn,

there exist constants C(σmin, d) and µ(σmin, d) such that

∥v − Ip,g
L v∥L2

ϱ(Γ,X ) ≤ C(σmin, d)η−µ(σmin,d)
L max

z∈Σ(σ)
∥v(z)∥X ,

where p and g are given by the “Smolyak” case from Table 2.1 with Clenshaw-Curtis abscissas (2.17) and
where ηL = ηp,g

L is the number of points used by Ip,g
L , i.e. ηL = |Hp,g

L |. The rate µ(σmin, d) is given by

µ(σmin, d) = σ∗

1 + log(2d) with σ∗ = 1
2 log

(
σmin +

√
1 + σ2

min

)
.

Remark 2.6.3 (Dimension-dependence of the convergence rate). From the formula for µ = µ(σmin, d),
we see that the convergence rate µ deteriorates with increasing dimension d. But in the tensor product
case, we would obtain µ(σmin, d) ∼ σ∗/d, which is clearly much worse than µ(σmin, d) ∼ σ∗/ log(2d) in
the Smolyak case.

For anisotropic Smolyak sparse grid interpolants, a result similar to Theorem 2.6.2 holds, see [84]. In
the anisotropic case, one can sometimes get rid of the dimension-dependence of the convergence rate µ
and the constant C. This remarkable fact is explained in [84, Rem. 3.11] and [3, Thm. 6.3] (for Gaussian
abscissas) and is one of the rare occasions where the curse of dimensionality can be completely overcome
for sparse grid interpolation. ⋄

Remark 2.6.4 (Comparison with Monte Carlo sampling). It is also worth comparing Theorem 2.6.2 to
the convergence rate of Monte Carlo sampling. Since

∥E[v − Ip,g
L v]∥X ≤ E[∥v − Ip,g

L v∥X ] ≤ ∥v − Ip,g
L v∥L2

ϱ(Γ,X ) ≤ Cη−µ
L ,

sparse grids are not really relevant in cases where µ ≤ 1
2 , since Monte Carlo sampling would then give a

faster convergence rate for the term on the left (if E[Ip,g
L v] is replaced by the Monte Carlo estimator). In

the light of the previous remark, this is (for fixed σ∗) a limitation on the dimension d for which sparse
grids should be used. Roughly speaking, sparse grids are only more suitable than Monte Carlo sampling
if

1
2 ≲

σ∗

log(2d) or, equivalently, d ≲
1
2 exp(2σ∗)

is satisfied. ⋄

Remark 2.6.5 (Subexponential convergence). For depths L > d/ log(2), a much better result is available
where subexponential convergence can be shown instead of algebraic convergence as in Theorem 2.6.2, see
[83, Thm. 3.11]. For d = 2, the condition L > 2/ log(2) ≈ 2.89 implies that subexponential convergence
is achieved for all depths except L = 1 and L = 2. For more realistic applications with e.g. d > 5, the
condition L > d/ log(2) is almost never satisfied in practice (since the grids contain already too many
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points for these values of L) and one only gets the algebraic convergence discussed earlier. Thus, we are
mainly interested in the situations where algebraic convergence occurs. Nevertheless, we will observe the
faster convergence rate in one of our numerical experiments in Example 4.6.4 later on and thus this fact
cannot be ignored. ⋄

Next we examine the approximation properties of generalised sparse grids for functions with finite
regularity. This will be used in the context of Schrödinger equations later on.

Finite regularity. Again, we restrict ourselves to the “Smolyak” case from Table 2.1 with Clenshaw-
Curtis abscissas (2.17), because we are not aware of a more general statement in the literature. The
function p is thus given by

p(1) = 1, p(ℓ) = 2ℓ−1 + 1, ℓ ≥ 2. (2.20)

The correct function spaces for sparse grid interpolation with finite regularity are spaces of dominating
mixed smoothness. For a multi-index k = (k1, . . . , kd) ∈ Nd

0, we consider

Ck(Γ,X ) =
{
w : Γ→ X

∣∣∣ ∂j
yw ∈ C(Γ,X ), j = (j1, . . . , jd), 0 ≤ j ≤ k

}
with the norm

∥w∥Ck(Γ,X ) = max
0≤j≤k

∥∂j
yw∥C(Γ,X ), ∥w∥C(Γ,X ) = sup

y∈Γ
∥w(y)∥X .

For example, all functions w ∈ C(1,1)([−1, 1]2,X ) have derivatives

∂w

∂y1
,
∂w

∂y2
,

∂2w

∂y1∂y2
∈ C([−1, 1]2,X ).

In particular the latter “mixed” derivative is characteristic for such a space. The reader should be
reminded of the definition of the classical Sobolev space H1((−1, 1)2), where functions w ∈ H1((−1, 1)2)
have

∂w

∂y1
,
∂w

∂y2
∈ L2((−1, 1)2), but in general ∂2w

∂y1∂y2
/∈ L2((−1, 1)2).

The error bound for sparse grid interpolation in spaces of dominating mixed smoothness is as follows.
For v ∈ Ck(Γ,X ) with k = (k, . . . , k) ∈ Nd

0, we have

∥v − Ip,g
L v∥C(Γ,X ) ≤ C(k, d)(L+ 1)2d2−kL∥v∥Ck(Γ,X ) (2.21)

by [83, Eq. (3.28)] for a constant

C(k, d) = c(c(1 + 2k))d

|c(1 + 2k)− 1| ,

where c does not depend on d or L. The number of nodes in the sparse grid is again denoted by ηp,g
L .

Combining the previous discussion with a counting lemma for ηp,g
L , one obtains a version of (2.21) where

the L-dependency is replaced by an ηp,g
L -dependency. The following statement was given in [83, Sec. 3.1.1].

Theorem 2.6.6. Let X be a Banach space and v ∈ Ck(Γ,X ) with k = (k, . . . , k) ∈ Nd
0. The sparse grid

interpolation error can be estimated by

∥v − Ip,g
L v∥C(Γ,X ) ≤ C(k, d)R(ηL, k, d)∥v∥Ck(Γ,X ), (2.22)
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where p and g are given by the “Smolyak” case from Table 2.1 with Clenshaw-Curtis abscissas (2.17),
ηL = ηp,g

L is the number of points used by Ip,g
L and

C(k, d) = (c(1 + 2k))d

|1 + 2k − 1/c| ,

R(η, k, d) =
(

1 + log2

(
1 + η

d

))2d

min
{

2kη− k log(2)
1+log(2d) , η−k

(
1 + log2

(
1 + η

d

))dk
}
. (2.23)

In particular, the above estimate implies

∥v − Ip,g
L v∥C(Γ,X ) ≤ C(k, d)η−k

L

(
1 + log2

(
1 + ηL

d

))(k+2)d

∥v∥Ck(Γ,X ).

In the earlier paper [8], the estimate

∥v − Ip,g
L v∥C(Γ,X ) ≤ C(k, d)η−k

L (log(ηL))(k+2)(d−1)+1∥v∥Ck(Γ,X ) (2.24)

for ηL > 1 was given, which has the charm that it is less intricate.
In the next section, we discuss how sparse grids can be used in the context of high-dimensional

integration. This procedure is almost identical to the one for interpolation.

2.6.3 Sparse grid integration

We start again by introducing some notation. Let n ∈ {1, . . . , d} and let p be a growth rule, i.e. a function
satisfying the conditions (2.13). For ℓ ∈ N, we define a p(ℓ)-point quadrature formula for one-dimensional
integrals over [−1, 1] with weight function ϱn by

Qp(ℓ)
n (f) =

p(ℓ)∑
j=1

ω
(ℓ)
n,jf(y(ℓ)

n,j) ≈
∫

Γn

f(yn)ϱn(yn)dyn,

where f : [−1, 1]→ C. Here, y(ℓ)
n,j are the nodes and ω(ℓ)

n,j are the weights for j = 1, . . . , p(ℓ). The formula
Qp(ℓ)

n has degree of exactness8 qn(ℓ) ∈ N if Qp(ℓ)
n is exact for all polynomials whose degree in yn is not

larger than qn(ℓ). We assume that the degree of exactness of Qp(ℓ)
n increases with ℓ. (This fits to the

previous requirement that the growth rule p is increasing, too.)
Clearly, multi-dimensional quadrature formulas for integrals over Γ = [−1, 1]d could in principle be

constructed via tensorisation: For f : Γ→ C and ℓ = (ℓ1, . . . , ℓd) ∈ Nd let

Qℓf = (Qp(ℓ1)
1 ⊗ · · · ⊗ Qp(ℓd)

d )(f) =
p(ℓ1)∑
j1=1
· · ·

p(ℓd)∑
jd=1

d∏
n=1

ω
p(ℓn)
n,jn

f(yp(ℓ1)
1,j1

, . . . , y
p(ℓd)
d,jd

) ≈
∫

Γ
f(y)ϱ(y)dy, (2.25)

where ϱ = ϱ1 ⊗ · · · ⊗ ϱd. We call such a quadrature rule a tensor product quadrature rule and the
corresponding grid {(

y
p(ℓ1)
1,j1

, . . . , y
p(ℓd)
d,jd

)
: jn = 1, . . . , p(ℓn) for n = 1, . . . , d

}
a full grid or tensor grid. Note that this approximation requires a total number of p(ℓ1) · · · p(ℓd) function
evaluations.

8The degree of exactness is not to be confused with the order of a quadrature rule. By definition, a one-dimensional
quadrature rule with degree of exactness q has the order q + 1.
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Remark 2.6.7. Now let us briefly return to the gPCE from (2.8). One important application of quadra-
ture formulas for integrals over Γ with weight ϱ is the approximation of the polynomial chaos coefficients
⟨f, ϕ⟩ϱ for the polynomials ϕ in the truncation set Π from (2.11). Our quadrature formula should be able
to do this at least if f belongs to the set Π, too. So Qℓ should be chosen in such a way that

⟨ϕ, ψ⟩ϱ =
∫

Γ
ϕ(y)ψ(y)ϱ(y)dy = Qℓ(ϕψ) for all ϕ, ψ ∈ Π. (2.26)

Since the product ϕψ is again a polynomial, we define the half-exact set

Π′
ℓ = {ϕk : k ∈ N0, kn ≤ ⌊ qn(ℓn)

2 ⌋ for n = 1, . . . , d}, (2.27)

with ϕk defined by (2.7). Here ⌊x⌋ denotes the greatest integer less than or equal to x. If we choose
Π = Π′

ℓ, then (2.26) holds. Since we have already decided to avoid tensor product quadrature rules, we
have to see how Π can be chosen for a quadrature rule based on a sparse grid. ⋄

Now we set Qp(0)
n = 0 and define the difference operator9 ∆p(ℓ)

n as ∆p(ℓ)
n = Qp(ℓ)

n −Qp(ℓ−1)
n . The sparse

grid quadrature formula is given by

Qp,g
L v =

∑
g(ℓ)≤L

(∆p(ℓ1)
1 ⊗ · · · ⊗∆p(ℓd)

d )v for v ∈ C(Γ). (2.28)

For the “Smolyak” choice of g from Table 2.1, we can simplify the above formula to

Qp,g
L (f) =

∑
ℓ∈JL

c(ℓ)Qℓ, (2.29)

where

c(ℓ) = (−1)L+d−|ℓ|
(

d− 1
L+ d− |ℓ|

)
and JL = {ℓ ∈ Nd : L+ 1 ≤ |ℓ| ≤ L+ d}. (2.30)

Remark 2.6.8. Here it is worth to spend some time on investigating the exactness properties of this
quadrature rule. We define

ΠL :=
⋃

ℓ∈JL

Π′
ℓ (2.31)

with Π′
ℓ from (2.27). In [22, Cor. 3.3], it was shown that

ΠL ⊆ {ϕk | Qp,g
L (ϕkϕk) = ⟨ϕk, ϕk⟩ϱ = 1}.

This set ΠL can be used as a basis for the truncated gPCE, i.e. we can choose Π = ΠL. We stress,
however, that (2.26) is usually not true for Π = ΠL and Qp,g

L instead of Qℓ, i.e. there are ϕk, ϕj ∈ ΠL

such that Qp,g
L (ϕkϕj) ̸= δkj . This leads to the phenomenon that

ϕk ̸=
∑

ϕj∈ΠL

Qp,g
L (ϕkϕj)ϕj instead of ϕk =

∑
ϕj∈ΠL

⟨ϕk, ϕj⟩ϱ ϕj . (2.32)

Hence, the usage of such a quadrature rule for gPCEs has to be modified; this will be explained in
Section 3.2 later. It should be noted that there is a notable exception to (2.32), namely the case k = 0
corresponding to ϕ0 ≡ 1. Here,

1 = ϕ0 =
∑

ϕj∈ΠL

Qp,g
L (ϕ0ϕj)ϕj =

∑
ϕj∈ΠL

Qp,g
L (ϕj)ϕj (2.33)

9We use the same notation ∆p(ℓ)
n as in the earlier section, although the letter U is now replaced by Q in the definition,

thus slightly overusing notation. No confusion should arise from that.
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is indeed true, which is quite useful for computing expected values. We omit a proof of (2.33) since it is
a simple consequence of a result we discuss later. ⋄

We summarise the choices we have to make in order to construct different sparse grid quadrature
formulas: In each dimension, we select a sequence of one-dimensional quadrature formulas (Qp(ℓ)

n )ℓ∈N.
Moreover, we choose a growth rule p and the function g from (2.28). The choice of p should depend on
the family of quadrature formulas. As explained before, an exponential growth rule is beneficial for for
Clenshaw-Curtis nodes to obtain a nested family of sparse grid rules. The choice of g depends on the
available “mixed” regularity of the functions we wish to interpolate or integrate. The depth L is chosen
depending on the desired accuracy. These choices together determine the sparse grid, the corresponding
weights and the appropriate polynomial basis ΠL which can be used for gPCEs.

One can derive error estimates for sparse grid quadrature formulas in a similar fashion as for sparse
grid interpolation. Such results can be found in the work of Novak and Ritter [86, 87, 88] and Wasilkowski
and Woźniakowski [113], just to name some of the most important articles (among many others) on this
topic. We do not state such results here and we do not use them explicitly in this thesis.

Now that sparse grids are available, we are ready to discuss the class of single- and multi-level stochastic
collocation methods in the next chapter.
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CHAPTER 3

Stochastic collocation (SC) methods

Standard discretisations of the parameter space Γ in the context of UQ are Monte Carlo or Quasi-Monte
Carlo discretisations or variants thereof. These methods are sampling-based and thus non-intrusive, which
means that existing solvers for the corresponding deterministic problems can be used without changes.
More sophisticated non-intrusive methods are well-known nowadays, the most important ones being
Gaussian process regression and stochastic collocation methods. We consider the latter with the special
choice of a sparse grid collocation strategy. It is arguably the most prominent method for moderately
high-dimensional parameter spaces. Pioneering work on stochastic collocation was done by Xiu and
Hesthaven in [117], and by Nobile, Tempone and Webster in [83], with important follow-up articles [3,
84] for elliptic, [85] for parabolic and [80, 81] for hyperbolic equations. Another early work on stochastic
collocation methods in UQ for computational fluid dynamics is [77].

Later in this chapter we explain how stochastic collocation methods can be adjusted to a second
discretisation – in our case a temporal discretisation. This leads to the multi-level stochastic collocation
(MLSC) method which is the main method under consideration for discretising the parameter space in
this thesis.

3.1 The method

Consider again the problem from (2.3) of finding u such that

L(u(y1, . . . , yd), y1, . . . , yd) = 0 (3.1)

for ϱ(y)dy-almost every y = (y1, . . . , yd) ∈ Γ. Suppose that we have a numerical method which computes
reliable approximations of the solution of (3.1) for any given y = (y1, . . . , yd) ∈ Γ = [−1, 1]d. The
application of such a method is often very expensive by itself (think of L as describing a large PDE
system), so we try to avoid random sampling from ϱ(y)dy and thus omit the computation of a huge
number of solutions for different samples y(1), . . . , y(η) ∈ Γ. A better option is a non-random choice of the
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points in the parameter space Γ. Readers familiar with Monte Carlo methods may think of Quasi-Monte
Carlo methods, where one replaces (pseudo-)random numbers by low-discrepancy sequences, which are
also less arbitrarily chosen in a rather vague sense, as discussed in Section 2.5. For stochastic collocation
methods, one chooses a set of points y(1), . . . , y(η) ∈ Γ which allow the construction of an interpolant

Iηu(y) =
η∑

j=1
ũjℓj(y) ≈ u(y), (3.2)

where ũj is the approximation of the solution to (3.1) for (y1, . . . , yd) = y(j) = (y(j)
1 , . . . , y

(j)
d ), and

where ℓj are suitably chosen basis functions. The importance of (3.2) lies in the fact that although
only the computation of η approximations ũ1, . . . , ũη is required, we should obtain a good approximation
u(y) ≈ Iηu(y) for all y ∈ Γ if u is sufficiently smooth with respect to y. For sparse grid interpolants, this
has already been discussed in Section 2.6.2. The interpolant reveals the fundamental difference between
Monte Carlo (including its many variants) and collocation methods: While Monte Carlo methods compute
approximations of deterministic quantities such as expectations of (functionals of) the solution, collocation
methods compute an approximation or surrogate Iηu of the solution u itself.

Of course, the expectation and variance of a quantity of interest Υ of u can be approximated for
collocation methods, too, e.g. via

E[Υ(u)] ≈ E[Υ(Iηu)] ≈
η∑

j=1
Υ(ũj)E[ℓj ].

This approximation suggests that y(j) and E[ℓj ] should be choosen as nodes and weights of a sufficiently
accurate quadrature formula.

One may now define a specific collocation method by simply choosing an interpolant, or equivalently
by choosing nodes y(1), . . . , y(η) and corresponding basis functions ℓ1, . . . , ℓη. In principle, global or
piecewise polynomial or spline interpolation could be used. In the one-dimensional case, the interpolant
from (2.14) is one option. This is a global polynomial interpolant since it is based on (global) Lagrange
polynomials. In higher dimensions, it is crucial that the number of collocation points does not grow too
fast. In regard of the previous section, our collocation methods are always based on sparse grids. Thus,
our interpolant Iη is (unsurprisingly) exactly Ip,g

L from (2.15) and η = ηp,g
L = |Hp,g

L |.
From a practical perspective it should be noted that the costly part of stochastic collocation methods

is usually the computation of the sample solutions ũj , which typically requires a costly PDE simulation
for each j = 1, . . . , η. The construction of the interpolant afterwards is comparatively cheap.

Remark 3.1.1. Students are taught in undergraduate courses on numerical mathematics that polynomial
interpolation has several issues and is often inferior to other interpolation strategies, for example (cubic)
spline interpolation. The reason for us to stick to global polynomial interpolation is the fact that we use
interpolation in the parameter space Γ and the solution u we aim to approximate is often very smooth
with respect to the variable y ∈ Γ, even analytic in some situations. In these cases global polynomial
interpolation is attractive again.

But nevertheless we have to make sure that the interpolation is not based on equidistant nodes, but
rather on abscissas with a Lebesgue constant which is not growing too fast. Thus, the following choices
are reasonable: Either choose the roots of the Chebyshev polynomials or their extrema. In both cases, the
Lebesgue constant only grows logarithmically, see e.g. [58]. Since the roots of the Chebyshev polynomials
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do not give a nested family of nodes, choosing the extrema of the Chebyshev polynomials (= nodes of
the Clenshaw-Curtis quadrature rule) is much better for us. ⋄

It is clear that the error of a stochastic collocation method is in fact an interpolation error. Thus,
known interpolation error bounds can be used to quantify the error of collocation methods. These error
bounds usually have a different form than the error bounds for (Quasi-)Monte Carlo methods, since the
latter are formulated using probabilistic notions. The downside of interpolation error bounds is that the
appearing optimal constants are seldom known and it is usually not possible to quantify a confidence
interval, as is the case for Monte Carlo methods. The good news is that interpolation error bounds are
often formulated using norms of standard function spaces and utilise the regularity of the function which
is interpolated. Thus, stochastic collocation methods can be examined in a straightforward way from the
perspective of numerical analysis.

Stochastic collocation methods are usually limited to moderately large dimensions (up to 10 or perhaps
20 depending on context) since sparse grids contain too many points in even higher dimensions and thus
are too costly, as discussed in Remark 2.6.1 before. If the problem has even more dimensions in the
parameter space, then either anisotropic sparse grids have to be used for the collocation method or one
should fall back to Monte Carlo methods again.

Remark 3.1.2 (Dependent random variables). Here we give a remark similar to [3, Sec. 2] which explains
how stochastic collocation methods can be used if the density of the random input vector Y : Ω → Γ
from Assumption A1 in Section 2.4 does not factorise, i.e. ϱ(y) ̸= ϱ1(y1) · · · ϱd(yd). This means that
the entries of Y are not assumed to be stochastically independent. In this case, one can introduce an
auxiliary probability density function ϱ̂ : Γ = [−1, 1]d → [0,∞) which factorises as

ϱ̂(y1, . . . , yd) =
d∏

j=n

ϱ̂n(yn), and additionally satisfies
∥∥∥∥ϱϱ̂
∥∥∥∥

L∞(Γ)
<∞.

It is preferable that the last norm is as small as possible, since it enters the error estimates for collocation
methods with general ϱ, see [83, Sec. 3.1.2]. The cited article by Nobile, Tempone and Webster treats
this more general case of a density ϱ which does not factorize. The reader who is interested in such a
setting is referred to the aforementioned article and the work [3].

As a reasonable set of collocation points for the density ϱ might not be available, one can use quadra-
ture rules for the auxiliary density ϱ̂ to compute ϱ-weighted integrals such as

E[v] ≈ v̄L = QL,ϱ̂

(
ϱ

ϱ̂
v

)
and V[v] ≈ QL,ϱ̂

(
ϱ

ϱ̂
(v − v̄L)2

)
,

where QL,ϱ̂ is the sparse grid quadrature operator of depth L from (2.28), but now defined for the
separable density ϱ̂ instead of ϱ. ⋄

A final remark on the terminology: Actually there is nothing “stochastic” about stochastic collocation
methods. The term “stochastic” only accounts for the fact that the collocation points are chosen in the
stochastic/parameter space.

Now we point out the connection between polynomial chaos expansions and stochastic collocation
methods.
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3.2 Interlude: Reconstruction of the gPCE

This section appeared in a similar form in [62].
In the previous section we explained that stochastic collocation methods compute an interpolant of the

unavailable solution. In fact, once an interpolant Iηu of the solution u as in (3.2) has been computed, it
is possible to reconstruct an approximation of the polynomial chaos expansion of u, which was introduced
in Section 2.3. However, it is not straightforward to do this for sparse grid interpolants, which is why we
devote this whole section to the procedure.

Let f ∈ L2
ϱ(Γ) be given by

f(y) =
∑

k∈Nd
0

fϕk
ϕk(y), y ∈ Γ,

where the equality comes from expanding f into a polynomial chaos expansion as in (2.8). Suppose that
we seek an approximation f̃ of f of the form

f̃(y) =
∑
ϕ∈Π

f̃ϕϕ(y) ≈ f(y), y ∈ Γ,

where Π is an orthonormal multivariate polynomial basis as in (2.11). One should think of f(y) = Iηu(y)
with the interpolant Iη from (3.2). We further suppose that the true coefficients fϕk

= ⟨f, ϕk⟩ϱ are not
known and thus have to be approximated. If f is at least continuous, a standard approach is to replace
the integral in

fϕk
= ⟨f, ϕk⟩ϱ =

∫
Γ
f(y)ϕk(y)ϱ(y)dy (3.3)

by a quadrature formula, say QL(fϕk), where QL is the sparse grid quadrature operator from (2.29) (and
the upper indices p and g are omitted). Unfortunately, this naive approach produces wildly inaccurate
approximations for f(y) in most cases. The reason is that the two types of errors involved so far, coming
from truncation

∑
k∈Nd

0
⇝
∑

ϕ∈Π and quadrature, influence each other. This leads to a phenomenon
called internal aliasing which is responsible for the poor accuracy. Another consequence of internal
aliasing is (2.32). This problem was examined in [23], where also the correct modification was given. See
also [22] for a related discussion. We explain this correct modification now.

Let y(1), . . . , y(η) denote the quadrature nodes of QL. Let ℓ ∈ JL be the multi-index of one fixed full
grid contained in the sparse grid (see formula (2.29)), and let ωℓ(y(j)) denote the weight from quadrature
rule Qℓ (see (2.25)) at the node y(j) for j ∈ {1, . . . , η}. (If y(j) is not a node for ℓ, then ωℓ(y(j)) is zero.)
Then QL(fϕ) can be expressed equivalently as

QL(fϕ) =
∑

ℓ∈JL

c(ℓ)(Q(1)
m1 ⊗ · · · ⊗ Q(d)

md
)(fϕ) =

η∑
j=1

∑
ℓ∈JL

c(ℓ)ωℓ(y(j))ϕ(y(j))f(y(j)),

where c(ℓ) was defined in (2.30). For the set Π, we choose Π = ΠL defined as in (2.31). According to
[23] the correct way to compute the approximations f̃ϕ ≈ fϕ for ϕ ∈ Π is given by

f̃ϕ =
η∑

j=1

∑
ℓ∈JL

ϕ∈Π′
ℓ

c(ℓ)ωℓ(y(j))ϕ(y(j))f(y(j)), (3.4)
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where the crucial part is that the sum only runs over those ℓ where ϕ ∈ Π′
ℓ. (The half-exact set Π′

ℓ

was defined in (2.27).) This method of computing the polynomial chaos coefficients is called the sparse
pseudospectral approximation method, see [23]. Since only evaluations of f in y(j) must be available for
this computation, we conclude that choosing the interpolation points from Iη as (y(j))η

j=1 gives indeed
Ĩηu = ũ. Note that we also have

f̃(y) = f(y), f ∈ Π, (3.5)

which would not be true for the naive approach due to (2.32). A proof of (3.5) is given in [23, Thm. 2].
It should be noted that the expected value (which, by (2.9), is the first coefficient of the gPCE) can

be computed “naively”. This was also noticed in [23, Cor. 1] and can be seen as follows. Suppose that
ϕ ≡ 1. Then ϕ ∈ Π′

ℓ for any ℓ ∈ JL and thus, by (3.4),

f̃ϕ =
η∑

j=1

∑
ℓ∈JL

c(ℓ)ωℓ(y(j))f(y(j)) = QL(f).

Together with (3.5), this proves (2.33) from the previous section, too.
The aforementioned procedure of “stochastic collocation + computation of the polynomial chaos

coefficients” is sometimes called non-intrusive spectral projection (NISP) and some authors (see e.g. [108,
Sec. 13.1]) distinguish this method from stochastic collocation methods. The difference is mainly whether
one accepts the interpolant as an approximation or computes the polynomial chaos expansion afterwards.
We do not care whether it is just a post-processed stochastic collocation method or a method in its own
right, but the connections between the two approaches are apparent. The main benefit of having an
approximation to the PCE coefficients is that expectations, variances and other statistical quantities can
be computed immediately. (One should perhaps recall the formulas (2.9) and (2.10) at this point.)

3.3 The single-level stochastic collocation method (SLSC)

While the first section of this chapter discussed stochastic collocation methods in a general manner, the
focus of this section is on the combination of the collocation method in the parameter space and the
temporal discretisation of a time-dependent PDE. Parts of this and the subsequent sections are taken
from [61].

Consider a time-dependent PDE of the form

∂tu(t, y) + L(u(t, y), y) = 0, t ≥ 0, y ∈ Γ, (3.6a)

u(0, y) = u0(y), y ∈ Γ (3.6b)

on a Banach space X for given u0 : Γ → X and Γ = [−1, 1]d which admits a solution u (in some sense).
For the time being, we do not specify the operator L as this section only explains the general procedure
of single-level stochastic collocation methods.

Furthermore, we assume that we already have a reasonable time-stepping method which successively
computes approximations un(y) ≈ u(tn, y) to the solution u of (3.6) at times tn = nτ for any given y ∈ Γ,
where τ > 0 is the step-size of the time-stepping method.

The strategy to define a single-level collocation method is rather simple: Choose collocation points
from a sparse grid Hp,g

L = {yj}η
j=1 and compute approximations un(yj) ≈ u(tn, yj) at times tn = nτ for
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each j = 1, . . . , η. If we compute the interpolant from the values un(y1), . . . , un(yη) for each n, then we
obtain an approximation of u(tn, y) for any y ∈ Γ and n ∈ N. Afterwards, one may wish to compute a
gPCE as explained in Section 3.2.

The step-size τ determines the accuracy of the temporal approximations and the accuracy of the
interpolation in y is determined by selecting a coarser/finer grid of interpolation points, which corresponds
to a smaller/larger value of η.

Let us be more specific about this approach. We denote the numerical flow of the time-integrator
with step-size τ > 0 by Φτ , so we set

Φn
τ (u0, y) = Φτ (Φn−1

τ (u0, y), y) = un(y), n ∈ N, Φ0
τ (u0, y) = u0(y)

for u0 : Γ → X and y ∈ Γ. The second argument y ∈ Γ accounts for the fact that the flow usually
depends on the parameter y ∈ Γ since L from (3.6a) depends on y, too. Moreover, let IL denote the
depth-L-sparse grid interpolant from (2.15), but with the upper indices p and g omitted in the notation.

In a formula, the stochastic collocation approximation of depth L at time tn = nτ is given by

uL,n(y) = ILΦn
τ (u0, y) ≈ u(tn, y), n ∈ N0, y ∈ Γ. (3.7)

We distinguish between:

u(t, ·) ←→ solution of (3.6) at time t

ILu(t, ·) ←→ interpolation of u(t) on the depth-L-grid

un = Φn
τ (u0, ·) ←→ time-discrete approximation after n time-steps

uL,n = ILΦn
τ (u0, ·) ←→ approximation after n time-steps, interpolated on the depth-L-grid

From now on, the variable y indicated with the dot · above will usually be hidden in the notation when
it is convenient.

Let us now discuss the accuracy of this method by examining the different contributions to the total
error. We discuss this for the norm of the space Lq

ϱ(Γ,X ), q ∈ [1,∞), since convergence in this norm
corresponds (in probabilistic notion) to convergence in the q-th mean due to

∥v∥q
Lq

ϱ(Γ,X ) =
∫

Γ
∥v(y)∥q

Xϱ(y)dy = E[y 7→ ∥v(y)∥q
X ], v ∈ Lq

ϱ(Γ,X ).

Note that Markov’s inequality shows that convergence in the q-th mean implies convergence in probability,
too. The error after n steps with step-size τ > 0 can be split into

∥u(tn)− uL,n∥Lq
ϱ(Γ,X ) ≤ ∥u(tn)− Φn

τ (u0)∥Lq
ϱ(Γ,X ) + ∥Φn

τ (u0)− ILΦn
τ (u0)∥Lq

ϱ(Γ,X ) =: (I) + (II). (3.8)

The first part of the error, (I), corresponds to the time-discretisation error, whereas the second part
(II) corresponds to the stochastic collocation error, applied to time-discrete approximation un = Φn

τ (u0).
Both error contributions have to be examined separately for each problem under consideration.

The term (I) can often be estimated by standard tools from numerical analysis. Examples are given
later in this thesis for specific problem classes.

The term (II) corresponds to the interpolation error for the sparse grid of depth L, but applied to
the time-discrete approximation. Error bounds for sparse grid interpolation were given in Section 2.6.2
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before. To apply these results, one has to show that the time-discrete solution has enough y-regularity
and that the norm of Φn

τ (u0) in spaces such as {v : Σ(σ)→ X | v is analytic} or Ck(Γ,X ) can be somehow
related to the corresponding norm of the solution itself, which is hard and surprisingly technical for, e.g.,
splitting methods. Two of the main results in this thesis (stated in Section 4.5.2 and Section 5.3.2 later)
address exactly this issue.

Suppose now that we are able to quantify the error ∥eL,n∥Lq
ϱ(Γ,X ) from (3.8), where eL,n := u(tn)−uL,n.

Then we can use the relations between different Lq-spaces to obtain some other error estimates. Using
∥E[eL,n]∥X ≤ E[∥eL,n∥X ] ≤ ∥eL,n∥Lq

ϱ(Γ,X ), we get an estimate for the error of the expected value in X .
We can also treat a smooth functional Υ: X → R of u by the estimate

|E[Υ(u(tn))−Υ(uL,n)]| ≤
(∫ 1

0
∥Υ′(uL,n + θeL,n)∥

Lq∗
ϱ (Γ,X ∗)dθ

)
∥eL,n∥Lq

ϱ(Γ,X ),

where Υ′ denotes the Fréchet derivative of Υ, q∗ denotes the Hölder conjugate of q and X ∗ the dual space
of X . Such an estimate is important if one tries to quantify the error in the computation of E[Υ(u)]
instead of u itself.

Now we are finally ready to discuss the multi-level stochastic collocation method from the thesis title.

3.4 The multi-level stochastic collocation method (MLSC)

In situations where a very accurate approximation of the solution is sought-after or where the regularity
of the solution in the parameter space is comparatively low (such that a very fine sparse grid is required),
the efficiency of single-level stochastic collocation methods can be improved considerably by a multi-level
strategy – at least if certain conditions are met. Such methods have been proposed and analyzed in [109,
115]. For more recent works containing remarkable extensions of the approach we refer to [45, 44, 65].
We will briefly discuss these extensions in Section 3.8 later.

Our presentation of the multi-level strategy follows very closely the work by Teckentrup et al. [109].
In this reference an elliptic problem is considered, and different spatial and stochastic discretisations are
combined with a multi-level strategy. In contrast to that, we combine different temporal and stochastic
discretisations. Most of the material in this and the next section will appear in a similar form in [61].

Throughout this section, let T > 0 be fixed. We choose N0 ∈ N, set τ0 = T
N0

and define the decreasing
sequence of step-sizes (τj)j∈N0 via τj = 2−jτ0 for j ∈ N0. To each of these step-sizes corresponds a
numerical flow Φτj

and a number of time-steps Nj = 2jN0 to reach the given final time T , so T = τjNj

for all j ∈ N0. For simplicity, the notation

uτj
= ΦNj

τj
(u0)

for j ∈ N0 is used henceforth. (We will not use the previous notation un for n ∈ N in the remainder of
this chapter.)

The first requirement for the construction of a multi-level method is a convergence result for the
temporal discretisation. We assume that convergence is obtained with respect to the L2

ϱ(Γ,X )-norm,
although one could use Lq

ϱ(Γ,X ) for any q ∈ [1,∞] instead.

Assumption B1. Suppose that there exist constants α,CT > 0 such that

∥u(T )− uτj∥L2
ϱ(Γ,X ) ≤ CT τ

α
j (3.9)
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for all j ∈ N0.

Usually, α is the classical order of the time integration scheme. In this thesis, we consider second-order
methods and thus we typically have α = 2, at least when X is a spatial L2-space and the requirements
for convergence are met. The value α could be smaller than the classical order if either the solution is
not smooth enough or the method suffers from order reduction due to, e.g., stiffness of the problem. The
constant CT will usually depend on some norm of the exact solution u(t) (in general on the whole time
interval [0, T ]) and other problem-dependent quantities, too. The precise dependencies are not crucial
because in practice, one determines CT numerically by regression.

Remark 3.4.1. Convergence results for the temporal discretisation often have a step-size restriction, so
the error bound only holds for all step-sizes 0 < τ ≤ τmax for some τmax > 0. In particular for non-linear
problems this can usually not be avoided. If the restriction is strong and hence τmax is already small,
then one has to make sure that τ0 ≤ τmax is satisfied. This might prohibit the use of the multi-level
approach for some problems with severe step-size restrictions.

Another type of step-size restrictions are CFL conditions arising from the interplay between spatial and
temporal discretisation for certain problem classes. Often the maximal temporal step-size is dictated by
the smallest mesh width in the spatial mesh (for example if wave equations are solved with explicit time-
stepping methods), and thus the straightforward multi-level procedure might not be usable in combination
with fine or locally refined meshes. Resolving this issue is a topic of current research, see e.g. the recent
work [42].

For the problems considered in this thesis, we only observe rather mild step-size restrictions or none
at all as we are working with relatively coarse and regular spatial meshes. ⋄

Notation. In the previous sections, the sparse grid interpolation operator was denoted by Ip,g
L or IL,

where the index L is the depth of the sparse grid. In this section, we change the lower index to η, the
number of nodes in the corresponding sparse grid and write Iη instead, as the depth parameter is not
as relevant as in the previous sections. This number η corresponds to the degrees of freedom of the
interpolation operator Iη and it is also the quantity which appears in the interpolation estimates (2.22)
and (2.24). This is the reason why η plays a more important role in the following. One should be aware of
the fact that for sparse grids, it is not possible (at least not with the procedure described in Section 2.6)
to define a sparse grid interpolation operator for arbitrary η ∈ N. This issue will be addressed after
Example 3.5.3.

Let (ηℓ)ℓ∈N0 be increasing (not necessarily strictly increasing) and consider an abstract sequence
(Iηℓ

)ℓ∈N0 of interpolation operators Iηℓ
: C(Γ,X ) → L2

ϱ(Γ,X ). We think of ηℓ as being the number of
interpolation points for Iηℓ

. Since (ηℓ)ℓ∈N0 is increasing, it is reasonable that Iηℓ+1 is more accurate than
Iηℓ

if ηℓ+1 > ηℓ for ℓ ∈ N0.
We make the following assumption for the interpolation error.

Assumption B2. There exist constants CI , Cζ , β > 0 and a Banach space Λ(Γ,X ) ↪→ L2
ϱ(Γ,X ) such

that {uτj
= ΦNj

τj (u0) : j ∈ N0} is contained in Λ(Γ,X ) and that for all v ∈ Λ(Γ,X ), it holds

∥v − Iηℓ
v∥L2

ϱ(Γ,X ) ≤ CIκℓζ(v) (3.10)
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for some decreasing sequence (κℓ)ℓ∈N0 and a function ζ : Λ(Γ,X )→ R that satisfies

ζ(uτj
) ≤ Cζτ

β
0 and ζ(uτj+1 − uτj

) ≤ Cζτ
β
j+1 (3.11)

for all j ∈ N0.

It is allowed that ηℓ = ηℓ+1 and Iηℓ
= Iηℓ+1 for some ℓ ∈ N0 and hence also κℓ = κℓ+1. In light of the

Theorems 2.6.2 and 2.6.6, the space Λ(Γ,X ) will be either

• a space of analytic functions Σ(σ)→ X on a polyellipse Σ(σ) as in (2.19) or

• the space Ck(Γ,X ) with k = (k, . . . , k) ∈ Nd
0.

Therefore the functions uτj
and uτj+1 −uτj

need a certain amount of regularity in the stochastic variable
in order to fulfill Assumption B2. The sequence (κℓ)ℓ∈N0 is determined by the convergence rate of the
interpolation error, so κℓ = η−µ

ℓ for some µ > 0 in the analytic case by Theorem 2.6.2. The function
ζ is usually some norm which appears on the “right-hand side” of an interpolation error bound. In the
analytic case, ζ(v) = maxz∈Σ(σ) ∥v(z)∥X .

For many time integration schemes, it is not easy to verify Assumption B2. This is especially true for
splitting methods (as we will see in Chapter 4 and Chapter 5).

Remark 3.4.2. Remark 3.4.1 concerning step-size restrictions also applies to the estimate

ζ(uτj+1 − uτj
) ≤ Cζτ

β
j+1,

so again one has to make sure that τ0 is sufficiently small. ⋄

After these preparations we are in the position to formulate the multi-level stochastic collocation
(MLSC) method. We choose L ∈ N0, set uτ−1 = 0 and start with the telescoping sum

uτJ
=

J∑
j=0

(uτj − uτj−1), (3.12)

where we have used the notation
uτj

= ΦNj
τj

(u0),

such that all uτj
, j ∈ N0, are approximations of the solution u at the same time T = Njτj .

Only an interpolation of uτJ
can be computed in practice, and in principle, one could simply interpolate

every difference under the sum with the same interpolation operator. In order to reach a given accuracy,
however, it is much more efficient to balance the two errors caused by time integration and interpolation
in a near-optimal way. If j increases, then Assumption B2 implies that ζ(uτj − uτj−1) decreases and
uτj
− uτj−1 can thus be interpolated with a coarser (but cheaper) interpolation operator. Conversely, a

more accurate interpolation can be used for the summands with small j, for which the time integration
is less costly.

Thus we define the multi-level approximation u
(ML)
J by

u
(ML)
J =

J∑
j=0
IηJ−j

[uτj
− uτj−1 ]. (3.13)
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Figure 3.1: Combination of stochastic and temporal discretisation in the multi-level estimator

The most accurate interpolation operator IηJ
is used for the coarsest temporal approximation uτ0 and

the least accurate interpolation operator Iη0 is used for the difference of the two finest temporal approx-
imations uτJ

− uτJ−1 , see Figure 3.1.
Note that for this combination of interpolation operators and temporal approximations, the two indices

j and ℓ from before are reduced to only one index j, to which the other index ℓ will be tuned. The correct
tuning of coarse interpolation / fine temporal resolution (and vice versa) will be achieved by selecting a
special sequence (ηj)j∈N0 later on. The refinement of the temporal discretisations has already been fixed
by the choice τj = 2−jτ0 for j ∈ N0.

Let us now examine the convergence of the multi-level approximation u(ML)
J in the norm of L2

ϱ(Γ,X ).
We start with a triangle inequality similar to (3.8), i.e.

∥u(T )− u(ML)
J ∥L2

ϱ(Γ,X ) ≤ ∥u(T )− uτJ
∥L2

ϱ(Γ,X ) + ∥uτJ
− u(ML)

J ∥L2
ϱ(Γ,X ) =: (I) + (II). (3.14)

We show that for a suitable choice of (ηj)j∈N0 , the error components (I) and (II) converge at the same
rate. Assumption B1 implies that there exist α,CT > 0 such that

(I) ≤ CT τ
α
J .

The second term (II) can be estimated by the triangle inequality as

(II) ≤
J∑

j=0

∥∥(uτj
− uτj−1)− IηJ−j

(uτj
− uτj−1)

∥∥
L2

ϱ(Γ,X ) ≤
J∑

j=0
CICζκJ−jτ

β
j
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due to (3.12), (3.13) and Assumption B2. Choosing a sequence (ηj)j∈N0 such that the corresponding
values κJ−j in (3.10) satisfy

κJ−j ≤ CT

(
(J + 1)CICζ

)−1
τα

J τ
−β
j (3.15)

yields

(II) ≤
J∑

j=0
CT

(
(J + 1)CICζ

)−1
τα

J τ
−β
j CICζτ

β
j = CT τ

α
J ,

such that the error contribution from (II) and (I) is almost the same. With this choice of (ηj)J
j=0, we

obtain
∥u(T )− u(ML)

J ∥L2
ϱ(Γ,X ) ≤ 2CT τ

α
J , (3.16)

which means that the multi-level approximation converges as J →∞.

Remark 3.4.3. In the original work [109], the Assumptions B1 and B2 were formulated with uh instead
of uτ , where uh is the finite element approximation of a solution to an elliptic PDE on a mesh with width
h. In contrast to our goal of approximating u(T ) for a fixed time T , their goal was the computation of
an approximation on the whole spatial domain. ⋄

Next we examine the computational cost of u(ML)
J in detail. Clearly, we want to keep the cost as low

as possible while still satisfying the inequality (3.15) which ensures convergence of u(ML)
J as J →∞.

3.5 Cost analysis of the multi-level method

Here we analyse the ε-cost of the MLSC estimator from (3.13), which will be defined as the computa-
tional cost required to achieve a desired accuracy ε. The analysis relies on the convergence rates from
Assumptions B1 and B2. From now on, we add the following restriction to Assumption B2: The value
κℓ is related to ηℓ by κℓ = η−µ

ℓ for some µ > 0.

Remark 3.5.1. The relation κℓ = η−µ
ℓ corresponds to the interpolation error for analytic functions, as

stated in Theorem 2.6.2.
For functions of finite regularity, the error estimates usually contain a logarithmic factor log(ηℓ)E ,

where the exponent E depends on the regularity of the function and the dimension d, see e.g. (2.22)
or (2.24). To fit this case into our current setting, note that log(ηℓ)E ≤ Cηℓ for a constant C which
again depends on the regularity and on d, but is independent of ηℓ. The constant C is given explicitly
in Lemma A.1. If we use this for E = (k + 2)(d − 1) + 1, which corresponds to the interpolation error
bound (2.24) for functions belonging to Ck(Γ,X ) with k = (k, . . . , k) ∈ Nd

0, we get

κℓ = η−k
ℓ (log(ηℓ))(k+2)(d−1)+1 ≤ Cη−(k−1)

ℓ

and conclude that the choice κℓ = η−µ̃
ℓ with µ̃ = k − 1 can be used in this case, too.

The question occurs whether it would be possible to incorporate the logarithmic factor into the
construction of the multi-level method. To the best of our knowledge, this is not possible to an extent
where it would be of any practical value. More specifically, an explicit formula for ηj such as (3.18) given
later could not be derived by the same strategy if the logarithmic factor was present. ⋄
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Notation. We write a ≲ b if and only if a ≤ Cb for some constant C which is independent of the
step-sizes (τj)j∈N0 , the numbers of interpolation points (ηℓ)ℓ∈N0 and the accuracy ε. Similarly, we write
a ≂ b if and only if a = Cb for some constant C with the same properties.

We denote the cost of “evaluating” uτj − uτj−1 at a sample y by Cj and assume the following.

Assumption B3. The cost Cj satisfies Cj ≲ τ
−1
j for all j ∈ N0.

For time-stepping schemes, the number of time-steps is usually proportional to the inverse of the
step-size. Thus, the above assumption says that the cost is proportional to the number of time-steps.
This is often reasonable, but it neglects computational work in the setup. For the parabolic problems
consider later in Chapter 4, matrix assembly is part of the setup process and thus not neglectable from
the total work if only few time-steps are computed. In such cases it requires an intelligent strategy of
reusing already assembled matrices for collocation points contained in sparse grids of lower depth to avoid
computational overhead for the multi-level estimator.

Now we define the total computational cost of the MLSC approximation (3.13) as

C(ML) =
J∑

j=0
ηJ−jCj .

This definition is reasonable if the interpolation operator IηJ−j
is based on ηJ−j points. The following

result is the main result of this subsection. It quantifies the cost which is needed to achieve an accuracy
of ε with the MLSC approximation.

Theorem 3.5.2 (Multi-level ε-cost theorem).
Suppose that Assumptions B1 – B3 hold with κℓ = η−µ

ℓ for some µ > 0 and assume that α ≥ min{β, µ}.
Then, for given ε < e−1, there exists J ∈ N0 and a sequence (ηj)J

j=0 of real numbers such that

∥u(T )− u(ML)
J ∥L2

ϱ(Γ,X ) ≤ ε (3.17)

and simultaneously

C(ML) ≲


ε− 1

µ , β > µ,

ε− 1
µ | log(ε)|1+ 1

µ , β = µ,

ε− 1
µ − µ−β

αµ , β < µ.

The sequence (ηj)J
j=0 is given by

ηJ−j = (2CICζτ
β
0 SJ)1/µε−1/µ2− j(β+1)

µ+1 , j = 0, . . . , J, (3.18)

where

SJ =
J∑

j=0
2−j β−µ

µ+1 .

Proof. Although a complete proof of this result was given in [109, Thm. 4.2], we repeat it here since the
result is crucial to this thesis.

Consider the error from (3.14). To achieve (I) ≤ ε
2 , we need

τJ ≤
(

ε

2CT

)1/α
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by Assumption B1 and thus
J =

⌈
1
α

log2

(
2CT

ε

)
+ log2(τ0)

⌉
(3.19)

is sufficient. Our goal is to minimise the computational cost C(ML) subject to the requirement (II) ≤ ε
2 .

Thus we define the Lagrange function L as

L(η0, . . . , ηJ , λ) = τ−1
0

J∑
j=0

ηJ−j2j + λ

 J∑
j=0

CICζη
−µ
J−j2−jβτβ

0 −
ε

2

 .

The Lagrange multiplier method suggests to look for critical points of L. Therefore, we try to solve the
equations

∂L
∂ηJ−j

= 2jτ−1
0 − λCICζµη

−(µ+1)
J−j 2−jβτβ

0 = 0, j = 0, . . . , J, (3.20a)

∂L
∂λ

=
J∑

j=0
CICζη

−µ
J−j2−jβτβ

0 −
ε

2 = 0. (3.20b)

The first J + 1 equations (3.20a) can be rearranged as

ηJ−j = (CICζµλτ
β+1
0 )1/(µ+1)2− j(β+1)

µ+1 , j = 0, . . . , J, (3.21)

which in turn implies
λ

1
µ+1 = 21/µ(CICζ)

1
(µ+1)µ τ

β−µ
µ(µ+1)

0 µ− 1
µ+1 ε−1/µS

1/µ
J

via (3.20b). Inserting this into (3.21), we arrive at

ηJ−j = (2CICζτ
β
0 SJ)1/µε−1/µ2− j(β+1)

µ+1 .

So far, we only know how to choose J and ηJ−j for j = 0, . . . , J . We still have to verify that the cost
C(ML) scales as claimed. This is the next step. We have

C(ML) =
J∑

j=0
ηJ−jCj ≂

J∑
j=0

ηJ−j2j ≲
J∑

j=0
ε−1/µS

1/µ
J 2−j β−µ

µ+1

≂ ε−1/µS
1+1/µ
J .

Now we distinguish three cases.

The case β > µ. Here, SJ converges as J →∞ and thus C(ML) ≲ ε−1/µ.

The case β = µ. Here we have SJ = J + 1 and thus

C(ML) ≲ ε−1/µ(J + 1)1+1/µ.

Using ε−1/α ≤ ε−1/µ for ε ≤ 1 and

(J + 1)1+1/µ <

(
1
α

log2(2CT /ε) + log2(τ0) + 2
)1+1/µ

≲

(
− 1
α

log2(ε)
)1+1/µ

=
(

1
α
| log2(ε)|

)1+1/µ

for ε < 1/e, we arrive at C(ML) ≲ ε−1/µ| log2(ε)|1+1/µ as claimed.
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The case β < µ. Here we have

SJ =
J∑

j=0
2(j−J) β−µ

µ+1 = 2−J β−µ
µ+1

J∑
j=0

2−j µ−β
µ+1 ≲ 2J µ−β

µ+1 .

Inserting the value of J from (3.19) gives

S
1+1/µ
J ≲ ε− µ−β

αµ

and we finally obtain
C(ML) ≲ ε− 1

µ − µ−β
αµ .

This concludes the proof of the theorem.

Example 3.5.3.

For α = β (which will be the situation in our model problems later on), the requirement α ≥ min{β, µ}
is clearly satisfied. Hence, Theorem 3.5.2 implies that ∥u(T )− u(ML)

J ∥L2
ϱ(Γ,X ) ≤ ε can be achieved with

C(ML) ≲


ε− 1

µ , µ < 2,

ε− 1
µ | log(ε)|1+ 1

µ , µ = 2,

ε− 1
α , µ > 2.

The optimal choice for ηJ−j specified by (3.18) gives in general not an integer. In practice, however, the
interpolation operators Im are only available for certain integer depths L ∈ N corresponding to m = mL,
the number of points in a sparse grid. To determine a practicable family (η̃j)J

j=0 as a replacement for
(ηj)J

j=0, one has to choose a number of the form mℓ(j), ℓ(j) ∈ N, for which an interpolation operator (and
hence an associated sparse grid) is available. An obvious choice is

η̃j = ηup
j = min{mℓ : ℓ ∈ N, ηj ≤ mℓ}, j = 0, . . . , J. (3.22)

We indicate this rounding strategy by “up” since ηj is rounded up to the next admissible integer. One
should be aware of the fact that such a replacement sequence may not lead precisely to the cost estimate
from Theorem 3.5.2.

Remark 3.5.4. The sequence (mℓ)ℓ∈N usually grows exponentially in case of nested point sequences.
Hence, ηup

j might be up to twice as large as ηj in some cases, which could be crucial in large stochastic
dimensions d or in case that very accurate solutions (and hence large values of ηJ) are required. This
could heavily influence the cost scaling of the MLSC method. This is the main reason why other rounding
strategies are necessary, as explained in the following. ⋄

Similarly, we define the rounding strategy “down” by always choosing the next sparse grid with less
points than ηj ,

ηdown
j = max{1,max{mℓ : ℓ ∈ N, mℓ ≤ ηj}}, j = 0, . . . , J.

This gives a cheaper estimator, but it is more likely that an error below ε is not achieved.
Another rounding strategy (η±

j )J
j=0 for (ηj)J

j=0 named “up/down” was discussed in [109, Rem. 6.1
and 6.3]. This strategy can be described as follows: At first, all ηj are rounded to the nearest number
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for which a sparse grid is available. If more ηj are rounded down than up in this procedure, we choose
the number which was rounded down by the largest amount and instead round it up. This is iterated
until equally many ηj are rounded up and down (or one more number is rounded up than down). If more
ηj are rounded up than down in the beginning, then the procedure is analogous. This way, we arrive at
the sequence (η±

j )J
j=0. A visualisation of the “up/down” rounding strategy (in a scenario with fictional

constants, rates and ε) is given in Figure 3.2a for different values of J . The corresponding sparse grid
depths are depicted in Figure 3.2b.

Although the rounding strategy “up/down” is cheaper than the strategy “up”, it can still suffer from
the issue described in Remark 3.5.4, but it is less pronounced for “up/down”.
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Figure 3.2: “Up/down” rounding strategy

3.5.1 Comparison with single-level collocation methods

Given a set of collocation points y1, . . . , yη ∈ Γ = [−1, 1]d from a sparse grid and a step-size τ = T
N for

N ∈ N, we denote the single-level approximation from (3.7) by

u(SL)
η,τ := IηΦN

τ (u0),

where Iη is the interpolation operator corresponding to {yj}η
j=1. (As the final time T is fixed as in

the previous section, the step-size determines the integer N ∈ N.) The upper index “(SL)” stands for
single-level, referring to the fact that only a single point set {yj}η

j=1 is used to compute u(SL)
η,τ .

Under the same assumptions as in Theorem 3.5.2, the error of the single-level collocation method with
η = ηℓ ∈ N and τ = τj can be bounded by

∥u(T )− u(SL)
η,τ ∥L2

ϱ(Γ,X ) ≤ ∥u(T )− uτ∥L2
ϱ(Γ,X ) + ∥uτ − Iηuτ∥L2

ϱ(Γ,X )

≤ CT τ
α + CIζ(uτ )η−µ

≤ CT τ
α + CICζτ

β
0 η

−µ.
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To make both contributions equal to ε/2 (or ε, since we ignore constants anyway), choose η and τ such
that η ≂ ε− 1

µ and τ ≂ ε
1
α . The computational cost for the single-level method to achieve a total error

less or equal than ε is thus given by

C(SL)
ε ≂

η

τ
≂ ε− 1

µ − 1
α . (3.23)

Now we compare this with the result for C(ML)
ε from Theorem 3.5.2. To this end, we define the cost

reduction of the multi-level approach compared to the single-level approach as C(ML)
ε /C

(SL)
ε . The lower

the quotient C(ML)
ε /C

(SL)
ε is, the better is the performance of the multi-level method. (The inverse of

the cost reduction thus corresponds to the speed-up of the multi-level approach.) By Theorem 3.5.2 and
(3.23), we have

C
(ML)
ε

C
(SL)
ε

≂


ε

1
α , β > µ,

ε
1
α | log(ε)|1+ 1

µ , β = µ,

ε
β

αµ , β < µ.

Note that the cost savings discussed above ignore constants which appear in C(ML)
ε and C(SL)

ε , so only
the decay rate in ε and µ is meaningful. We observe that the cost reduction tends to zero for ε → 0
for every constellation of β and µ, so the multi-level approach is beneficial whenever the tolerance ε is
sufficiently small. For large tolerances, the benefits of using various levels disappear. As the constant in
the cost reduction is not available, it is not immediately clear for which particular tolerances one of the
methods is better than the other. This has to be examined in practical situations.

Example 3.5.5.

We return to the case α = β from Example 3.5.3. Here, the cost reductions are ε 1
α = ε

1
2 for µ < 2 (“low

regularity”), ε 1
2 | log(ε)| 32 for µ = 2 and ε

β
αµ = ε

1
µ for µ > 2 (“high regularity”). Clearly, the savings are

most noticeable if either the rate µ or the tolerance ε is small. In both cases, more levels are required in
total for the multi-level estimator and thus the profit of using various levels increases. Figure 3.3 below
gives a picture of this situation (dark is best, bright means “no savings”).
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Figure 3.3: Savings of the multi-level approach in dependency of ε and µ
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3.5.2 Practical considerations

It should be noted that Theorem 3.5.2 itself is not directly helpful in practice yet. The open questions
which have to addressed for an implementation of the method are the following.

(1) How to estimate the constant CT and the rate α from Assumption B1?

(2) How to estimate CICζ , β and µ in κℓ = η−µ
ℓ from Assumption B2?

(3) How to find the correct value of J from Theorem 3.5.2?

All questions have already been answered satisfactorily in [109, Sec. 6.3], but we repeat the most important
steps here.

Ad (1). If a sufficiently accurate reference solution uref(T ) ≈ u(T ) is available, we can use it as a
replacement for u(T ) in (3.9) and use least-squares fitting for the errors obtained with approximations
uτ1 and uτ2 for two different step-sizes τ1 and τ2. This would give values for CT and α. If such a
reference solution is not available (which is the practically relevant situation), then we can use yet
another approximation uτ3 with τ3 < min{τ1, τ2} as a replacement for u(T ) in (3.9). For j = 1, 2, we
have

∥uτ3 − uτj
∥L2

ϱ(Γ,X ) ≤ ∥uτ3 − u(T )∥L2
ϱ(Γ,X ) + ∥u(T )− uτj

∥L2
ϱ(Γ,X )

≤ CT ((τ3/τj)α + 1)τα
j (3.24)

≤ 2CT τ
α
j , (3.25)

from which we can reconstruct the values of CT and α very easily if we assume that equality holds here.
More precisely, we fit the data

(τ1, ∥uτ3 − uτ1∥L2
ϱ(Γ,X )), (τ2, ∥uτ3 − uτ2∥L2

ϱ(Γ,X ))

to the model function

f(x) = Ĉxα̂ or log(f(x)) = log(Ĉ) + α̂ log(x)

to determine Ĉ and α̂. Then we take Ĉ and α̂ as replacements for CT and α. This is a linear regression
for the function log(f(x)) with respect to log(x).

In practice, we can only compute ∥Iηuτ3 − Iηuτj
∥L2

ϱ(Γ,X ) for an interpolant Iη. The choice of η is
usually not crucial and yields almost identical values for the constant CT and rate α as long as step-sizes
τj , j = 1, 2, 3, are used for which the asymptotic behaviour already shows up.

Ad (2). Here the procedure is similar. Additionally to the approximations with different step-sizes,
we also need different interpolation levels η0, η1 and η2 to estimate CICζ , β and µ from Assumption
B2 (with κℓ = η−µ

ℓ ). If we assume that Assumption B2 is satisfied with κℓ = η−µ
ℓ and the value of β is

known (which is the case in all of our applications later), then we can proceed as follows to estimate the
product C = CICζ and µ. By Assumption B2, we have

∥(uτk+1 − uτk
)− Iηℓ

(uτk+1 − uτk
)∥L2

ϱ(Γ,X ) ≤ CICζη
−µ
ℓ τβ

k+1
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for k = −1, . . . , j (with uτ−1 = 0). This implies

∥uτj+1 − Iηℓ
uτj+1∥L2

ϱ(Γ,X ) ≤
∥∥∥∥∥

j∑
k=−1

(
uτk+1 − uτk

)
−

ℓ∑
k=−1

Iηℓ
(uτk+1 − uτk

)
∥∥∥∥∥

L2
ϱ(Γ,X )

≤
j∑

k=−1

∥∥(uτk+1 − uτk
)− Iηℓ

(uτk+1 − uτk
)
∥∥

L2
ϱ(Γ,X )

≤
j∑

k=−1
CICζη

−µ
ℓ τβ

k+1 = CICζη
−µ
ℓ τβ

0

j+1∑
k=0

2−kβ

= CICζη
−µ
ℓ τβ

0
1− 2−(j+2)β

1− 2−β
≤ CICζη

−µ
ℓ τβ

0
1

1− 2−β
. (3.26)

Now take η0 < η1 < η2, step-sizes τ1, τ2 and determine Ĉ and µ such that

∥Iη2uτj+1 − Iηℓ
uτj+1∥L2

ϱ(Γ,X ) ≤ Ĉη−µ
ℓ τβ

0

is satisfied for j = 0, 1 and ℓ = 0, 1. This can be done by a fitting similar to the previous paragraph.
Then we take Ĉ as a replacement for CICζ . As the factor 1/(1 − 2−β) in (3.26) is larger than 1, the
determined constant will match the first inequality in (3.11), too.

Ad (3). In the proof of Theorem 3.5.2, the total number of levels J was fixed by formula (3.19). Another
strategy of computing J is the following, which was used in [109, Sec. 6.3] and is quite similar to what
was described for multi-level Monte Carlo methods in [38, Sec. 4.2]. It has the benefit that an error
estimator is available during the computation.

First of all we assume that equality holds in (3.9). Then we can estimate

∥uτj − uτj−1∥L2
ϱ(Γ,X ) ≤ ∥uτj − u(T )∥L2

ϱ(Γ,X ) + ∥u(T )− uτj−1∥L2
ϱ(Γ,X )

≤ CT (1 + 2α)τα
j ,

= (1 + 2α)∥uτj − u(T )∥L2
ϱ(Γ,X ), (3.27)

and thus it is reasonable to check the necessary condition

∥uτj
− uτj−1∥L2

ϱ(Γ,X ) ≤ (1 + 2α)ε/2 (3.28)

instead of the (uncomputable) ∥uτj − u(T )∥L2
ϱ(Γ,X ) ≤ ε/2. A stronger condition which is even sufficient

can be derived as follows. The triangle inequality yields

∥uτj
− uτj−1∥L2

ϱ(Γ,X ) ≥ ∥uτj−1 − u(T )∥L2
ϱ(Γ,X ) − ∥uτj

− u(T )∥L2
ϱ(Γ,X )

= CT (2α − 1)τα
j = (2α − 1)∥uτj

− u(T )∥L2
ϱ(Γ,X )

and thus it is reasonable to check the condition

∥uτj
− uτj−1∥L2

ϱ(Γ,X ) ≤ (2α − 1)ε/2 (3.29)

instead of ∥uτj
− u(T )∥L2

ϱ(Γ,X ) ≤ ε/2.
This explains the following procedure to find J and compute the corresponding MLSC approximation:
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1. Set J = 1.

2. Calculate ηj for j = 0, . . . , J according to the formula (3.18) and use a rounding strategy η̃j ≈ ηj

to determine the corresponding sparse grid depths.

3. Compute u(SL)
η̃J−j ,τj

− u(SL)
η̃J−j ,τj−1

for j = 0, . . . , J .

4. Test for convergence by checking (3.29) for j = J with u(SL)
η̃J−j ,τj

−u(SL)
η̃J−j ,τj−1

instead of uτj −uτj−1 .

5. If (3.29) is not satisfied, increase J by 1 and return to step 2. Otherwise stop.

We now present a variant of the multi-level stochastic collocation method which specifically targets
the approximation of quantities of interest of the solution.

3.6 MLSC for quantities of interest

So far, the goal of the multi-level approach was the computation of an approximation to the solution with
tolerance ε. In applications, one is often not interested in the solution u(T ) itself, but rather a quantity
of interest Υ(u(T )) of the solution. In such a case it is reasonable to aim for∣∣E[Υ(u(T ))−Υ(u(ML)

J )
]∣∣ ≤ ε

instead of ∥u(T )− u(ML)
J ∥L2

ϱ(Γ,X ) ≤ ε.

This is usually a much simpler goal, at least if the functional Υ is relatively smooth. We explain below
how the multi-level approach can be adapted to this new objective. Throughout this section, we use the
notation from the previous sections. The content presented here is essentially contained in [109, Sec. 4.3].

Let Υ: W → C be a functional and suppose that the subset W ⊆ X is large enough such that
u(T, y) ∈ W and uτj

(y) ∈ W for almost every y ∈ Γ and all j ∈ N0. (One should think of spaces such
as L2(D) or H1(D) for a spatial domain D ⊆ RN . The latter space is useful in cases where spatial
derivatives occur in the functional Υ.) Without loss of generality, we additionally assume that 0 ∈ W
and Υ(0) = 0.

A single-level estimator for Υ(u) can be defined as

Υ(SL)
ηℓ,τj

[u] = Iηℓ
(Υ(uτj

)),

whereas the multi-level estimator for Υ(u) is defined as

Υ(ML)
J [u] =

J∑
j=0
IηJ−j

(
Υ(uτj )−Υ(uτj−1)

)
=

J∑
j=0

Υ(u(SL)
ηJ−j ,τj

)−Υ(u(SL)
ηJ−j ,τj−1),

where we set uτ−1 = 0. In the special case of a linear functional Υ, we have

Υ(SL)
ηj ,τ [u] = Υ(u(SL)

ηj ,τ ) and Υ(ML)
J [u] = Υ(u(ML)

J ).

We denote the cost of evaluating Υ(uτj ) − Υ(uτj−1) at a sample y by Cj . Note that one usually has
to compute both uτj and uτj−1 first, and thus the constant Cj will often be at least as large as the earlier
defined constant Cj in Assumption B3.

The following theorem is a variant of the ε-cost theorem for the approximation of functionals from
[109, Prop. 4.5].
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Theorem 3.6.1 (Multi-level ε-cost theorem for QoIs).
Suppose that there exist constants α, β, µ, CT , CI , Cζ > 0 with α ≥ min{β, µ}, a Banach space Λ(Γ) ↪→
L2

ϱ(Γ,C) with {Υ(uτj
) : j ∈ N0} ⊆ Λ(Γ) and an operator ζ : Λ(Γ)→ R such that the estimates∣∣E[Υ(u(T ))−Υ(uτj

)
]∣∣ ≤ CT τ

α
j ,∣∣E[(Υ(uτj+1)−Υ(uτj ))− Iηℓ

(Υ(uτj+1)−Υ(uτj ))
]∣∣ ≤ CIη

−µ
ℓ ζ(Υ(uτj+1)−Υ(uτj )),

ζ(Υ(uτj
)) ≤ Cζτ

β
0 ,

ζ(Υ(uτj+1)−Υ(uτj )) ≤ Cζτ
β
j+1,

Cj ≲ τ
−1
j

hold for all j, ℓ ∈ N0.
Then, for any ε < e−1, there exists J ∈ N0 and a sequence (ηj)J

j=0 such that∣∣∣E[Υ(u(T ))−Υ(ML)
J [u]

]∣∣∣ ≤ ε
and simultaneously

C(ML) ≲


ε− 1

µ , β > µ,

ε− 1
µ | log(ε)|1+ 1

µ , β = µ,

ε− 1
µ − µ−β

αµ , β < µ,

where C(ML) is now the computational cost for Υ(ML)
J [u]. The sequence (ηj)J

j=0 is given by (3.18) again.

Of course, the assumptions of the above theorem are modifications of the Assumptions B1 – B3.
Although the constants and rates above are denoted by the same symbols, they may take different values
than the earlier defined constants and rates. We always indicate in our numerical experiments later if we
apply the multi-level approach to the solution or a quantity of interest of it and the constants and rates
are then understood as the correct ones for this approach.

It should also be noted that for some functionals Υ, the assumptions from Theorem 3.6.1 can be
verified directly from Assumption B1 – B3. An example for this are bounded linear functionals Υ.

3.7 MLSC or MLMC?

Readers familiar with multi-level Monte Carlo (MLMC) methods might be interested in the performance
of MLSC compared to MLMC. In the article from Teckentrup et al. [109, Sec. 6], it was shown that
for an elliptic problem on a unit interval/square with Karhunen-Loève expanded (logarithmic) diffusion
coefficient and either (N, d) = (2, 10) or (N, d) = (1, 20) (spatial dimension N , stochastic dimension d),
MLSC requires much less computational work to achieve the same accuracy as MLMC. Here, “much less”
usually means several orders of magnitude, but the overall cost reduction is dependent on the desired
accuracy. Thus, for problems with sufficent regularity in y (and moderately large stochastic dimension)
the usage of MLSC is usually preferable, as is the case for stochastic collocation and Monte Carlo methods
without multi-level approach. The situation might be different if unusual basic random variables appear
and no reasonable set of collocation points is available for the discretisation of the parameter space, or
when the dimension of the parameter space is too large to use collocation at all. In such cases Monte Carlo
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methods are attractive again. It is yet to be seen how collocation and Monte Carlo methods compare
with each other when applied to more complicated problems. Although this is certainly an interesting
question for future research, it is not the topic of this thesis to compare MLSC and MLMC.

We conclude this chapter with a brief summary of known extensions of MLSC.

3.8 Multi-index stochastic collocation and other extensions

In many problems, the spatial discretisation is typically “more costly” than the temporal discretisation
as the temporal dimension is always 1. Hence, it is often more advantageous to balance the cost of
spatial and stochastic discretisations, and not temporal and stochastic discretisations, as is the case in
this thesis. Especially for this reason, the multi-index stochastic collocation (MISC) approach from [45,
44] is perhaps the most important extension of MLSC.

This approach computes an estimator based on mixed difference operators in all individual spatiotem-
poral and stochastic dimensions. This is different for the MLSC method described here, where the
refinement in the stochastic (and temporal) dimensions is determined by a single parameter (and where
the spatial discretisation is not discussed at all). Based on profits computed from a priori work and
error bounds, one arrives at a knapsack problem for the optimal index set of the difference operator. A
quasi-optimal multi-index set is then selected by solving a slightly simplified knapsack problem.

The MISC method is not only capable of balancing spatial, temporal and stochastic components of the
error, but the knapsack problem approach avoids the usage of rounding strategies, which is an attractive
feature in comparison with the MLSC method.

Another remarkable extension of MLSC was presented by Lang, Scheichl and Silvester in [65], where
the approach from Teckentrup et al. [109] was extended in such a way that the adaptive (spatial) mesh
refinement is allowed to vary with the samples. This allows for an optimisation of the computational work
in each stochastic collocation point and was shown to be superior to strategies which are only adaptive
in the spatial or stochastic discretisation, but ignore properties of individual samples.
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CHAPTER 4

Multi-level stochastic collocation for parabolic equations

4.1 Motivation

Among the most famous PDE systems appearing in biology are predator-prey systems. The equations
for the prey and predator densities u = u(t, x) and v = v(t, x) usually take the form

∂tu = δ1∆u+R1(u, v), in [0, T ]×D, (4.1a)

∂tv = δ2∆v +R2(u, v), in [0, T ]×D, (4.1b)

u(0, x) = u0(x), for x ∈ D, (4.1c)

v(0, x) = v0(x), for x ∈ D, (4.1d)
∂u

∂ν
= ∂v

∂ν
= 0, on [0, T ]× ∂D, (4.1e)

where ν denotes the outward unit normal to the boundary ∂D of the spatial domain D ⊆ RN , N ∈
{1, 2, 3}, and δ1, δ2 > 0 are diffusion constants. The functions R1, R2 account for the reaction dynamics
between predators and prey. The behaviour of u and v depends primarily on R1 and R2. Although
solving this quite general system under the influence of uncertainty will be one of our main objectives,
we now give a more concrete setting described in the literature.

In [32], the system

∂tu = ∆u+ u(1− u)− vh(au), in [0, T ]×D, (4.2a)

∂tv = δ∆v + bvh(au)− cv, in [0, T ]×D, (4.2b)

u(0, x) = u0(x), for x ∈ D, (4.2c)

v(0, x) = v0(x), for x ∈ D, (4.2d)
∂u

∂ν
= ∂v

∂ν
= 0, on [0, T ]× ∂D, (4.2e)

with parameters a, b, c > 0 was discussed. Here, the function h represents the instantaneous feeding
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rate as a function of prey abundance. A typical choice for h is

hHol(w) = w

1 + w
,

or its second-order Taylor polynomial at w = 0 given by h(w) = w(1− w). This choice is originally due
to Holling [54] and hHol is thus called the “Holling type II functional response”. See [25] for more details
and other functional responses. The dynamics of this system, saddle and stationary points are discussed
in [32].

Let us briefly describe the meaning of the individual terms in the system (4.2). The terms ∆u and δ∆v
represent (spatial) dispersion of prey and predators, u(1 − u) describes birth, death and social friction
of the prey in absence of predators and −vh(au) the effect of predation on the prey. The influence
of predation on the predators is incorporated via the term bvh(au) and the death of the predators is
described by −cv. Observe that the term u(1 − u) implies logistic growth of the prey in the absence
of predators. The appearing constants δ, a, b and c are usually not known and have to be guessed from
observations. Hence it is reasonable to model them as uncertain parameters and study the behaviour of
the system under the influence of these uncertainties.

An introduction to predator-prey systems can be found in [55]. In this work, the PDE setting and thus
spatial heterogeneity is covered in detail (in contrast to many other articles on population dynamics).
Considering spatial heterogeneity is important since the famous ODE setting known as the Lotka-Volterra
equations corresponds to spatial homogeneity and is not capable of predicting the behaviour of species
near boundaries of a habitat, their spatial distribution and behaviour in scenarios such as invasion or
exposure to a new environment.

In [32, 31], a treatment of the system (4.2) via finite element methods for the spatial discretisation is
explained. Both theoretical and practical aspects are discussed there.

4.2 A model problem

Although the application we have in mind is a coupled system of two PDEs with uncertain parameters,
we restrict ourselves to a single PDE here, supplied with initial and boundary conditions. In the context
of predator-prey equations from the previous section, we may interpret the PDE stated below as a model
for the prey dynamics in absence of predators. Relevant analytical and numerical aspects are discussed
for this PDE and we only return to the coupled system at the end of the chapter. The setting here is
derived from [75, Sec. 3.1].

We consider a parametric PDE of the form1

∂tu(t, x, z) = A(x, z)u(t, x, z) +R(u(t, x, z), z) + S(t, x, z), t ≥ 0, x ∈ D, z ∈ Σ, (4.3a)

B(x, z)u(t, x, z) = 0, t ≥ 0, x ∈ ∂D, z ∈ Σ, (4.3b)

u(0, x, z) = u0(x, z), x ∈ D, z ∈ Σ. (4.3c)

Here, the spatial domain is an open bounded subset D ⊊ RN with C2-boundary ∂D and exterior unit
normal vector ν(x) at x ∈ ∂D. The parameter set Σ is some bounded domain Σ ⊆ Cd which contains
Γ = [−1, 1]d. Although we are primarily interested in z ∈ [−1, 1]d (in which case we called this parameter

1The notation in (4.3a) can be explained as follows: R for “reaction” and S for “source”.
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y instead of z in previous chapters), we need complex parameters later on and thus allow them from the
beginning. Hence, the solution u is complex-valued, too. Moreover, R : C×Σ→ C, S : [0,∞)×D×Σ→ C
and u0 : D × Σ→ C are given functions and2

A(x, z) =
N∑

i,j=1
aij(x, z)∂ij +

N∑
i=1

ai(x, z)∂i + a0(x, z)I, (4.4)

where aij , ai are uniformly continuous coefficient functions on D×Σ. The complex matrix (aij(x, z))N
i,j=1

is assumed to be symmetric for every (x, z) ∈ D × Σ.
We assume strong ellipticity for the diffusion part in the sense that

Re

 N∑
i,j=1

aij(x, z)ξiξj

 ≥ amin|ξ|2, x ∈ D, z ∈ Σ, ξ ∈ RN

for some constant amin > 0. Note that this is just a requirement on the principal part of the differential
operator. For the boundary operator B in (4.3b), we assume

B(x, z)u(x) =
N∑

i=1
βi(x, z)∂iu(x) + α(x, z)u(x) (4.5)

with functions βi, α ∈ C1(D × Σ) satisfying the non-tangentiality condition

inf
x∈∂D

∣∣∣∣∣
N∑

i=1
βi(x, z)νi(x)

∣∣∣∣∣ > 0.

A typical example for this situation is βi(x, z) =
∑N

j=1 aij(x, z)νj(x) and α(x, z) = 0, such that

B(x, z)u(x) =
N∑

i,j=1
aij(x, z)νj(x)∂iu(x)

is the conormal derivative corresponding to a Neumann boundary condition. The regularity of R,S and
u0 will be specified later on.

Often, we hide the spatial variable x in our exposition and hence abbreviate system (4.3) as

∂tu(t, z) = A(z)u(t, z) +R(u(t, z), z) + S(t, z), t ≥ 0, z ∈ Σ,

B(z)u(t, z)|∂D = 0, t ≥ 0, z ∈ Σ,

u(0, z) = u0(z), z ∈ Σ.

Let us now discuss some more advanced properties of the linear operator A(z).

4.2.1 Properties of the linear part

Consider the Banach space X = Lp(D) with 1 < p <∞ and the domain of the operators A(z) defined in
(4.4), given by

D(A(z)) = W 2,p
B(z)(D) = {v ∈W 2,p(D) : B(z)v|∂D = 0}, (4.7)

where the restriction |∂D is understood as an application of the trace operator. We now discuss in detail
that the operator A(z) with domain D(A(z)) has the important property that it is sectorial for any given
z ∈ Σ. This notion is defined as follows.

2The partial derivatives ∂ij and ∂i act on the spatial variable x, and not on z.



56 Chapter 4. Multi-level stochastic collocation for parabolic equations

Definition 4.2.1. A linear operator A : X ⊇ D(A)→ X on a Banach space X is called sectorial if there
exist ϑ ∈

(
π
2 , π

)
, ω ∈ R and M > 0 such that the sector

Sϑ,ω = {λ ∈ C : λ ̸= ω, | arg(λ− ω)| < ϑ}

is contained in the resolvent set ϱ(A) and that the corresponding resolvents are bounded by

∥(λI −A)−1∥L(X ) ≤
M

|λ− ω| for all λ ∈ Sϑ,ω.

(Occasionally, we will write ωA instead of ω if we want to emphasise the corresponding operator.)

Notation. To distinguish better between abstract definitions and results and statements about the
specific model problem, “abstract” quantities, operators and spaces are denoted by calligraphic symbols
such as A and X , whereas the specific second-order elliptic operator from (4.4) is denoted by the standard
capital letter A (and similar for the corresponding Banach space X = Lp(D)).

It is well-known that sectorial operators generate analytic semigroups in the sense of part (b) of the
following lemma, shown in [75, Prop. 2.1.1].

Lemma 4.2.2. Let A : X ⊇ D(A)→ X be sectorial with corresponding quantities ϑ, ω and M .

(a) There are constants Mk, k ∈ N0, such that the strongly continuous semigroup (etA)t≥0 generated
by A satisfies the inequalities

∥etA∥L(X ) ≤M0eωt, ∥tk(A− ωI)ketA∥L(X ) ≤Mkeωt

for k ∈ N and all t > 0. More precisely, the constant M0 only depends on M and some angle
φ ∈ ( π

2 , ϑ), whereas M1 is explicitly given by M1 = M
π

(
1

| cos(ϑ)| + eϑ
)

.

(b) The map (0,∞) → L(X ), t 7→ etA belongs to C∞((0,∞),L(X )) and has an analytic extension in
the sector

Sϑ− π
2 ,0 = {λ ∈ C : λ ̸= 0, | arg(λ)| < ϑ− π

2 }.

Note that the sector appearing in part (b) is not the same sector as in the definition of “sectorial”,
but – metaphorically speaking – the sector reduced by “half of a cake” and shifted by ω.

We introduce a bit of notation for the next theorem. Let

∥Du∥p =
(

N∑
i=1
∥∂iu∥p

Lp(D)

)1/p

, ∥D2u∥p =

 N∑
i,j=1

∥∂iju∥p
Lp(D)

1/p

and
M∗ = max{∥aij∥∞, ∥ai∥∞} <∞,

where the supremum norm ∥ ·∥∞ is taken with respect to (x, z) ∈ D×Σ. Now we present the main result
of this section, which is proved in [75, Thm. 3.1.3].

Theorem 4.2.3. Let 1 < p <∞ and z ∈ Σ. The operators A(z) = A(·, z) and B(z) = B(·, z) are defined
as in (4.4) and (4.5) with the assumptions stated in Section 4.2.

We have the following results:
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(a) There exists ω0 ∈ R such that if Re(λ) ≥ ω0, then for every v ∈ Lp(D) and w ∈ W 1,p(D), the
problem

(λI −A(z))u = v in D, B(z)u = w|∂D on ∂D

has a unique solution u ∈W 2,p(D) which depends continuously on v and w.

Taking w = 0, it follows that {λ ∈ C : Re(λ) ≥ ω0} ⊆ ϱ(A(z)).

(b) There exist ω ≥ ω0 and M̃ > 0 (with both quantities depending only on N, p, amin,M
∗ and D) such

that if Re(λ) ≥ ω, then for every u ∈W 2,p(D) we have, setting w = B(z)u|∂D,

|λ|∥u∥Lp(D) + |λ| 12 ∥Du∥p + ∥D2u∥p ≤ M̃
(
∥λu−A(z)u∥Lp(D) + |λ| 12 ∥w1∥Lp(D) + ∥Dw1∥p

)
,

where w1 is any extension of w belonging to W 1,p(D).

Taking w = 0, we obtain

|λ|∥u∥Lp(D) ≤ M̃∥λu−A(z)u∥Lp(D)

for any u ∈ D(A(z)) or, equivalently,

∥λ(λI −A(z))−1v∥Lp(D) ≤ M̃∥v∥Lp(D)

for any v ∈ Lp(D).

The careful reader might notice that the angle ϑ > π
2 from the definition of sectoriality is missing yet.

So far, the resolvent set only contains a half-plane where the resolvent estimates are available. But a
standard result says that this is in fact enough to ensure sectoriality. (Roughly speaking, this follows from
the fact that the resolvent set ϱ(A) is open.) A proof of the result below is given in [75, Prop. 2.1.11].

Lemma 4.2.4. Let A : X ⊇ D(A) → X be a linear operator such that ϱ(A) contains a half-plane
{λ ∈ C : Re(λ) ≥ ω} and

∥λ(λI −A)−1∥L(X ) ≤ M̃, Re(λ) ≥ ω,

with ω ∈ R, M̃ > 0. Then A is sectorial with ϑ = π − arctan(M̃) and a constant M which depends only
on M̃ .

Thus, Theorem 4.2.3 and Lemma 4.2.4 imply the following.

Corollary 4.2.5. Under the assumptions stated in Section 4.2, the operators A(z) : X ⊇ D(A(z))→ X

defined by (4.4) with D(A(z)) = W 2,p
B(z)(D) and X = Lp(D) are sectorial for any z ∈ Σ.

In addition to the sectoriality, the dependencies stated in the results Theorem 4.2.3 and Lemma 4.2.4
show that the characteristic quantities ω, ϑ and M can be chosen uniformly in z ∈ Σ. We observe that
the constants M0 and M1 in Lemma 4.2.2 (applied to A(z)) can be chosen uniformly in z ∈ Σ, too.

Remark 4.2.6 (Dirichlet boundary conditions). In the previous discussion, the Neumann boundary
condition B(z)u|∂D = 0 and the domain D(A(z)) = W 2,p

B(z)(D) can be replaced by a Dirichlet boundary
condition u|∂D = 0 and corresponding domain D(A(z)) = W 2,p(D) ∩ W 1,p

0 (D). The statements in
Theorem 4.2.3 and Corollary 4.2.5 remain true up to some obvious changes. They are stated in detail in
[75, Sec. 3.1.1] and are thus omitted here. This remark is included since we discuss two examples later
in which we consider Dirichlet or mixed Dirichlet-Neumann boundary conditions. ⋄
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Remark 4.2.7 (Exponential stability). Later we will assume for A(z) that the constant ω from the
definiton of “sectorial” satisfies ω < 0. This corresponds to the definition of an exponentially stable
sectorial operator. This is not a severe restriction, since one can achieve this by a suitable scaling of the
operator A(z), i.e. replacing A(z) by A(z)− ωI. (More details are given shortly.) As a consequence, we
will often assume

0 ∈ ϱ(A(z)) and A(z)−1 ∈ L(X,D(A)).

Both properties will be used in some places later on.
Let us now sketch the scaling procedure which allows us to replace the sectorial operator A(z) by an

exponentially stable sectorial operator without significantly changing the problem under consideration.
As this discussion is not affected by the variable z, we omit it in the presentation. Suppose we have a
solution to the initial value problem

u′(t) = Au(t) +R(u(t)) + S(t), t ≥ 0,

u(0) = u0,

then v(t) = e−ω′tu(t) is a solution to

v′(t) = (A− ω′I)v(t) + R̃(t, v(t)) + S̃(t), t ≥ 0,

v(0) = u0

with R̃(t, v(t)) = e−ω′tR(eω′tv(t)) and S̃(t) = e−ω′tS(t). This follows from

v′(t) = −ω′e−ω′tu(t) + e−ω′tu′(t)

= −ω′v(t) +Ae−ω′tu(t) + e−ω′tR(u(t)) + e−ω′tS(t)

= (A− ω′I)v(t) + e−ω′tR(eω′tv(t)) + e−ω′tS(t).

If we set ω′ = ω + ε for some ε > 0 (where ω is the quantity from Definition 4.2.1), then A − ω′I has
a growth bound less than zero as desired. It should be noted, however, that there is a small structural
difference between the two initial value problems for u and v: The function R̃ depends explicitly on t,
which is not the case for R. This is not crucial in our exposition. ⋄

As a final remark, we stress that the operators etA(z) are not contractive in general (unless p = 2).
A criterion for the contractivity of semigroups generated by strongly elliptic second-order differential
operators with complex coefficients was given in [17] in case of Dirichlet boundary conditions.

4.3 Wellposedness and regularity

Here we consider (non-parametric) evolution equations of the form

u′(t) = Au(t) + F(t, u(t)), t ≥ 0, u(0) = u0, (4.8)

where A : X ⊇ D(A) → X is sectorial with dense domain D(A) and F : [0, T ] × O → X is continuous,
where O ⊆ Xγ is an open set. Here, 0 < γ < 1 and Xγ is either the domain D((−A)γ) of a fractional
power of −A, a continuous real interpolation space DA(γ) or a complex interpolation space3 [D(A),X ]γ .

3See the beginning of [75, Chap. 7] for a more general description of Xγ which includes the three above-mentioned special
cases.
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For explanations of these Banach space constructions, we refer again to [75]. However, we do not need
the definitions of these spaces and instead refer to some of their properties whenever we make use of
them. Boundary conditions of an underlying initial boundary value problem for (4.8) are assumed to be
incorporated into the domain D(A). We further assume that F is locally Lipschitz continuous in the
second variable, which means that for every v0 ∈ O there are r, L > 0 such that

∥F(t, v2)−F(t, v1)∥X ≤ L∥v2 − v1∥Xγ
for all t ∈ [0, T ], v1, v2 ∈ BXγ

(v0, r).

For the initial value, we assume that u0 ∈ O.
We stress that the abstract setting here of course allows that both A and F depend on the spatial

variable x of a specific problem such as (4.3). This dependency does not appear explicitly in (4.8) since
it is hidden inside the Banach space X , which is typically some function space such as, e.g., Lp(D).

We consider the following solution concepts for (4.8).

Definition 4.3.1 (Solution concepts for (4.8)). Let b > 0.

• A function u ∈ C1((0, b],X ) ∩ C([0, b],X ) ∩ C((0, b],D(A)) such that u(t) ∈ O for every t ∈ [0, b]
is said to be a classical solution of (4.8) in the interval [0, b] if u′(t) = Au(t) + F(t, u(t)) for each
t ∈ (0, b] and u(0) = u0.

• A function u ∈ C1([0, b],X ) ∩ C([0, b],D(A)) such that u(t) ∈ O for every t ∈ [0, b] is said to be
a strict solution of (4.8) in the interval [0, b] if u′(t) = Au(t) + F(t, u(t)) for each t ∈ [0, b] and
u(0) = u0.

Clearly, strict solutions are classical solutions, but the reverse is not true. There are many theorems
on wellposedness and regularity for the problem considered here. We state one of them which assumes
Hölder-continuity in time for F (which is trivially satisfied if F is autonomous). The result is taken from
[75, Thm. 7.1.10], where a proof is given, too.

Theorem 4.3.2. Assume that there exists θ ∈ (0, 1) such that for each u0 ∈ O there are r, K such that

∥F(t2, v)−F(t1, v)∥X ≤ K(t2 − t1)θ, 0 ≤ t1 ≤ t2 ≤ T, ∥v − u0∥Xγ
≤ r.

Then the following statements are true:

(a) There exists a classical solution u of (4.8) on a (possibly half-open or unbounded) maximal interval
of existence denoted by I(u0).

Now fix any compact interval [0, b] ⊆ I(u0).

(b) If also u0 ∈ D(A) holds, then u is bounded as a map [0, b] → D(A) and Lipschitz continuous as a
map [0, b]→ X for any compact interval [0, b] ⊆ I(u0).

(c) If also Au0 + F(0, u0) ∈ D(A), then u ∈ C1([0, b],X ) ∩ C([0, b],D(A)) and it is a strict solution.

Let us apply this theorem to the model problem with a fixed parameter z ∈ Σ.

Example 4.3.3 (Application to (4.3) – low regularity).
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Consider the model problem (4.3) for fixed z ∈ Σ, where A(z) = A(·, z) is given by (4.4) with domain
D(A(z)) = W 2,p

B(z)(D) and X = Lp(D) for 1 < p < ∞. Assume that there exist θ ∈ (0, 1) and Kz such
that

∥S(t2, ·, z)− S(t1, ·, z)∥X ≤ Kz(t2 − t1)θ, 0 ≤ t1 ≤ t2 ≤ T.

We further assume that R is locally Lipschitz continuous, i.e. for every v0 ∈ Xγ there exist r > 0 and
Lr,z > 0 such that

∥R(v2, z)−R(v1, z)∥X ≤ Lr,z∥v2 − v1∥Xγ
for all v1, v2 ∈ BXγ

(v0, r).

If
u0(·, z) ∈ D(A(z)) and A(z)u0(·, z) +R(u0(·, z), z) + S(0, ·, z) ∈ D(A(z)),

then, by sectoriality of A(z) and Theorem 4.3.2(c), there exists a strict solution

u(·, ·, z) ∈ C1([0, b], X) ∩ C([0, b],D(A(z)))

to (4.3).

Now we discuss an example with higher regularity. In the following, the domains of powers of a linear
operator A : X ⊇ D(A)→ X are defined iteratively by

D(Ak+1) = {v ∈ D(Ak) : Av ∈ D(Ak)}, k ∈ N.

These domains are equipped with the graph norm of Ak+1.

Example 4.3.4 (Application to (4.3) – high regularity).

Consider again (4.3) for fixed z ∈ Σ. Assume that there exist θ ∈ (0, 1) and Kz such that

∥S(t2, ·, z)− S(t1, ·, z)∥D(A(z)2) ≤ Kz(t2 − t1)θ, 0 ≤ t1 ≤ t2 ≤ T.

Further assume that R is locally Lipschitz continuous in D(A(z)2)γ (where D(A(z)2)γ lies between
D(A(z)2) and D(A(z)3)) for each z ∈ Σ. Then the following statements follow from the sectoriality
of A(z) and Theorem 4.3.2.

(a) If u0(·, z) ∈ D(A(z)2)γ , there exists a classical solution u with regularity

u(·, ·, z) ∈ C1((0, b],D(A(z)2)) ∩ C([0, b],D(A(z)2)) ∩ C((0, b],D(A(z)3))

to (4.3) for each [0, b] ⊆ I(u0).

(b) If
u0(·, z) ∈ D(A(z)3) and A(z)u0(·, z) +R(u0(·, z), z) + S(0, ·, z) ∈ D(A(z)3),

then there exists a strict solution

u(·, ·, z) ∈ C1([0, b],D(A(z)2)) ∩ C([0, b],D(A(z)3))

of (4.3).
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Let us further assume more temporal regularity: Suppose that R(·, z) ∈ C1(D(A(z))γ ,D(A(z))γ) (where
D(A(z))γ lies between D(A(z)) and D(A(z)2)), S(·, ·, z) ∈ C1([0, T ],D(A(z))) and that the Fréchet
derivatives ∂uR and ∂tS are θ-Hölder continuous in D(A(z)). Then we may differentiate (4.3) with
respect to t, resulting in the problem

∂tv(t, ·, z) = A(z)v(t, ·, z) + ∂uR(u(t, ·, z), z)v(t, ·, z) + ∂tS(t, ·, z), t ≥ 0, z ∈ Σ, (4.9a)

B(·, z)v(t, ·, z)|∂D = 0, t ≥ 0, z ∈ Σ, (4.9b)

v(0, ·, z) = v0(·, z), z ∈ Σ, (4.9c)

where we have set v0(·, z) = ∂tu(0, ·, z). The following statements hold:

(c) If v0(·, z) ∈ D(A(z))γ , there exists a classical solution v to (4.9) with regularity

v(·, ·, z) ∈ C1((0, b],D(A(z))) ∩ C([0, b],D(A(z))) ∩ C((0, b],D(A(z)2))

for each [0, b] ⊆ I(v0(·, z)).

(d) If

v0(·, z) ∈ D(A(z)2) (4.10a)

and A(z)v0(·, z) + ∂uR(u0(·, z), z)v0(·, z) + ∂tS(0, z) ∈ D(A(z)2), (4.10b)

then, by Theorem 4.3.2 and the sectoriality of A(z), there exists a strict solution

v(·, ·, z) ∈ C1([0, b],D(A(z))) ∩ C([0, b],D(A(z)2))

to (4.9). This implies that

u(·, ·, z) ∈ C2([0, b],D(A(z))) ∩ C1([0, b],D(A(z)2))

for [0, b] ⊆ I(v0(·, z)) ∩ I(u0(·, z)).

Note that we can get rid of v0 in (4.10) to obtain the (equivalent) conditions

A(z)u0(·, z) +R(u0(·, z), z) + S(0, ·, z) ∈ D(A(z)2)

and (A(z) + ∂uR(u0(·, z), z))[A(z)u0(·, z) +R(u0(·, z), z) + S(0, ·, z)] + ∂tS(0, ·, z) ∈ D(A(z)2),

in which u0 appears instead of v0.

Further regularity properties and dependence on the data are examined in [75, Sec. 8.3]. One particular
result concerning analytic dependence on the data will be briefly discussed later in Section 4.6 and is
especially relevant for stochastic collocation methods.

Now we briefly explain the idea behind trapezoidal splitting methods. These methods can be used for
the time discretisation of certain (ordinary or partial) differential equations and are a common choice for
advection-diffusion-reaction problems, see [57, Sec. IV.2.3].
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4.4 Interlude: Trapezoidal splitting method

In general, the trapezoidal splitting method for an ordinary initial value problem

w′(t) = F1(t, w(t)) + · · ·+ Fs(t, w(t)), t ≥ 0,

w(t) = w0

computes approximations wn ≈ w(tn) at times tn = nτ for n ∈ N0 and a given step-size τ > 0 via the
recursion

v0 = wn,

vi = vi−1 + τ

2Fi(tn, vi−1), i = 1, . . . , s,

vs+i = vs+i−1 + τ

2Fs+1−i(tn+1, vs+i), i = 1, . . . , s,

wn+1 = v2s.

Loosely speaking, this can be interpreted as the following procedure to compute wn+1 from wn:

1. Successively compute explicit Euler steps for F1, . . . ,Fs−1 over the interval τ
2 .

2. Compute an explicit Euler step for Fs over the interval τ
2 .

3. Compute an implicit Euler step for Fs over the interval τ
2 .

4. Successively compute implicit Euler steps for Fs−1, . . . ,F1 over the interval τ
2 .

Of course, steps 2. and 3. together are equivalent to one step of the (implicit) trapezoidal rule for Fs

over the interval τ . Replacing this trapezoidal rule by Heun’s method (which is essentially an explicit
version of the trapezoidal rule) is exactly what we will do in the next section to derive the implicit-explicit
trapezoidal (IMEXT) method. More specifically, the equations for vs and vs+1 above will be replaced by

vs = vs−1 + τFs(tn, vs−1),

vs+1 = vs−1 + τ

2 (Fs(tn, vs−1) + Fs(tn+1, vs)) .

The advantage is that the function Fs does not have to be treated implicitly anymore, but explicitly,
which makes it (besides some other benefits which are explained later) computationally attractive. Note
that only the steps involving Fs are altered, whereas the other steps of the trapezoidal splitting method
remain unchanged for IMEXT.

The way the solutions of the individual subproblems were combined above is motivated by the con-
struction of (second-order) splitting methods, see e.g. [43, Sec. II.5] or [78] for an introduction. For a
thorough discussion of trapezoidal splitting methods in particular, we refer to [57, Sec. IV.2.3].

Remark 4.4.1. It was explained in [56] why the usage of a “midpoint splitting method” (defined anal-
ogously, but with the implicit and explicit Euler steps interchanged) is usually a bad idea. The reason is
(roughly speaking) that more explicit than implicit steps are applied to some of the internal stages and
thus the resulting method is much more prone to stability issues. See also [57, Rem. IV.2.3] for a more
compact discussion of this issue. ⋄



4.5. The implicit-explicit trapezoidal method (IMEXT) 63

We continue with the presentation and analysis of the IMEXT method in the PDE setting, which is
then applied to equations of the form (4.3) or (4.1) afterwards.

It should be noted that the time integrator presented in the next section is not a crucial choice for
the application of a multi-level stochastic collocation method. Other time integrators may be used in
a multi-level approach, too, as long as they satisfy the abstract requirements presented in Section 3.4
earlier. As usual, the choice of integrator should be dictated by the problem under consideration.

4.5 The implicit-explicit trapezoidal method (IMEXT)

We now describe the numerical method we employ to solve our model problem (4.3) in practice. To
simplify the presentation, we look at an abstract version of problem (4.3) and forget about the specific
value of z ∈ Σ, too. Thus, we consider

∂tu(t) = Au(t) + f(u(t)) + g(t), t ≥ 0, (4.11a)

u(0) = u0 ∈ D(A) (4.11b)

and assume that A is a linear but, in general, unbounded operator. Note that (4.3) without the variable
z can be cast into the form (4.11), at least if the homogeneous boundary conditions are incorporated in
the domain D(A) of the operator A (which is the setting we have in mind). Since the purpose of this
section is to describe the basic idea of the method, we do not rigorously keep track of the requirements
for the method to be well-defined. This will be done later, where more assumptions on A, f, g and u0

will be given.
In many situations it is advantageous to split an equation like (4.11) into several parts and solve

these parts in an alternating fashion. If we regard the term “Au(t)” as first and the non-linearity and
inhomogeneity “f(u(t)) + g(t)” as second part, we arrive at the two – usually simpler – problems

∂tv(t) = Av(t), t ≥ 0, v(0) = v0

and

∂tw(t) = f(w(t)) + g(t), t ≥ 0, w(0) = w0.

In the notation of the previous section, these subproblems are related to F1 and F2 via F1(t, v(t)) = Av(t)
and F2(t, w(t)) = f(w(t)) + g(t). If we solve these two subproblems one after another with the IMEXT
approach outlined in Section 4.4 (with s = 2), we obtain an approximation to the solution of the “full”
problem (4.11). We arrive at the implicit-explicit trapezoidal (IMEXT) method for (4.11),

u+
n =

(
I + τ

2A
)
un,

un+1 =
(
I − τ

2A
)−1 [

u+
n + τ

2
(
f(u+

n ) + f(u+
n + τf(u+

n )) + g(tn) + g(tn+1)
)]
,

which successively computes approximations un ≈ u(tn) at times tn = nτ with n ∈ N0 for given u0 and
a temporal step-size τ > 0.

The linear part is treated implicitly since we think of A as being a differential operator (or its spatial
discretisation) and thus intrinsically stiff. Since the f - and g-parts are treated explicitly, the method
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is not unconditionally stable and thus suffers from a step-size restriction. A rather crude bound on the
usable step-sizes for this method is given later in the proof of Theorem 4.5.6.

The “classical” order of this method is two, but a convergence analysis in our PDE setting is not
obvious and requires a careful inspection of the problem and the method. We provide a proof for second-
order convergence in the following subsections.

For later reference, we write down a version of the IMEXT method where we keep track of z ∈ Σ if
A, f , g and u0 depend on the parameter z, too. In this case,

u+
n (z) =

(
I + τ

2A(z)
)
un(z), (4.12a)

un+1(z) =
(
I − τ

2A(z)
)−1

[
u+

n (z)+τ

2
(
f(u+

n (z), z) + f(u+
n (z) + τf(u+

n (z), z), z)
)

+τ

2 (g(tn, z) + g(tn+1, z))
]
. (4.12b)

Before we go into details of the error analysis, let us discuss the potential benefits of the IMEXT
method in some applications, starting with the predator-prey system from the introduction.

Remark 4.5.1. The purpose of this remark is to explain why using a splitting method is important for
problems such as (4.1). Typically, the reaction terms of predator-prey systems such as (4.1) are local
in the sense that the dynamics at each spatial point x are decoupled if the diffusion part is absent. An
example for this was already given in the introduction of this chapter, see (4.2). Thus, solving the non-
linear part implicitly only requires the solution of a non-linear system in which the size of the system
corresponds to the number of species (which is two if one predator and one prey species are considered)
at each spatial grid point. This is relatively cheap and thus it is advantageous to employ a method with
separates the diffusion and reaction parts. However, if we use a splitting method, it is not really required
for these PDE systems that the non-linear part is treated explicitly so far – at least not to reduce the
computational cost. ⋄

Now that it is clear why we use a splitting method, let us explain why we treat the non-linear part
explicitly. Often, the most important argument for using explicit methods is to avoid the solution of a
large non-linear system in each time-step. As we pointed out in the previous example, this is not the
important reason for us since the splitting approach allows us to decouple the large non-linear system
into tiny non-linear systems in each spatial grid point.

For the model problems we have in mind, the non-linear part is treated explicitly for two reasons:
The first one is ease of implementation and the second one is that it is not stiff compared to the linear
part. Thus, an implicit treatment of the non-linear part should not be necessary.

For more general problems, the explicit treatment of the non-linear part might possibly be a good
idea in one of the following situations:

• The derivative of the non-linear part is not availabile or too complicated to compute (analytically
or numerically). For an implicit method, the derivative is usually required in order to perform some
kind of Newton iteration.

• The problem is complicated by itself and a rather simple and less error-prone implementation is
requested. Although this is not a crucial point from a theoretical point of view, it certainly is in
complicated applications.
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• A very accurate solution is required and thus tiny step-sizes have to be used. Then the step-size
restriction coming from stability is usually not a problem anymore, so the necessity for solving the
non-linear part implicitly disappears.

Now we begin with the analysis of the IMEXT method, starting with some preliminaries for later
reference. The reader who is only interested in the assumptions and results of the error analysis may skip
the following subsection and is directly referred to Section 4.5.2.

4.5.1 Preliminaries for the error analysis

We start with a discrete Gronwall lemma.

Lemma 4.5.2 (Discrete Gronwall lemma). Let (en)n∈N0 and (gn)n∈N0 denote non-negative sequences
and a ≥ 0. If

en ≤ a+
n−1∑
k=0

gkek for all n ∈ N0,

then also

en ≤ a
n−1∏
k=0

(1 + gk) ≤ a exp
(

n−1∑
k=0

gk

)
.

In the special case where gk = b for all k ∈ N0, we obtain

en ≤ a(1 + b)n ≤ a exp(bn), n ∈ N0.

As a service to the reader, we sketch a short proof of this result.

Proof. The case n = 0 is clear. The key observation in the induction step n⇝ n+1 is that by successively
extracting factors 1 + g0, 1 + g1, . . . , 1 + gn−1 as follows

1 +
n∑

k=0
gk

k−1∏
j=0

(1 + gj) = (1 + g0)

1 +
n∑

k=1
gk

k−1∏
j=1

(1 + gj)

 = (1 + g0)(1 + g1)

1 +
n∑

k=2
gk

k−1∏
j=2

(1 + gj)

 ,
we arrive at

1 +
n∑

k=0
gk

k−1∏
j=0

(1 + gj) =
n∏

j=0
(1 + gj).

With this equation, the reasoning in the induction step is straightforward.

We also need some other standard tools for the analysis of time integration schemes. These are the
φ-functions defined in Appendix B. The most important properties are given there, too. They are very
useful in the derivation of an error formula for the IMEXT method. Readers unfamiliar with φ-functions
might want to have a look at Appendix B now, although we clearly indicate the usage of any of the
properties from the Appendix where necessary.

For later reference, we collect some lesser known formulas for φ-functions. Again, the reader might
skip this part and return to it later when the formulas are needed.
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Lemma 4.5.3 (Midpoint approximation of the linear part).
Let A be a sectorial operator with ωA ≤ 0. For τ > 0, a = τ

2A and α = (I − a)−1, we have(
I − τ

2A
)−1 (

I + τ

2A
)
− eτA = α(I + a)− φ0(τA) = τ(α− φ1(τA))A (4.13)

and

α− φ1(τA) = ταA
( 1

2φ0(τA)− φ1(τA)
)

+ τA(φ1(τA)− φ2(τA)) (4.14)

as operators defined on D(A).

Proof. The formula φ0(τA) = I + τAφ1(τA) from (B.1) implies

α(I + a)− φ0(τA) = α(I + a)− I − τAφ1(τA)

= α[(I + a)− (I − a)]− τφ1(τA)A
= τ(α− φ1(τA))A.

Note that we are allowed to interchange the order of A and φ1(τA) if we restrict ourselves to the domain
D(A). This establishes (4.13).

From Lemma B.3 in Appendix B, we also obtain

α− φ1(τA) = α− φ0(τA) + τA(φ1(τA)− φ2(τA))

= α(I − φ0(τA) + aφ0(τA)) + τA(φ1(τA)− φ2(τA)).

Together with the recursion formula for φ-functions (B.1) in the form I − φ0(τA) = −τAφ1(τA) we
arrive at

α− φ1(τA) = ταA
( 1

2φ0(τA)− φ1(τA)
)

+ τA(φ1(τA)− φ2(τA))

and thus (4.14) holds.

The following result was stated and proved in [40, Lem. 5.1].

Lemma 4.5.4 (Resolvent smoothing). Let A be sectorial with ωA < 0 and 0 ≤ γ ≤ 1. Then there exist
constants ωA < ω1 < 0 and C > 0 such that

∥(−A)γ(I − τA)−n∥L(X ) ≤ C
eω1tn

tγn
≤ C

tγn

holds for tn = nτ whenever τ > 0 and n ∈ N. Taking n = 1 and γ = 1, we obtain

∥A(I − τA)−1∥L(X ) ≤ C
eω1τ

τ
≤ C

τ
.

After these preliminaries, we are now ready for the error analysis of the IMEXT method.

4.5.2 Error analysis

Consider again the abstract Cauchy problem from (4.11). The IMEXT method that we analyse here is
given by

u+
n =

(
I + τ

2A
)
un, (4.15a)

un+1 =
(
I − τ

2A
)−1 [

u+
n + τ

2
(
f(u+

n ) + f(u+
n + τf(u+

n )) + g(tn) + g(tn+1)
)]

(4.15b)

for n = 0, 1, . . . and a step-size τ > 0. We make the following assumptions.
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Assumption C. (1) The operator A is sectorial with ωA < 0.

(2) f ∈ C2(D(A),D(A)) (This implies that f and f ′ are locally Lipschitz continuous.)

(3) The function f satisfies a “mixed” local Lipschitz property in X : For any r > 0, there is a constant
Lmix

r such that
∥f(v2)− f(v1)∥X ≤ Lmix

r ∥v2 − v1∥X (4.16)

for all v1, v2 ∈ BD(A)(0, r).

(4) g ∈ C2([0, T ],X ) ∩ C1([0, T ],D(A))

(5) There is a strict solution u of (4.11) which has the regularity

u ∈ C2([0, T ],D(A)) ∩ C1([0, T ],D(A2)).

In particular, we have u0 ∈ D(A2).

(6) For u from (5), f(u(·)) + g(·) ∈ C1([0, T ],D(A2)).

Observe that the above assumptions imply that the method (4.15) is indeed well-defined.

Example 4.5.5.

For the model problem (4.3), we discussed in Section 4.2.1 that (1) is satisfied, probably after some
rescaling explained in Remark 4.2.7. Assumptions (2) and (3) are often fulfilled for polynomials f . This
follows from the product rule for Sobolev functions and the Sobolev embedding theorem for domains.
The only problem is the homogeneous boundary condition dictated by the operator B from (4.5). If the
function α in (4.5) is equally zero, then all polynomials f satisfy (2) and (3). For α ̸= 0, the situation
is more complicated. The regularity of the solution u in (5) can be replaced by requirements on f, g and
u0 as follows. If f and g are sufficiently smooth, then the compatibility conditions

u0 ∈ D(A3), Au0 + f(u0) + g(0) ∈ D(A3), (A+ f ′(u0))(Au0 + f(u0) + g(0)) + g′(0) ∈ D(A2)

are sufficient to obtain

u ∈
2⋂

j=0
Cj([0, T ],D(A3−j)),

which is clearly more than (5) demands, see Example 4.3.4 from before for details. (Example 4.3.4 treated
the model problem (4.3), but an analogous statement holds for (4.11), too.) The remaining two points
(4) and (6) are essentially compatibility conditions for the inhomogeneity g.

We stress here that the semigroup generated by A is not assumed to be contractive or quasi-contractive
in Assumption C since this requirement would be too strict for our model problem (4.3) in the case
z ∈ Σ ⊆ Cd, as already mentioned in the comment after Remark 4.2.7.

The only goal of this section is to show the following theorem. To the best of our knowledge, this
theorem has not been stated or proved in the literature yet.
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Theorem 4.5.6 (Error bound for IMEXT). Under Assumption C, there exists τ0 > 0 such that the error
of the IMEXT method (4.15) after n steps with initial value u(0) = u0 and step-size τ ∈ (0, τ0] is bounded
by

∥un − u(tn)∥X ≤ Cτ2 (4.17)

for 0 ≤ tn = nτ ≤ T and a constant C > 0 which depends on the solution u on [0, T ], but is independent
of τ and n.

The proof of this result and the formulation of a parametric version will occupy the remainder of this
section and requires several preparations. If the reader is not primarily interested in the proof of this
convergence result, we recommend to skip the very lengthy remainder of this section. Our advise is to
continue reading in Section 4.5.3 where the theorem above is verified numerically.

Remark 4.5.7. For parabolic problems, many results which discuss convergence or stability of specific
time integrators can be found in the literature, see e.g. [2, 91] for implicit-explicit methods, [70] for
linearly-implicit methods, [53] for exponential integrators, [41, 71, 92] for general Runge-Kutta and/or
multi-step methods, and [26] for the Peaceman-Rachford scheme, just to name a few. An error analysis
for the IMEXT scheme discussed here seems to be missing so far. ⋄

In the following, we replace the graph norms of the spaces D(A) and D(A2) by the equivalent norms

∥v∥D(A) = ∥Av∥X , v ∈ D(A),

∥v∥D(A2) = ∥A2v∥X , v ∈ D(A2).

These two definitions give indeed norms since 0 ∈ ϱ(A) by Assumption C(1) and thus A : D(A) → X is
invertible. We indicate the norm in the big O notation as an index, so OY (τ j) denotes a function which
is O(τ j) as τ → 0 in the norm of the space Y .

We start the error analysis with the local error, which is the error after performing just one step of the
IMEXT method (with exact starting value). To this end, we introduce the numerical flow Φτ,tn defined
by

Φτ,tn
(un) = un+1, n ∈ N0,

where un and un+1 are related via (4.15). For later reference, we also define powers of the numerical flow
as

Φm
τ,tn

(v) = Φτ,tn+m−1(Φm−1
τ,tn

(v)), n,m = 1, 2, . . . , Φ0
τ,tn

(v) = v,

with the special case
Φm

τ (v) = Φm
τ,0(v), m = 1, 2, . . . (4.18)

For the local error of the IMEXT method in the norm of X , we have the following result.

Proposition 4.5.8 (Local error in X ). Under Assumption C, the error of the IMEXT method (4.15)
after one step with step-size τ > 0 is bounded by

∥Φτ,tn
(u(tn))− u(tn+1)∥X ≤ Cτ3 (4.19)

for a constant C > 0 which is independent of τ and n.
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Before the proof, we set up some notation similar to [91]. In this work, a similar error bound for
a dimension splitting method with two linear operators A and B was established. Our setting here
roughly corresponds to B = 0 in their work. Another important difference is that the (typically non-
linear) function f from our setting is absent in their work, which makes our situation in some sense more
complicated. We will come back to [91] now and then in our proof. Let us abbreviate

a = τ

2A, α = (I − a)−1,

as in Lemma 4.5.3. Moreover, we set

un = u(tn) and u+
n = (I + a)un (4.20)

for convenience, the latter being the result after one half-step with the explicit Euler method starting
with un. We also use the abbreviation

F(t, u) = f(u) + g(t).

With this notation, (4.15) can be written as a single formula

un+1 = α
(
u+

n + τ

2
(
F(tn, u+

n ) + F(tn+1, u
+
n + τF(tn, u+

n ))
))
.

Proof of Proposition 4.5.8. Using the function F̃(h) = F(tn + h, u+
n + hF(tn, u+

n )), we may expand

F(tn+1, u
+
n + τF(tn, u+

n )) = F(tn, u+
n ) + τ∂uF(tn, u+

n )F(tn, u+
n ) + τ∂tF(tn, u+

n ) + r(1)
n (τ)

= f(u+
n ) + g(tn) + τf ′(u+

n )[f(u+
n ) + g(tn)] + τg′(tn) + r(1)

n (τ),

where
r(1)

n (τ) =
∫ τ

0
(τ − σ)F̃ ′′(σ)dσ.

Setting R(1)
n = τ

2αr
(1)
n (τ), we get

un+1 = α

(
u+

n + τ [f(u+
n ) + g(tn)] + τ2

2 [f ′(u+
n )[f(u+

n ) + g(tn)] + g′(tn)]
)

+R(1)
n .

Observe that R(1)
n = OX (τ3). For the solution itself, the variation-of-constants formula yields

u(tn+1) = eτAu(tn) +
∫ τ

0
e(τ−s)A[f(u(tn + s)) + g(tn + s)]ds.

Taylor expansion of the function

hn(s) = f(u(tn + s)) + g(tn + s) (4.21)

shows that

u(tn+1) = eτAu(tn) +
∫ τ

0
e(τ−s)A

[
f(u(tn)) + g(tn) + s[f ′(u(tn))u′(tn) + g′(tn)] +

∫ s

0
(s− σ)h′′

n(σ)dσ
]

ds.

Using the definition of the φ-functions φj = φj(τA) (see Definition B.1), we arrive at

u(tn+1) = φ0u(tn) + τφ1[f(u(tn)) + g(tn)] + τ2φ2[f ′(u(tn))u′(tn) + g′(tn)] +R(2)
n
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with
R(2)

n =
∫ τ

0
e(τ−s)A

(∫ s

0
(s− σ)h′′

n(σ)dσ
)

ds.

The error en+1 = un+1 − u(tn+1) is now given by

en+1 = α(I + a)en + [α(I + a)− φ0]u(tn) + τ
[
αf(u+

n )− φ1f(u(tn))
]

+ τ2
[

1
2αf

′(u+
n )[f(u+

n ) + g(tn)]− φ2f
′(u(tn))u′(tn)

]
+ τ(α− φ1)g(tn) + τ2

[
1
2α− φ2

]
g′(tn) +R(1)

n −R(2)
n

= α(I + a)en + [α(I + a)− φ0]u(tn) + τα
[
f(u+

n )− f(u(tn))
]

+ τ [α− φ1]f(u(tn))

+ τ2

2 α
[
f ′(u+

n )[f(u+
n ) + g(tn)]− f ′(u(tn))u′(tn)

]
+ τ2

[
1
2α− φ2

]
f ′(u(tn))u′(tn)

+ τ(α− φ1)g(tn) + τ2
[

1
2α− φ2

]
g′(tn) +R(1)

n −R(2)
n .

By (4.20), u(tn) = un and thus en = 0. The terms with differences of f or f ′ with different arguments are
new and do not appear in [91]. They deserve a special treatment later on. The other terms are almost
the same as in [91, Eq. (31) ff.] (although with a different notation). Following the strategy in this article,
we can simplify the term

En(τ) := [α(I + a)− φ0]u(tn) + τ [α− φ1] f(u(tn)) + τ2
[

1
2α− φ2

]
f ′(u(tn))u′(tn)

+ τ(α− φ1)g(tn) + τ2
[

1
2α− φ2

]
g′(tn)

= [α(I + a)− φ0]u(tn) + τ [α− φ1]hn(0) + τ2
[

1
2α− φ2

]
h′

n(0)

with hn from (4.21) as follows: First, we use I = α− αa and get

En(τ) = [α(I + a)− (α− αa)φ0]u(tn) + τ [α− (α− αa)φ1]hn(0) + τ2
[

1
2α− (α− αa)φ2

]
h′

n(0)

= α [I + a− φ0 + aφ0]u(tn) + τα [I − φ1 + aφ1]hn(0) + τ2α

[
1
2I − φ2 + aφ2

]
h′

n(0).

With 1
2I − φ2 = −τAφ3 and φ0 = I + τAφ1 on X (see (B.1) for j = 3 and j = 1), we obtain

1
2I − φ2 + aφ2 = 2a

(
1
2φ2 − φ3

)
,

I + a− φ0 = 2a
(

1
2I − φ1

)
,

which then yields

En(τ) = ταA
[

1
2I − φ1 + 1

2φ0

]
u(tn) + τα [I − φ1 + aφ1]hn(0) + τ2α2a

[
1
2φ2 − φ3

]
h′

n(0)

= τα

[
1
2I − φ1

]
(Au(tn) + hn(0)) + τ

2α [(I + τAφ1)Au(tn) + (I + τAφ1)hn(0)]

+ τ2α2a
[

1
2φ2 − φ3

]
h′

n(0)

= τα
[
I − φ1 + τ

2Aφ1

]
u′(tn) + τ2α2a

[
1
2φ2 − φ3

]
h′

n(0)
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because u solves (4.11). Due to I − φ1 = −τAφ2 (see (B.2) for j = 2), we get

I − φ1 + τ

2Aφ1 = τA
[

1
2φ1 − φ2

]
= τA

[
1
2(φ1 − I) + 1

2I − φ2

]
= (τA)2

[
1
2φ2 − φ3

]
and

u′′(tn) = Au′(tn) + h′
n(0) = A2u(tn) +Ahn(0) + h′

n(0).

With the last two formulas, we arrive at

En(τ) = τ3α

[
1
2φ2 − φ3

]
A2u′(tn) + τ2α2a

[
1
2φ2 − φ3

]
h′

n(0)

= τ3α

[
1
2φ2 − φ3

]
A
(
A2u(tn) +Ahn(0) + h′

n(0)
)

= τ3α

[
1
2φ2 − φ3

]
Au′′(tn),

which is the final formula for En(τ). For en+1, we infer

en+1 = τ3α

[
1
2φ2 − φ3

]
Au′′(tn) +R(1)

n −R(2)
n

+ τα
[
f(u+

n )− f(u(tn))
]

+ τ2

2 α
[
f ′(u+

n )[f(u+
n ) + g(tn)]− f ′(u(tn))u′(tn)

]
. (4.22)

The difference f(u+
n )− f(u(tn)) has to be treated by another Taylor expansion for the function

f̃(τ) = f(un + τ
2Aun),

which reads
f̃(τ) = f̃(0) + τ f̃ ′(0) + r(3)

n (τ), r(3)
n (τ) =

∫ τ

0
(τ − σ)f̃ ′′(σ)dσ,

or equivalently
f(u+

n ) = f(un) + τ

2f
′(un)Aun + r(3)

n (τ)

with r
(3)
n (τ) = OX (τ2). In (4.22), we have the term τ2

2 αf
′(u+

n )[f(u+
n ) + g(tn)], too, which is basically

τ2

2 αf
′(un)[f(un) + g(tn)] +OX (τ3). Using this and u(tn) = un, we get

τα
[
f(u+

n )− f(u(tn))
]

+ τ2

2 α
[
f ′(u+

n )[f(u+
n ) + g(tn)]− f ′(u(tn))u′(tn)

]
= τ2

2 αf
′(un) [Aun + f(un) + g(tn)]− τ2

2 αf
′(u(tn))u′(tn) +OX (τ3).

The OX (τ2) terms on the right-hand side cancel due to un = u(tn) and u′(tn) = Au(tn)+f(u(tn))+g(tn).
If we now use R(j)

n = OX (τ3) for j = 1, 2, we can identify the local error (4.22) as OX (τ3).

Now that we have a local error bound in X , we continue by proving an error bound in the stronger
norm of D(A). As usual, we loose one power of τ here.

Proposition 4.5.9 (Local error in D(A)). Under Assumption C, the error of the IMEXT method (4.15)
after one step with step-size τ > 0 is bounded by

∥Φτ,tn(u(tn))− u(tn+1)∥D(A) ≤ Cτ2

for a constant C > 0 which is independent of τ and n.
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Proof. Using again the function F̃(h) = F(tn + h, u+
n + hF(tn, u+

n )), we may expand

F(tn+1, u
+
n + τF(tn, u+

n )) = F(tn, u+
n ) + r(1)

n (τ) = f(u+
n ) + g(tn) + r(1)

n (τ),

where
r(1)

n (τ) =
∫ τ

0
F̃ ′(σ)dσ.

The derivative of F̃ is

F̃ ′(σ) = ∂tF(tn + σ, u+
n + σF(tn, u+

n )) + ∂uF(tn + σ, u+
n + σF(tn, u+

n ))F(tn, u+
n )

= g′(tn + σ) + f ′(u+
n + σF(tn, u+

n ))(f(u+
n ) + g(tn))

and bounded in D(A) for g ∈ C1([0, T ],D(A)) and u ∈ C([0, T ],D(A2)). Thus,

un+1 = α
(
u+

n + τf(u+
n ) + τg(tn)

)
+R(1)

n with R(1)
n = τ

2αr
(1)
n (τ) = OD(A)(τ2). (4.23)

The solution u is expanded as

u(tn+1) = φ0u(tn) + τφ1 [f(u(tn)) + g(tn)] +R(2)
n ,

where
R(2)

n =
∫ τ

0
e(τ−s)A

∫ s

0
f ′(u(tn + σ))u′(tn + σ) + g′(tn + σ)dσds, (4.24)

which is OD(A)(τ2) for g ∈ C1([0, T ],D(A)) and u ∈ C1([0, T ],D(A)). Let en+1 = un+1 − u(tn+1). We
obtain

en+1 = α(I + a)en + (α(I + a)− φ0)u(tn) + τα
[
f(u+

n )− f(u(tn))
]

+ τ [α− φ1]f(u(tn))

+ τ [α− φ1]g(tn) +R(1)
n −R(2)

n

with en = 0 according to (4.20). By (4.13), we have

(α(I + a)− φ0)u(tn) = τ(α− φ1)Au(tn)

and hence the error formula becomes

en+1 = τ [α− φ1]u′(tn) + τα
[
f(u+

n )− f(u(tn))
]

+OD(A)(τ2). (4.25)

Now we need a Taylor expansion for the function f̃(τ) = f(un + τ
2Aun), which reads

f̃(τ) = f̃(0) + r(3)
n (τ), r(3)

n (τ) =
∫ τ

0
f̃ ′(σ)dσ

with
f̃ ′(σ) = 1

2f
′(un + σ

2Aun)Aun,

or equivalently
f(u+

n ) = f(un) + r(3)
n (τ)

with r
(3)
n (τ) = OD(A)(τ).

The other term in (4.25) can be treated by (4.14), which gives

(α− φ1)u′(tn) = ταA
( 1

2φ0 − φ1
)
u′(tn) + τA(φ1 − φ2)u′(tn).

This term is OD(A)(τ), since u ∈ C1([0, T ],D(A2)).
From (4.25), we now conclude en+1 = OD(A)(τ2).
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To establish a bound on the norm of the numerical solution in D(A) – at least under a step-size
restriction – we use the local error of order 2 in the norm of D(A) shown above, but also a local error of
order 1 in the norm of D(A2). This result is established in the next proposition.

Proposition 4.5.10 (Local error in D(A2)). Under Assumption C, the error of the IMEXT method
(4.15) after one step with step-size τ > 0 is bounded by

∥Φτ,tn
(u(tn))− u(tn+1)∥D(A2) ≤ Cτ

for a constant C > 0 which is independent of τ and n.

Proof. The proof follows along the same lines as the proof for the local error in D(A), but with minor
changes. For R(1)

n = τ
2αr

(1)
n (τ) from (4.23), we get R(1)

n = OD(A2)(τ) by using Lemma 4.5.4:

∥R(1)
n ∥D(A2) = ∥AR(1)

n ∥D(A) = τ

2∥Aαr
(1)
n (τ)∥D(A) ≤ C∥r(1)

n (τ)∥D(A) = O(τ)

For the expansion of the solution u in D(A2), we need that u, f(u(·)) + g(·) ∈ C([0, T ],D(A2)) and
that the (time) derivative of f(u(·)) + g(·) is in L1([0, T ],D(A2)). Then we get R(2)

n = OD(A2)(τ) with
R

(2)
n from (4.24) as follows:

∥R(2)
n ∥D(A2) ≤ C

∫ τ

0

∫ s

0
∥f ′(u(tn + r))u′(tn + r) + g′(tn + r)∥D(A2)drds

≤ Cτ2∥f(u(·)) + g(·)∥C1([0,T ],D(A2))

Formula (4.25), Lemma 4.5.4 and the local Lipschitz continuity of f in D(A) thus imply

∥en+1∥D(A2) ≤ ∥τ [α− φ1]u′(tn)∥D(A2) + τ∥α[f(u+
n )− f(u(tn))]∥D(A2) +O(τ)

≤ Cτ∥u∥C1([0,T ],D(A2)) + C∥f(u+
n )− f(u(tn))∥D(A) +O(τ)

≤ C
∥∥un + τ

2Aun − u(tn)
∥∥

D(A) +O(τ)

= O(τ),

where we have used u(tn) = un and u ∈ C([0, T ],D(A2)) in the last step.

It can be seen from (4.15) for f ≡ 0 and g ≡ 0 that [(I + a)α]n has to be uniformly bounded in n ∈ N
to obtain a stable IMEXT method, again with the abbreviations

a = τ

2A, α = (I − a)−1.

Several stability results from the literature apply to our setting, such as [93, Thm. 1] and [74, Thm. 3.5].
Thus, we have indeed

C = sup
n∈N0

∥[(I + a)α]n∥L(X ) <∞. (4.26)

It can be seen from [93, Thm. 1] that the constant C above depends only on the quantities M and ϑ of
A in the definition of “sectorial”.

It turns out that as long as the intermediate steps u+
n from (4.15a) remain bounded in D(A), the

IMEXT method is stable. The precise statement is the following.
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Proposition 4.5.11 (Stability). Let

n−1max
j=0
{∥u+

j ∥D(A), ∥v+
j ∥D(A)} ≤Mn,

where v+
j is defined as u+

j in (4.15a), but with initial value v0 ∈ D(A2) instead of u0. Moreover, let
Ln and L̃n denote the Lipschitz constants of f for the balls BD(A)(0, 2Mn) and BD(A)(0, 2Mn(1 + τLn)).
Similarly, let Lmix

n and L̃mix
n denote the Lipschitz constants of f for the same D(A)-balls, but where both

norms are ∥ · ∥X (see part (3) of Assumption C). Then we have the following inequalities

∥u+
n − v+

n ∥D(A) ≤ C exp
(
CL̃n(2 + τL̃n)nτ/2

)
∥u+

0 − v+
0 ∥D(A), (4.27a)

∥un − vn∥X ≤ C̃ exp
(
C̃L̃mix

n (2 + τL̃mix
n )nτ/2

)
∥u+

0 − v+
0 ∥X , (4.27b)

with constants C, C̃ > 0 independent of n.

Proof. The recursion formula (4.15) yields

u+
n − v+

n = (I + a)α(u+
n−1 − v+

n−1) + τ

2 (I + a)α(f(u+
n−1)− f(v+

n−1))

+ τ

2 (I + a)α
(
f(u+

n−1 + τf(u+
n−1))− f(v+

n−1 + τf(v+
n−1))

)
= [(I + a)α]n(u+

0 − v+
0 )

+ τ

2

n−1∑
j=0

[(I + a)α]n−j
(
f(u+

j )− f(v+
j ) + f(u+

j + τf(u+
j ))− f(v+

j + τf(v+
j ))
)
.

Utilising the bound
C = sup

n∈N0

∥[(I + a)α]n∥L(X ) <∞

from (4.26) (which holds in the norm of L(D(A)), too), we obtain

∥u+
n − v+

n ∥D(A) ≤ C∥u+
0 − v+

0 ∥D(A)

+ τ

2C
n−1∑
j=0

∥∥f(u+
j )− f(v+

j )∥D(A) + ∥f(u+
j + τf(u+

j ))− f(v+
j + τf(v+

j ))
∥∥

D(A) .

With the definitions of Ln and L̃n, we arrive at

∥u+
n − v+

n ∥D(A) ≤ C∥u+
0 − v+

0 ∥D(A) + τ

2C
n−1∑
j=0

L̃n(2 + τL̃n)∥u+
j − v+

j ∥D(A).

Now the discrete Gronwall lemma from Lemma 4.5.2 shows the first inequality.
For the proof of the second inequality (4.27b), consider

α−1(un − vn) = (u+
n−1 − v+

n−1) + τ

2 (f(u+
n−1)− f(v+

n−1))

+ τ

2 (f(u+
n−1 + τf(u+

n−1))− f(v+
n−1 + τf(v+

n−1)))

= [(I + a)α]n−1(u+
0 − v+

0 )

+ τ

2

n−1∑
j=0

[(I + a)α]n−1−j(f(u+
j )− f(v+

j ) + f(u+
j + τf(u+

j ))− f(v+
j + τf(v+

j ))),
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which can be estimated using the mixed local Lipschitz property (4.16) to obtain

∥α−1(un − vn)∥X ≤ C∥u+
0 − v+

0 ∥X

+ τ

2C
n−1∑
j=0

L̃mix
n (2 + τL̃mix

n )∥u+
j − v+

j ∥X .

The estimate
∥u+

j − v+
j ∥X = ∥(I + a)αα−1(uj − vj)∥X ≤ C∥α−1(uj − vj)∥X

with C from (4.26) now allows us to apply Lemma 4.5.2. It yields

∥α−1(un − vn)∥X ≤ C exp(C2L̃mix
n (2 + τL̃mix

n )nτ/2)∥u+
0 − v+

0 ∥X . (4.28)

By Lemma 4.5.4 for γ = 0 and n = 1, we have

∥un − vn∥X ≤ ∥α∥L(X )∥α−1(un − vn)∥X ≤ C̃∥α−1(un − vn)∥.

The second inequality (4.27b) now follows from (4.28).

Now we can finally prove Theorem 4.5.6.

Proof of Theorem 4.5.6

In the following, an upper index “+” corresponds as before to a half-step with the explicit Euler method
for A, so v+ = (I + τ

2A)v. Moreover, we omit the time tj from the notation Φτ,tj
and simply write Φτ .

It is always clear from the context which time tj is used.
Our first goal is to establish a bound on the approximations Φn

τ (u(tℓ))+ in the norm of D(A), uniformly
in n and ℓ. This is the key ingredient which allows us to combine the local error and stability bounds
later to arrive at a global error bound.

More precisely, we show by induction on n that there exists a step-size τ0 > 0 such that for all n ∈ N0

and ℓ ∈ N0 with (ℓ+ n)τ ≤ T , it holds that

∥Φn
τ (u(tℓ))+∥D(A) ≤ 2M (1), M (1) = max

t∈[0,T ]
(∥u(t)∥D(A) + ∥u(t)∥D(A2)) (4.29)

for all τ ≤ τ0. This is immediately clear for n = 0 if we choose τ0 ≤ 2. Now assume that

∥Φk
τ (u(tℓ))+∥D(A) ≤ 2M (1) for k = 0, . . . , n− 1, ℓ ∈ N0 with (ℓ+ k)τ ≤ T.

Consider the telescoping sum

Φn
τ (u(tℓ))+ = u(tℓ+n)+ +

n−1∑
j=0

(
Φn−j

τ (u(tℓ+j))+ − Φn−j−1
τ (u(tℓ+j+1))+). (4.30)

Combining the stability estimate (4.27a) with the induction hypothesis, we get

∥Φn−j
τ (u(tℓ+j))+ − Φn−j−1

τ (u(tℓ+j+1))+∥D(A)

≤ C exp
(
CL̃(2 + τL̃)(n− j − 1)τ/2

)
∥Φτ (u(tℓ+j))+ − u(tℓ+j+1)+∥D(A)
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for 0 ≤ j ≤ n− 2, where L and L̃ are the Lipschitz constants corresponding to the balls of radius 4M (1)

and 4M (1)(1 + τL). Note that

∥Φτ (u(tℓ+j))+ − u(tℓ+j+1)+∥D(A)

≤ ∥Φτ (u(tℓ+j))− u(tℓ+j+1)∥D(A) + τ

2∥Φτ (u(tℓ+j))− u(tℓ+j+1)∥D(A2). (4.31)

The second-order local error bound in D(A) from Proposition 4.5.9 and the first-order local error in
D(A2) from Proposition 4.5.10 now show that (4.31) is O(τ2). Now we can estimate (4.30) as

∥Φn
τ (u(tℓ))+∥D(A) ≤ ∥u(tℓ+n)+∥D(A) +

n−1∑
j=0

∥∥Φn−j
τ (u(tℓ+j))+ − Φn−j−1

τ (u(tℓ+j+1))+∥∥
D(A)

≤ ∥u(tℓ+n)∥D(A) + τ

2∥u(tℓ+n)∥D(A2) + TC̃ exp
(
CL̃(2 + τL̃)T/2

)
τ. (4.32)

We have to show that this term is bounded by 2M (1) for sufficiently small τ . Let us choose τ ≤ 2 to get
rid of the τ in the exponential in (4.32) and in the definition of L̃. By definition of M (1), we also have
∥u(tℓ+n)∥D(A) + τ

2∥u(tℓ+n)∥D(A2) ≤M (1). Thus, we achieve our goal for all

τ ≤ τ0 := min

2, M (1)

TC̃ exp
(
CL̃(1 + L̃)T

)
 .

This finishes the induction step and establishes (4.29).
The global error can be estimated by the triangle inequality as

∥Φn
τ (u0)− u(tn)∥X ≤

n−1∑
j=0
∥Φj

τ (Φτ (u(tn−j−1))− Φj
τ (u(tn−j))∥X .

Now we apply the stability result (4.27b) to each of the j summands. Note that with the result from
(4.29) at hand, we may always choose Mn = 2M (1) in Proposition 4.5.11. Thus, L̃n and L̃mix

n from
Proposition 4.5.11 can be chosen independently of n, too, say L̂. Together with the local error bounds
from Proposition 4.5.8 and Proposition 4.5.9, the global error is now estimated by

∥Φn
τ (u0)− u(tn)∥X ≤

n−1∑
j=0

C̃ exp
(
C̃L̂(2 + τL̂)jτ/2

)
∥Φτ (u(tn−j−1))+ − u(tn−j)+∥X

≤ C̃
n−1∑
j=0

exp
(
C̃L̂(2 + τL̂)jτ/2

)(
∥Φτ (u(tn−j−1))− u(tn−j)∥X

+ τ∥Φτ (u(tn−j−1))− u(tn−j)∥D(A)

)

≤ C̃
exp

(
C̃L̂(2 + τL̂)nτ/2

)
− 1

exp
(
C̃L̂(2 + τL̂)τ/2

)
− 1

Clocτ
3

≤
exp

(
C̃L̂(2 + τ0L̂)T/2

)
− 1

L̂
Clocτ

2.

In the last step, we used 1 + x ≤ ex for x ≥ 0 and tn ≤ T .
Thus, we have finally completed the proof of Theorem 4.5.6. □
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Now we return to the parametric setting and explain how the dependency on z can be incorporated.
Consider the initial value problem

∂tu(t, z) = A(z)u(t, z) + f(u(t, z), z) + g(t, z), t ≥ 0, z ∈ Σ, (4.33a)

u(0, z) = u0(z) ∈ D(A(z)), z ∈ Σ, (4.33b)

which differs from (4.11) only in the appearance of z ∈ Σ, where Σ ⊆ Cd is again a bounded domain as
in the model problem from Section 4.2. In the next remark, we state how the assumptions and the result
of this section can be extended to the parametric case.

Remark 4.5.12 (Uniform convergence of IMEXT). We make the following assumptions, which are
“parametric” versions of the ones stated in Assumption C.

(1) The operator A(z) is sectorial for all z ∈ Σ, supz∈Σ ωA(z) < 0 and the domain D(A) = D(A(z)) is
independent of z ∈ Σ with equivalent graph norms.

(2) f ∈ C2(D(A)× Σ,D(A))

(3) The function f satisfies a “mixed” local Lipschitz property in X : For any r > 0, there is a constant
Lmix

r such that
sup
z∈Σ
∥f(v2, z)− f(v1, z)∥X ≤ Lmix

r ∥v2 − v1∥X

for all v1, v2 ∈ BD(A)(0, r).

(4) g ∈ C2([0, T ]× Σ,X ) ∩ C1([0, T ]× Σ,D(A))

(5) There is a strict solution u of (4.33) which has the regularity

u(·, z) ∈ C2([0, T ],D(A)) ∩ C1([0, T ],D(A2)).

and this solution depends continuously on z ∈ Σ.

(6) f(u(·, ·), ·) + g(·, ·) ∈ C1([0, T ]× Σ,D(A2))

In particular Assumption C is satisfied if we fix z ∈ Σ. The following statement holds:
For any compact Σ′ ⊆ Σ, there exists τ0 > 0 such that the global error of the IMEXT method (4.12)

after n steps with initial value u(0) = u0 and step-size τ ∈ (0, τ0] is bounded by

max
z∈Σ′

∥un(z)− u(tn, z)∥X ≤ Cτ2 (4.34)

for 0 ≤ tn = nτ ≤ T and a constant C > 0 which depends on the solution u on [0, T ] × Σ′, but is
independent of τ , n and z.

The proof is omitted since it is completely analogous to the proof of Theorem 4.5.6 before. In fact,
one only has to check in the proof of Theorem 4.5.6 that the estimates are uniform in z ∈ Σ′ such that
the constant C is also independent of z. ⋄

For the model problem (4.3), the result can be stated as follows. By Corollary 4.2.5, the operators
A(z) are sectorial.
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Example 4.5.13 (Uniform convergence of IMEXT for the model problem (4.3)).

Consider the setting of Section 4.2. Assume that all of the following hold:

(1) Assume that supz∈Σ ωA(z) < 0 and the domain D(A(z)) = W 2,p
B(z)(D) is independent of z ∈ Σ with

equivalent graph norms.

(2) f ∈ C2(W 2,p
B (D)× Σ,W 2,p

B (D))

(3) For any r > 0, there is a constant Lmix
r such that

sup
z∈Σ
∥f(v2, z)− f(v1, z)∥Lp(D) ≤ Lmix

r ∥v2 − v1∥Lp(D)

for all v1, v2 ∈W 2,p
B (D) with ∥vj∥W 2,p(D) ≤ r, j = 1, 2.

(4) g ∈ C2([0, T ]× Σ, Lp(D)) ∩ C1([0, T ]× Σ,W 2,p
B (D))

(5) There is a strict solution u of (4.3) which has the regularity

u(·, z) ∈ C2([0, T ],W 2,p
B (D)) ∩ C1([0, T ], W̃ 4,p

B,z(D)) (4.35)

with
W̃ 4,p

B,z(D) = {u ∈W 4,p(D) : u, A(z)u ∈W 2,p
B (D)} (4.36)

and the norm of u(·, z) in the space on the right-hand side of (4.35) is uniformly bounded in z ∈ Σ.

(6) Assume that f(u(·, z), z) + g(·, z) ∈ C1([0, T ], W̃ 4,p
B,z(D)) and

∥f(u(·, z), z) + g(·, z)∥
C1([0,T ],W̃ 4,p

B,z
(D))

is uniformly bounded in z ∈ Σ.

Then the following statement holds: For any compact Σ′ ⊆ Σ, there exists τ0 > 0 such that the error of
the IMEXT method after n steps with initial value u(0) = u0 and step-size τ ∈ (0, τ0] is bounded by

max
z∈Σ′

∥un(z)− u(tn, z)∥Lp(D) ≤ Cτ2

for 0 ≤ tn = nτ ≤ T and a constant C > 0 which depends on the solution u on [0, T ] × Σ′, but is
independent of τ , n and z.

Remark 4.5.14. Consider again (4.3) with the assumptions from Section 4.2. In the previous example,
the requirement (1) that the domain D(A(z)) = W 2,p

B(z)(D) is independent of z ∈ Σ is automatically
satisfied for a homogeneous Neumann boundary condition in the case of isotropic diffusion, i.e. the
diffusion coefficients satisfy

aij(x, z) = δija11(x, z), i, j = 1, . . . , N.

In this case, the boundary operator is

B(x, z)u(x) =
N∑

i,j=1
δija11(x, z)νj(x)∂iu(x) = a11(x, z)

N∑
i=1

νi(x)∂iu(x) = a11(x, z)ν(x)⊤∇u(x)

and since a11(x, z) > 0 by ellipticity, it follows that B(x, z∗)u(x) = 0 holds for z∗ ∈ Σ if and only if
B(x, z)u(x) = 0 for all z ∈ Σ. ⋄

Now we examine the convergence of the IMEXT method in practice.
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4.5.3 Numerical verification

Let us verify the second-order convergence of the IMEXT scheme from Theorem 4.5.6 for a simple one-
dimensional diffusion equation with a finite difference discretisation of the spatial variable. Additionally,
we compare it to some other time integrators.

Example 4.5.15.

Consider the problem

∂tu(t, x) = ∂2
xxu(t, x)− u(t, x)2, t ≥ 0, x ∈ [0, 1],

u(0, x) = u0(x), x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ≥ 0,

with

u0(x) =

exp
(

8− 1
x(1−x)

)
, x ∈ (0, 1),

0, x = 0 or x = 1.

In the previous notation, we have

Au = Au := ∂2
xxu, f(u) = −u2, g(t) = 0

and D(A) = W 2,p([0, 1]) ∩W 1,p
0 ([0, 1]).

We use the standard central finite difference approximation of the second derivative to discretise the
spatial variable x. Thus, the matrix

Ã = 1
h2



−2 1 0 . . . 0

1 −2 1 . . . ...

0 1 . . . . . . 0
... . . . . . . . . . 1
0 . . . 0 1 −2


(4.37)

with mesh width h > 0 becomes the discrete analogue of the second derivative operator ∂2
xx. For this

test problem, the computation of the matrix exponential etÃ is feasible and relatively cheap (note that
Ã is sparse, even tridiagonal). We compare the following methods:

EXPLIE . . . . a first-order splitting method where the linear part is propagated by etÃ and the non-linear
part by an implicit Euler method

RESLIE . . . . a first-order splitting method where both parts are propagated successively by the implicit
Euler method

EXPSTH . . . a second-order splitting method where the linear part is propagated by etÃ and the non-
linear part by Heun’s method

EXPSTT . . . a second-order splitting method where the linear part is propagated by etÃ and the non-
linear part by an implicit trapezoidal rule

TRAP . . . . . . the “classical” trapezoidal splitting method introduced in the beginning of Section 4.4
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IMEXT . . . . . the implicit-explicit trapezoidal method introduced in Section 4.4 and discussed throughout
this section

PEACE . . . . . the Peaceman-Rachford method, see e.g. [26, 48]

Note that all of these methods rely on splitting the equation into the same linear and non-linear part.
Methods which do not utilise such a splitting are often not competitive, since in each step solving a
potentially large non-linear system would be required. An exception to this are exponential integrators
[53], but they also require the computation of an exponential of a matrix, which is not desirable in many
applications. Thus they are not examined here.

The linear systems corresponding to the linear subproblem which have to be solved in some of the
methods are symmetric, positive definite and tridiagonal and can be solved effortless via a Cholesky
decomposition.

Of course, we do not expect the first-order methods to be competitive, but we decided to keep them
in the list for comparison.

Let us fix the spatial discretisation with 1000 equidistant subintervals in [0, 1] (mesh width h = 10−3)
and vary the temporal step-size τ . As a reference solution uref , we use an approximation with the classical
trapezoidal splitting method, but with a much smaller time-step τ = 2−15.

The temporal convergence of these methods is shown in Figure 4.1. The error is measured in the
discrete L2-norm at the final time T = 1. A work-precision diagram is depicted in Figure 4.2.
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Figure 4.1: Convergence test series for all time integrators from the list

As expected, the first-order methods are not competitive. The performance of IMEXT and PEACE
is quite similar, which is not surprising since these methods are constructed in a similar way (although
f is treated implicitly in PEACE). All methods using the matrix exponential (EXPXXX) are more costly
than their competitors, but sometimes yield smaller errors when the same step-size is used. Finally, we
compare TRAP and IMEXT. Recall that the only difference is that a full-step with the trapezoidal rule
for f in TRAP is replaced by a full-step with Heun’s method in IMEXT. Although their computational



4.5. The implicit-explicit trapezoidal method (IMEXT) 81

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

10−2

10−1

100

101

discrete L2-error

co
m

p.
wo

rk
(w

al
lt

im
e

in
s)

EXPLIE
RESLIE
EXPSTH
EXPSTT
TRAP
IMEXT
PEACE

Figure 4.2: Work-precision diagrams for all time integrators from the list

cost is almost the same, TRAP yields smaller errors (2–3 times smaller) and thus performs slightly
better (as the reader may have guessed). But the non-linearity in this toy problem is very simple and
solving it implicitly is not much harder then solving it explicitly. This will not be the case anymore for
more interesting problems. We draw the conclusion that IMEXT is indeed a competitive method and
the theoretically predicted order 2 is confirmed. Thus, it may possibly be an attractive choice for the
temporal discretisation of several problems of interest.

The next example shows that the convergence order of IMEXT is reduced if less regularity is available.

Example 4.5.16.

One may ask the question whether the regularity of the solution

u ∈ C1([0, T ],D(A2)) ∩ C2([0, T ],D(A))

from Assumption C(5) in Section 4.5.2 can be reduced while keeping second-order convergence. We now
show numerically that in case of initial data u0 ∈ D(A) \ D(A2), the convergence order is strictly less
than two. We change the setting from the previous example as follows: We remove the non-linearity (i.e.
f(u) = 0) and change the initial value to

u0(x) =
∣∣∣∣x− 1

2

∣∣∣∣ (x− 1
2

)2
− 1

8 with derivative u′
0(x) = 3

∣∣∣∣x− 1
2

∣∣∣∣ (x− 1
2

)
such that u0 ∈W 2,p

0 ([0, 1])\W 4,p([0, 1]). Thus, we have indeed u0 ∈ D(A)\D(A2). The IMEXT method
reduces to the trapezoidal/midpoint method in this case. (So in fact we use the famous Crank-Nicolson
method here.) The interval [0, 1] is again discretised with 1000 equidistant subintervals. To obtain a
reference solution, we use the numerically computed matrix exponential etÃ with Ã from (4.37). The
result of a convergence test series is given in Figure 4.3, with the error measured at the final time T = 1.
We obtain an experimental order of convergence (EOC) of approximately 1.44.
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Figure 4.3: Order reduction for initial data in D(A) \ D(A2)

So we verified numerically that for initial data not belonging to D(A2), we do not obtain second-order
convergence, i.e.

∥eτnAv −
(
(I − τ

2A)−1(I + τ
2A)

)n
v∥X ̸= O(τ2) for v ∈ D(A) \ D(A2).

Of course this observation is not new. It is stated for example in [47], where such a behaviour is not only
discussed for the trapezoidal method, but for other single-step methods, too. If one assumes v ∈ D(A2),
then O(τ2) is obtained as expected for this problem, see [67, Thm. 4.2].

Now we return to parametric parabolic equations and discuss stochastic collocation methods.

4.6 Single-level stochastic collocation

We consider the problem (4.33) and assume that the assumptions for uniform convergence of the IMEXT
method in z ∈ Σ from Remark 4.5.12 hold. Suppose additionally that for Σ ⊇ Σ(σ) ⊇ Γ = [−1, 1]d with
σ ∈ (1,∞)d, the maps

u : Σ(σ)→ C1([0, T ],X ) and un : Σ(σ)→ X

are analytic for all n ∈ N0, where u is the solution of (4.33) and un is the IMEXT approximation after
n steps with step-size τ > 0, as defined in (4.12).

Remark 4.6.1. This assumption is not as strict as it may seem and such an assumption can often be
verified for elliptic and parabolic problems, see e.g. [21] in case of an elliptic and [85, Sec. 3] in case of
a parabolic problem. In the latter article, an equation is treated which is a special case of (4.3), albeit
linear.

For non-linear parabolic problems, an abstract result is given in [75, Thm. 8.4.4] which states that
the solution depends analytically on the parameters if these parameters enter the equation in an analytic
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way. The precise statement uses a decent amount of Banach space interpolation theory and it is still
under research under which precise assumptions this result can be applied to our model problem.

For the time-discrete approximation un, analyticity can be deduced from the explicit formula (4.12)
under suitable requirements on A, f, g and u0. ⋄

The single-level approximation of the solution u of (4.33) at time tn = nτ is given by

uL,n = Ip,g
L un,

where Ip,g
L is the sparse grid interpolant from (2.15). Thus, we compute the IMEXT approximations at

time tn for ηL values of z, namely the nodes of the sparse grid Hp,g
L from (2.16). This definition is of

course in agreement with the general definition (3.7) from Section 3.3.
We stress that although the parameter vector z ∈ Σ was assumed to be complex before, we are in the

end only interested in solving the problem (4.33) for real vectors z ∈ [−1, 1]d. The analytic extension
to a complex polyellipse is just a useful tool which allows us to apply the sparse grid interpolation error
estimate from Theorem 2.6.2.

Notation. Whenever we consider real parameters belonging to Γ = [−1, 1]d, we denote them by y. In
contrast to that, parameters from the complex set Σ ⊋ Γ are denoted by the letter z for distinction.

The analyticity of u allows us to use Theorem 2.6.2, which implies that the sparse grid interpolation
error is bounded by

∥u− Ip,g
L u∥L2

ϱ(Γ,C1([0,T ],X )) ≤ Cη−µ
L max

z∈Σ(σ)
∥u(·, z)∥C1([0,T ],X ),

for some constants C and µ if we use Clenshaw-Curtis abscissas and p and g as in Theorem 2.6.2.
Now consider the time-discrete approximation un for n ∈ N0. By the triangle inequality and (4.34),

its norm is bounded by

max
z∈Σ(σ)

∥un(z)∥X ≤ max
z∈Σ(σ)

∥un(z)− u(tn, z)∥X + ∥u(tn, z)∥X ≤ Cτ2
0 + max

z∈Σ(σ)
max

t∈[0,T ]
∥u(t, z)∥X

for some τ0 > 0, in particular independently of n and τ . Again, Theorem 2.6.2 implies

∥un − Ip,g
L un∥L2

ϱ(Γ,X ) ≤ Cη−µ
L max

z∈Σ(σ)
∥un(z)∥X . (4.38)

Splitting the total error of the single-level stochastic collocation method as

∥u(tn)− uL,n∥L2
ϱ(Γ,X ) ≤ ∥u(tn)− un∥L2

ϱ(Γ,X ) + ∥un − Ip,g
L un∥L2

ϱ(Γ,X )

and using (4.34) and (4.38), we arrive at the following theorem.

Theorem 4.6.2 (Error of single-level collocation). Under the previous assumptions, there is a step-size
τ0 > 0 such that for all temporal step-sizes τ ∈ (0, τ0], the single-level stochastic collocation error is
bounded by

∥u(tn)− uL,n∥L2
ϱ(Γ,X ) ≤ C(τ2 + η−µ

L )

as long as 0 ≤ tn = nτ ≤ T for n ∈ N0. The constant C depends on the solution u of (4.33) on
[0, T ]× Σ(σ), the dimension d, σ, but is independent of ηL, τ and n.
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Thus, we obtain algebraic convergence with respect to the temporal step-size τ and the number of
collocation points ηL. Before we are able to verify this theorem numerically for the predator-prey system
(4.1) from the introductory section of this chapter, we briefly have to discuss the spatial discretisation
which we use.

Remark 4.6.3 (Finite element discretisation). Consider the system

∂tu1 = divx(δ1(x, y)∇xu1) +R1(u1, u2, y), in [0, T ]×D × Γ, (4.39a)

∂tu2 = divx(δ2(x, y)∇xu2) +R2(u1, u2, y), in [0, T ]×D × Γ, (4.39b)

u1(0, x, y) = u1,0(x, y), for (x, y) ∈ D × Γ, (4.39c)

u2(0, x, y) = u2,0(x, y), for (x, y) ∈ D × Γ, (4.39d)
∂u1
∂ν

= ∂u2
∂ν

= 0, on [0, T ]× ∂D × Γ, (4.39e)

with uj = uj(t, x, y) for j = 1, 2. By divx, we denote the divergence operator with respect to the spatial
variable x. This system is a parametric version of (4.1) from the introduction of this chapter which
additionally contains heterogeneous diffusion coefficients δ1 and δ2.

A standard weak formulation of this problem for fixed value of y ∈ Γ is given as follows: Determine

uj(·, ·, y) ∈ L2((0, T ), H2(D)) with ∂tuj(·, ·, y) ∈ L2((0, T ), L2(D))

for j = 1, 2 such that for all (v1, v2) ∈ H2(D)×H2(D),∫
D

∂tu1(t, x, y)v1(x)dx+
∫

D

δ1(x, y)∇u1(t, x, y)∇v1(x)dx =
∫

D

R1(u1(t, x, y), u2(t, x, y))v1(x)dx,∫
D

∂tu2(t, x, y)v2(x)dx+
∫

D

δ2(x, y)∇u2(t, x, y)∇v2(x)dx =
∫

D

R2(u1(t, x, y), u2(t, x, y))v2(x)dx,

u1(0, x, y) = u1,0(x, y), x ∈ D,
u2(0, x, y) = u2,0(x, y), x ∈ D.

From this weak formulation, a space-discrete system for a finite element space Vh ⊆ C(D) with mesh
width h > 0 can be derived. We choose a triangular mesh (the same mesh for all y ∈ Γ) and define Vh as
the space of continuous functions on D which are linear on each triangle (P1 elements).

As the time discretisation is done by splitting the equation into two parts prior to the spatial dis-
cretisation, we actually arrive at two spatially discrete systems which are solved in an alternating fashion
dictated by the IMEXT method. With mass and stiffness matrices Mh and A1,h(y), A2,h(y) ∈ RNh×Nh ,
where Nh = dim(Vh), the first system is of the form

Mh∂tu
(1)
1,h(t, y) +A1,h(y)u(1)

1,h(t, y) = 0, t ≥ 0, (4.40a)

Mh∂tu
(1)
2,h(t, y) +A2,h(y)u(1)

2,h(t, y) = 0, t ≥ 0, (4.40b)

supplied with initial values for u(1)
1,h(0, y) and u(1)

2,h(0, y) and has to be solved for u(1)
j,h(t, y) ∈ RNh , j = 1, 2.

As these two equations (4.40a) and (4.40b) are decoupled (u(1)
1,h does not appear in the second equation

and u
(1)
2,h does not appear in the first equation), they can be solved independently of each other.

The system corresponding to the second subproblem is of the form

∂tu
(2)
1,h(t, y) = R1(u(2)

1,h(t, y), u(2)
2,h(t, y), y), t ≥ 0, (4.41a)

∂tu
(2)
2,h(t, y) = R2(u(2)

1,h(t, y), u(2)
2,h(t, y), y), t ≥ 0, (4.41b)
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which is again supplied with initial values and has to be solved for u(2)
j,h(t, y) ∈ RNh , j = 1, 2. The

reaction terms R1 and R2 in this example do not depend explicitly on x, and thus (4.41a) and (4.41b)
give two-dimensional non-linear ODE systems in each point x of the spatial mesh. The IMEXT method
now consists of the following three steps in each time-step: First, (4.40) is solved by an explicit Euler
method with step-size τ/2, then (4.41) is solved by Heun’s method with step-size τ , and finally (4.40) is
solved by an implicit Euler method with step-size τ/2. The initial values are always taken as the results
of the previous step. ⋄

Now we are ready to verify Theorem 4.6.2 numerically for this predator-prey system.

Example 4.6.4.

Consider the predator-prey system (4.39) with polynomial reaction terms4

R1(u1, u2, y) = (c1 − c2u1 − c3 − c4u2)u1,

R2(u1, u2, y) = (c5u1 − c6)u2

for given parameters cj = cj(y), j = 1, . . . , 6. The parameters cj represent the following quantities:

• c1: “natural” birth rate prey

• c2: social friction prey

• c3: “natural” death rate prey

• c4: death rate prey due to predation

• c5: birth rate predators

• c6: death rate predators

Clearly, if c4 or c5 is not equal to zero, then these reaction terms couple the equations (4.39a) and (4.39b)
for u1 and u2. Here, the reaction constants c1, . . . , c6 are partly uncertain and given by

c1(y) = 1 + y1, c2(y) = 0, c3(y) = 1
2 ,

c4(y) = 1
2 (1 + y2) , c5(y) = 3

2 (1 + y2) , c6(y) = 1
10

for y = (y1, y2) ∈ Γ = [−1, 1]2 (and thus the stochastic dimension is d = 2). The diffusion is uncertain,
too, and given by

δ1(x, y) = 0.1 + 0.00625y1
(
x2

1 + x2
2
)
,

δ2(x, y) = 0.3 + 0.15y2 exp
(
−x2

1 − x2
2
)
,

where x = (x1, x2) ∈ D and y = (y1, y2) ∈ Γ. It should be noted that it is unusual that the variables y1

and y2 appear in the diffusion and reaction terms since it is unlikely that these quantities depend on the
same randomness in applications. But this example is mainly for demonstrational purposes and we want
to keep the stochastic dimension rather low. This allows us to do convergence tests in a wider range of
sparse grid depths and temporal step-sizes than for more complicated high-dimensional problems. In a
later example we increase the stochastic dimension d to cover a more realistic scenario.

The circular domain D is discretised with P1 elements on the triangulation shown in Figure 4.4. The
spatial and temporal discretisation are realised as described in Remark 4.6.3 before.

4This choice of reaction terms is used in several books and articles which treat the ODE system, see e.g. [46, Eq. (60.7)].
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Figure 4.4: Spatial domain and its triangulation; mesh width h = 0.28, dim(Vh) = 726

As all computations in this example are carried out on the same coarse mesh shown in Figure 4.4,
the error contribution from the space discretisation will usually be the dominant one compared to the
stochastic and temporal error. So our results are at first sight only meaningful for a semi-discrete problem.
The computed errors in the experiments should not be understood as errors compared to the solution of
the continuous problem under consideration, but compared to the spatially discrete problem.

The initial configurations u1,0 and u2,0 of the prey and predator densities are independent of y in this
example and depicted in Figure 4.5a and Figure 4.5b.

Let us describe the influence of the uncertainty in this system from the application side. Since c2 ≡ 0,
there is no social friction between the prey individuals, and there is no uncertainty in the death rates
of predators and prey, too. But there is uncertainty in the two interaction constants c4 and c5, in the
diffusion parameters and most importantly in the reproduction rate of the prey, c1. Observe that for
y1 → −1, no prey individuals are born and the prey will almost be eradicated after a short time. For
y1 → 1, the prey will not be eradicated and the system will approach a (spatially constant) equilibrium
between prey and predators. This prediction should be confirmed by our computations.

We use a temporal step-size τ = 0.01 and a sparse grid of depth L = 4 with ηL = 65 nodes. The
collocation strategy in the parameter space is based on the Smolyak polynomial space and Clenshaw-
Curtis abscissas. (This will always be the case throughout our numerical examples.) At time t = 2, we
compute the expected values and variances of both u1 and u2 in each grid point. The results are shown
in the remaining images (c) – (f) in Figure 4.5.

Observe that the prey has not yet reached the spatially constant state, but the predators have (almost).
Notice that E[u2(T, x, ·)] is not zero, but takes values ≈ 0.074 throughout the domain. The vastly different
behaviour we predicted for the prey is captured in the large variance of u1. (The variance becomes even
larger if one considers a larger time interval.) However, the variance of the predators is very small and
thus we infer that the uncertain birth rate of the prey does not substantially change the resulting predator
population. This example also shows that by incorporating uncertainty into the computations, we may
sometimes arrive at a very certain conclusion, in this case the predator population in the equilibrium.

Let us now examine the convergence with respect to τ and L. By doing this, we aim to confirm



4.6. Single-level stochastic collocation 87

2
1

0
1

2 2
1

0
1

2

0.0
0.2
0.4
0.6

0.8

1.0

(a) u1(0, x)

2
1

0
1

2 2
1

0
1

2

0.0
0.2
0.4
0.6

0.8

1.0

(b) u2(0, x)

2
1

0
1

2 2
1

0
1

2

0.0
0.2
0.4
0.6

0.8

1.0

(c) Approx. to E[u1(2, x, ·)]

2
1

0
1

2 2
1

0
1

2

0.0
0.2
0.4
0.6

0.8

1.0

(d) Approx. to E[u2(2, x, ·)]

2
1

0
1

2 2
1

0
1

2

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

(e) Approx. to V[u1(2, x, ·)]

2
1

0
1

2 2
1

0
1

2

1e
7

1

2

3

4

5

(f) Approx. to V[u2(2, x, ·)]

Figure 4.5: SLSC + IMEXT with τ = 0.01, ηL = 65, h = 0.28, dim(Vh) = 726
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the statement of Theorem 4.6.2. It is reasonable that the theorem applies to the current PDE system,
as it consists of two PDEs which are essentially of the form (4.3), but coupled. A formal proof that
Theorem 4.6.2 applies to this PDE system is not given here.

Convergence test. We consider the time interval [0, T ] = [0, 1] and use a single-level collocation
approximation as reference solution uref = (uLref ,τref ,1, uLref ,τref ,2) ≈ (u1(T ), u2(T )) computed with a
sparse grid of depth Lref = 9 (ηLref = 3329) and temporal step-size τref = 5 · 10−6. The norm in which
we measure the error is

∥(e1, e2)∥∗ =
√
∥e1∥2

L2
ϱ(Γ,L2(D)) + ∥e2∥2

L2
ϱ(Γ,L2(D)) (4.42)

(more strictly speaking its discrete analogue), computed at the final time T . In the following pictures,
the quantity

∥(e1, e2)∥∗ with ek = uLref ,τref ,k − uL,τ,k, k = 1, 2,

will be labelled by “error in ∥ · ∥∗”. Results are depicted in Figure 4.6.
The convergence with respect to τ is almost as expected, although the full order 2 does not show up

over the entire range of step-sizes τ . This is not necessarily a systematic order reduction but could also
be explained by an insufficiently fine reference solution. In particular, order reduction due to stiffness
would typically arise for large step-sizes, and not for small step-sizes as in our situation here.

From Theorem 2.6.2, we expect that the convergence with respect to ηL is O(η−µ
L ) for some µ > 0,

which should give us a line with slope −µ in the logarithmic plot. At first sight, the convergence with
respect to ηL seems to be much better than expected, as the error does not decrease linearly in the
picture, but faster. This is not surprising in light of Remark 2.6.5, where we adressed the subexponential
convergence for depths L > d/ log(2). For d = 2, the improved convergence rate occurs for all levels
L ≥ 3 and thus it can be observed here, too. We included a reference line with subexponential
convergence in the picture which resembles the behaviour of the error much better.

For both convergence test series, the error does not improve anymore if the error contribution of the
other discretisation type becomes the dominant term. This can be verified in the pictures, too.

A work-precision diagram is also shown in Figure 4.6(c). In the next section, we will examine how
the multi-level method compares to this picture.

Now we turn to the multi-level setting.

4.7 Multi-level stochastic collocation

Here we explain that the general Assumptions B1 – B3 for the multi-level method from Section 3.4 and
Section 3.5 are satisfied for problem (4.33) if we make the same assumptions as in the previous section.

Let T > 0. We use the notation introduced in Section 3.4,

uτj
= ΦNj

τj
(u0) and u

(ML)
J

5Lines for L = 7 and L = 8 are not included in the picture as they coincide visually with the line for L = 6.
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Figure 4.6: Convergence test series and cost scaling of SLSC + IMEXT; T = 1, h = 0.28, dim(Vh) = 726
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with the numerical flow of the IMEXT scheme Φm
τ from (4.18), τj = 2−jτ0 and T = τjNj for j ∈ N0.

The largest step-size τ0 with N0 = T/τ0 ∈ N is chosen either as the (in practice unknown) value τ0 from
Remark 4.5.12 or smaller, but not larger.

To show Assumption B1, we apply (4.34) and obtain

∥u(T )− ΦNj
τj

(u0)∥L2
ϱ(Γ,X ) ≤ ∥u(T )− ΦNj

τj
(u0)∥L∞(Γ,X ) ≤ max

z∈Σ′
∥u(T, z)− ΦNj

τj
(u0, z)∥X ≤ Cτ2

j

for j ∈ N0. Thus, Assumption B1 is satisfied with α = 2.
Next we show that Assumption B2 is satisfied for ζ : Λ(Γ,X )→ R with6

Λ(Γ,X ) = {v : Γ→ X analytic | v has an analytic extension to an open set containing Σ(σ)},
ζ(v) = max

z∈Σ(σ)
∥v(z)∥X ,

for some σ ∈ (1,∞)d and β = 2. The interpolation error estimate in Assumption B2, (3.10), follows
directly from Theorem 2.6.2 with κℓ = η−µ

ℓ for some µ > 0. We stress that we have already assumed the
analyticity of u and uτj in the previous section.

For the remaining estimates, we apply the triangle inequality and (4.34) to arrive at

ζ(uτj+1 − uτj
) ≤ max

z∈Σ(σ)
∥uτj+1(z)− u(T, z)∥X + max

z∈Σ(σ)
∥u(T, z)− uτj

(z)∥X ≤ C(τ2
j+1 + τ2

j ) ≤ 5Cτ2
j+1,

ζ(uτj ) ≤ max
z∈Σ(σ)

∥uτj (z)− u(T, z)∥X + max
z∈Σ(σ)

∥u(T, z)∥X ≤
(
C + τ−2

0 max
z∈Σ(σ)

∥u(T, z)∥X

)
τ2

0 ,

and thus Assumption B2 is satisfied with β = 2, too. Assumption B3 basically says that the cost of
evaluating uτj

−uτj−1 is proportional to the number of time-steps, which is reasonable in practice. Thus,
we can apply Theorem 3.5.2 and obtain the ε-cost bound

C(ML) ≲


ε− 1

µ , µ < 2,

ε− 1
µ | log(ε)|1+ 1

µ , µ = 2,

ε− 1
2 , µ > 2,

for a multi-level approximation u
(ML)
J satisfying ∥u(T )− u(ML)

J ∥L2
ϱ(Γ,X ) ≤ ε.

Now we use the multi-level method in the setting from Example 4.6.4.

Example 4.7.1.

The purpose of this example is threefold: We show that

• the error of the multi-level estimator in the norm ∥ · ∥∗ from (4.42) stays below (or almost below)
the given tolerance ε,

• the computational cost scales as predicted by Theorem 3.5.2,

• the benefits of the multi-level approach in low dimensions (such as d = 2) are limited to settings
where the regularity in the parameter space is rather low and the tolerance small.

6Note that Λ(Γ, X ) is indeed a Banach space with norm ζ. This can be proved using Morera’s theorem and Cauchy’s
integral theorem, see e.g. [96, Thm. 10.28]. The analytic extension of a function u ∈ Λ(Γ, X ) to Σ(σ) is unique by the
identity theorem for analytic functions (as Γ = [−1, 1]d clearly has an accumulation point).
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The third point is explained in detail later.
We return to the setting for the convergence tests in Example 4.6.4, but now we apply the multi-level

method with final time T = 1. For the constants µ = 9.35, CICζ = 2.80 · 1011, CT = 0.25 and α = 1.90,
we could verify the Assumptions B1 and B2 numerically on the first few levels7, and we have set β = α.
We refer to the explanations in Section 3.5.2 how this is done. We use the rounding strategy “up/down”
explained in the end of Section 3.5 and the maximal step-size τ0 = 0.1.

To address the questions above, we apply the multi-level method for different values of ε. For each of
these values, we compute the error compared to the reference solution uref with Lref = 9 (ηLref = 3329)
and τref = 5 · 10−6 (the same reference solution as for the convergence tests for the single-level method
in Example 4.6.4) and keep track of the time required to compute the multi-level approximation. By
“time”, we mean the wall time to perform the time integration itself and ignore matrix assembly and
other pre- or postprocessing computations (which are heavily dependent on the specific implementation
anyway). The time for the single-level method in Figure 4.6(c) was measured in the same way, such that
the comparison is somehow fair.

The results are shown in Figure 4.7.
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(a) Cost vs. given ε

10−9 10−8 10−7 10−6 10−5 10−4 10−3

10−11

10−9

10−7

10−5

10−3

ε

tolerance ε

error in E
error in mass
error in ‖ · ‖∗

(b) Error (compared to uref) vs. given ε

Figure 4.7: MLSC for the predator-prey system (4.39): d = 2, T = 1, µ = 9.35, µobs = 2.33, h = 0.28

Since 2 = β < µ = 9.35, we expect from Example 3.5.3 that the computational cost scales as ε−1/2

for ε → 0. We observe the overall cost scaling ε−1/µobs for µobs = 2.33 ( ), which is better than the
predicted scaling ε−1/2. The slope of is fitted to the six smallest tolerances ε and suggests that the
cost scales rather like ε−1/1.51 in this area, which is worse than expected. Two possible reasons for that
could be the following.

In the iterative process of finding the correct value of J from Theorem 3.5.2 described in the end
of Section 3.5.2, some single-level collocation approximations u(SL)

ηĴ−j ,τĴ
− u(SL)

ηĴ−j ,τĴ−1 for j = 0, . . . , Ĵ and
Ĵ = 0, . . . , J − 1 have to be computed, which may or may not enter the multi-level estimator in the end.

7The huge value of CICζ is not implausible, because it is accompanied by the large rate µ.
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Their computation is included in the time depicted in Figure 5.2(a), but is not included in the theoretical
cost from Theorem 3.5.2. This could explain why slightly more effort than expected is necessary for
smaller tolerances ε. On the other hand, one can reuse most of these approximations for the multi-level
approximation u

(ML)
J , so the overhead is not too large. Another effect which contributes to the slightly

worse cost behaviour which we observe is the overestimation of the theoretical value of ηJ−j explained in
Remark 3.5.4. The overestimation can be somehow controlled by the choice of rounding strategy.

The right picture shows that the multi-level estimator indeed achieves an error almost equal to ε in
the norm of interest ∥ · ∥∗ from (4.42). Note that we choose the weaker stopping criterion (3.28) instead
of the stronger one from (3.29) and thus it is not guaranteed that the error is less than ε. But the result
is convincing nevertheless. The other lines and are included only to show the error in some
other quantities one might be interested in:

• By “error in E”, we mean the spatially discrete analogue of( 2∑
k=1
∥E[u(ML)

J,k − uLref ,τref ,k(T )]∥2
L2(D)

)1/2

• By “error in mass”, we mean the spatially discrete analogue of the quantity

2∑
k=1

∣∣E[∥u(ML)
J,k ∥L1(D) − ∥uLref ,τref ,k(T )∥L1(D)

]∣∣.
Figure 4.8 shows for the particular choice of ε = 10−8 how many levels are required, how many

collocation points belong to each level and which sparse grid depths correspond to these levels.
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Figure 4.8: η±
J−j and corresponding sparse grid depths for ε = 10−8 and J = 10

Now we compare the work-precision-diagrams from the single-level and multi-level experiments. To
this end, we pick a few tolerances and compare the wall times which are required for both approaches to
achieve these tolerances. Since we have a setting with very large µ = 9.35, we expect from Example 3.5.5
that the benefits of the multi-level approach will only show up for very small tolerances. This is confirmed
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Tolerance wall time SL wall time ML
10−6 0.46s 1.42s
10−7 3s 4.2s
10−8 32s 20.7s

2 · 10−9 250s 76.5s
10−9 400s (estimated) 117.9s

Table 4.1: Cost comparison for the single- and multi-level methods

by Table 4.1. One can see this as a limitation of the multi-level approach: For problems with very
high regularity in the parameter space and large tolerances, the benefit of using more levels disappears.
Intuitively, this is clear: If µ is large, then the stochastic discretisation is cheap and a single-level method
computed with a rather coarse grid is sufficient. We stress, however, that the large value of µ in this
example only comes from the phenomenon of subexponential convergence, which is absent in higher
dimensions, as explained in Remark 2.6.5. It should also be noted that it is not clear for the single-level
method which combination of depth L and time-step τ is best to achieve a given tolerance, and thus the
“best” combination of L and τ to achieve a tolerance ε is not known a priori.

Before we come to the next (and final) example of this chapter, let us briefly discuss the practical
meaning of boundary conditions for predator-prey problems. The most relevant boundary conditions in
this context are

• homogeneous Neumann boundary conditions (“zero flux”), which are used whenever one is incapable
of determining the complete extent of a habitat or the habitat is bounded by a fence, and

• homogeneous Dirichlet boundary conditions, which correspond to “lethal borders”, where the indi-
viduals are either killed or leave the domain without return,

see [31, Sec. 2.1] for a more detailed discussion. Now we examine a problem with mixed boundary
conditions in the sense that one part of the boundary is supplied with Neumann boundary conditions,
and the other with Dirichlet conditions.

Example 4.7.2.

Consider a predator-prey system on a domain with a hole, where the outer boundary ∂DN is supplied with
homogeneous Neumann boundary conditions and the inner boundary ∂DD is supplied with homogeneous
Dirichlet boundary conditions. The domainD and its spatial discretisation with linear triangular elements
is shown in Figure 4.9.

In this example we assume that the uncertainty of the system is described completely by d = 10
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Figure 4.9: Spatial domain with hole and its triangulation; mesh width h = 0.067, dim(Vh) = 1860

unknown parameters, so y = (y1, . . . , y10) ∈ [−1, 1]10. The PDE system is given by

∂tu1 = δ1(y)∆u1 +R1(u1, u2, y), in [0, T ]×D × Γ, (4.43a)

∂tu2 = δ2(y)∆u2 +R2(u1, u2, y), in [0, T ]×D × Γ, (4.43b)

u1(0, x, y) = u1,0(x, y), for (x, y) ∈ D × Γ, (4.43c)

u2(0, x, y) = u2,0(x, y), for (x, y) ∈ D × Γ, (4.43d)
∂u1
∂ν

= ∂u2
∂ν

= 0, on [0, T ]× ∂DN × Γ, (4.43e)

u1 = u2 = 0, on [0, T ]× ∂DD × Γ, (4.43f)

with polynomial reaction terms

R1(u1, u2, y) = u1(1− u1)− u2h(a(y)u1),

R2(u1, u2, y) = b(y)u2h(a(y)u1)− c(y)u2

as in (4.2) from the introductory section of this chapter, where

h(w) = hHol(w) = w

1 + w
.

The uncertain parameters δ1, δ2, a, b, c are given by

δ1(y) = 0.2 + 0.025y1,

δ2(y) = 0.3 + 0.015y2,

a(y) = 1 + 0.5y3 + 0.25y4,

b(y) = 2 + y5 + 0.5y6,

c(y) = 0.1 + 0.05y7 + 0.025y8.

The parameters y9 and y10 come from the initial distributions of prey and predators given by

u1,0(x, y) = (1 + 0.5y9) ū1(x) and u2,0(x, y) = (1 + 0.5y10) ū2(x)
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for ū1 and ū2 as depicted in Figure 4.10. These functions are in fact smooth, but have large gradients in
some areas.

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

(a) Initial prey configuration ū1

0.00

0.12

0.24

0.36

0.48

0.60

0.72

(b) Initial predator configuration ū2

Figure 4.10: Initial configurations of prey and predators

A weak formulation of this problem can be derived almost as in Remark 4.6.3. The main difference
here is that a Dirichlet boundary appears in addition to the Neumann boundary. The Dirichlet boundary
condition can be incorporated into the weak formulation by replacing the space H1(D) with H1

∂DD
(D) =

{v ∈ H1(D) : v|∂DD
= 0}. A similar change affects the spatially discrete system.

We continue with the description of the setting from an application point of view. The initial con-
figuration depicted in Figure 4.10 could describe a scenario where predators invade a habitat around a
“lethal area” (e.g. an area surrounded by an electric fence) from the west, and three groups of prey are
located around this area. The outer Neumann boundary says that equally many individuals (of both
species) enter and leave the habitat such that the total flux over this boundary is zero, and the inner
Dirichlet boundary ensures that no individuals enter or cross the lethal area. A reasonable question for
a ranger of this habitat could be “how many of the prey individuals will survive the invasion?” and a
quantity of interest is E[Υ] for

Υ(y) =
∫

D

u1(T, x, y)dx (4.44)

at a time T . The larger the quantity Υ, the more individuals of the prey survived the invasion. The
reaction and diffusion constants in mean might be available from past observations, and a guess on their
variability, too.

Let us proceed with the simulation of the system. Since this problem is high-dimensional in the
parameter space, we aim for a simpler goal than approximating the solutions u1 and u2 completely, since
the spatial distribution of both species might not be important. So instead of approximating u1 and u2

in the whole domain with a small error, we consider the quantity Υ from (4.44) instead, which we want to
approximate with a small error (in expectation). Thus, we use the multi-level approach for QoIs outlined
in Section 3.6.

The constants were computed as µ = 1.41, C = CICζ = 2312, CT = 40.87 and β = α = 2. The
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maximal step-size is chosen as τ0 = 0.05. Results of the multi-level approach for T = 1 are shown in
Figure 4.11 with three different rounding strategies.

We see from Figure 4.11 that the theoretical scaling of the MLSC method is confirmed, even slightly
improved in case of the “down” rounding strategy as 1.50 = µobs > µ = 1.41. The scaling in case of the
“up/down” rounding strategy is noticeably smaller.

The reference value Υref for Υ is computed by a single-level method with Lref = 5 (ηLref = 41265) and
τref = 10−5. We have E[Υref ] = 0.063. The error behaviour shown in Figure 4.11(b) is also in agreement
with the theory, as |E[Υ(ML)

J −Υref ]| (denoted by “error in Υ” in the picture) is almost always below the
given tolerance ε. For large tolerances, we even observe that the error is much smaller than expected.
The errors in ∥ · ∥∗ and E are included for completeness, but we stress that the multi-level approach was
used to approximate Υ, and thus no prediction about these errors can be made.

The approximation for ε = 10−4 at times t∗ ∈ {0.25, 0.5, 1} is depicted in Figure 4.12 – Figure 4.14
on the following pages. (Note the different scalings of the colorbars in these images.) These snapshots of
the multi-level approximation are available as all of these times t∗ are multiples of the maximal step-size
τ0 = 0.05.

A test run for a longer time interval with final time T = 3 is shown in Figure 4.15. Here, the constants
are computed as µ = 0.98, C = 273, CT = 37.7 and β = α = 2. The approximation for ε = 10−4 at the
final time T = 3 is shown in Figure 4.16.

We conclude this example with a description of the behaviour of the solution from the application side.
In the beginning of the time interval, the dynamics are only driven by diffusion since mathematically
speaking, the supports of predator and prey populations are disjoint and there is no interaction between
the species. As the prey is out of reach for the predators, the total amount of predators decreases in the
beginning. Both species spread over the whole domain and their spatial distributions become smoother
as expected. At time t = 1, the spatial distribution of u1 and u2 is almost as homogeneous as possible for
these boundary conditions. From now on the dynamics are dictated by the reaction between the species.
As the prey population is very small compared to the amount of predators, the predator density decreases
further. This is clearly visible from the images at time t = 3 in Figure 4.16. The prey population recovers
slightly between t = 1 and t = 3. Note that the variance of u2 becomes smaller and smaller over time, so
we conclude that the state of u2 is very certain despite the input uncertainty in the system.
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Figure 4.11: MLSC for the predator-prey system (4.43): d = 10, T = 1, µ = 1.41, h = 0.067
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Figure 4.12: Approximations at time t = 0.25 computed with MLSC + IMEXT
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Figure 4.13: Approximations at time t = 0.5 computed with MLSC + IMEXT
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Figure 4.14: Approximations at time t = 1 computed with MLSC + IMEXT
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Figure 4.15: MLSC for the predator-prey system (4.43): d = 10, T = 3, µ = 0.98, h = 0.067
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Figure 4.16: Approximations at time t = 3 computed with MLSC + IMEXT
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CHAPTER 5

Multi-level stochastic collocation for Schrödinger equations

5.1 Motivation

The non-linear Schrödinger equation (NLS) is an important partial differential equation in non-linear op-
tics and condensed matter physics. It appears in the context of Bose-Einstein condensates1, for example,
where it is usually called Gross-Pitaevskii equation (GPE).

Let us briefly describe this specific field of research to explain the role of the NLS there. A Bose-
Einstein condensate (BEC) is a gas of bosons which are in a certain identical quantum state. The specific
quantum state of a BEC is achieved by cooling a gas of very low density to temperatures close to absolute
zero. Bosons are particles that follow Bose-Einstein statistics and thus have integer spin. Among them
are fundamental particles such as photons and the famous Higgs boson, but also composite particles such
as deuterium, helium-4 and many alkaline isotopes. Nowadays, laboratories all over the world are able to
routinely produce BECs despite the fact that they are unstable. BECs have been able to answer a variety
of questions in fundamental physics and are still intensively under study today. For an easily accessible
introduction to the topic, see [101, 63] (German). For a more recent book in English, see e.g. [79].

Let us now discuss why the NLS is central to this research area and how it is derived. As each of the
bosons in a BEC is in the same quantum state (ground state), they have the same wave function, which we
denote by ψ. In practice, this only happens if the temperature is basically absolute zero. A free quantum
particle is described by a single-particle Schrödinger equation, but modelling a system of Nbos ∈ N bosons
should take interactions between the particles into account. The Hartree-Fock approximation uses the
product ansatz

Ψ(t, x(1), . . . , x(Nbos)) = ψ(t, x(1)) · · ·ψ(t, x(Nbos))

for the (time-dependent) wave-function Ψ of the complete system, where x(j) ∈ R3 are the positions
of the bosons. For low densities in which the distance between the particles is comparatively larger
than their scattering length (a gas with this property is said to be dilute), the interactions can be

1The term is dedicated to Satyendra Nath Bose and Albert Einstein, both of whom were pioneers in this field.
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approximated via a pseudopotential. For extremely low temperatures, this pseudopotential approach
yields the (distributional) Hamiltonian

H =
Nbos∑
j=1

(
− ℏ2

2m∆x(j) + V (x(j))
)

+
Nbos∑

k=j+1

4πℏ2as

m
δ(x(j) − x(k)),

where ℏ is the reduced Planck constant, m the (identical) mass of the bosons, V the external potential,
δ the Dirac delta and as the boson-boson s-wave scattering length. The latter quantity models the
scattering process in the low-temperature setting. Using Heisenberg’s equation of motion, one arrives at
the (mean-field) equation

iℏ∂tψ(t, x) =
(
− ℏ2

2m∆ + V (x) + χ|ψ(t, x)|2
)
ψ(t, x) (5.1)

with m and V from before and a quantity χ = 4πℏ2as/m which represents particle interactions. This is
the way the Gross-Pitaevskii equation is usually formulated. The normalisation implied here is∫

R3
|ψ(t, x)|2dx = Nbos.

Although equation (5.1) above is formulated in three-dimensional space, its two- and one-dimensional
variants (with x ∈ R2 or x ∈ R) represent important special cases and are thus also studied in the physical
and mathematical literature. We refer to [7, Sec. 2.3] for an explanation of the dimension reduction and
in which physically meaningful scenarios it is valid. Simply put, the two- and one-dimensional variants
correspond to condensates which are “disc-shaped” or “cigar-shaped” ([7, p. 324, 326]).

We stress that the applicability of the NLS in BECs is strictly limited to temperatures very close to
absolute zero since the temperature dependence is not taken into account in its derivation. The NLS
does not describe condensates of photons and some other particles which are in ground state at room
temperature.

In applications, the external potential V is often quadratic, modelling a harmonic trap. Thus, the
potential energy of a particle increases quadratically with its distance from the centre.

Another external potential of interest is a helical one modeling a rotating optical dipole trap, described
in detail in [90]. It should be noted that such a potential is time-dependent and hence it does not strictly
fall into the setting we discuss in this chapter (although it could be incorporated with some changes in
the procedure).

The NLS, its numerical solution and physical importance are discussed in [24, 7] and references therein.
Observe that if we set χ = 0 in (5.1), we obtain a linear Schrödinger equation (LSE). It is an important
equation on its own and fundamental to quantum mechanics. However, we regard it as a special case of
the non-linear Schrödinger equation.

Let us now discuss how uncertainties naturally occur in this equation. The quantities ℏ and m are
known and do not introduce uncertainty. The external potential V is the main source of uncertainty, but
also the quantity χ is unknown since it depends on the scattering length as. The initial state of the gas
ψ(0, ·) is typically unknown, too. As a consequence, we will introduce once again a parameter y to this
equation which accounts for the uncertainty in the potential V , the scattering length2 as and the initial
state ψ(0, ·).

Let us now describe our problem setting in detail.
2more precisely: in χ, which is proportional to as
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5.2 Problem setting

The content of the following sections will appear in a similar form in [61] for a linear Schrödinger equation.
Here we consider a parametric non-linear Schrödinger equation for u : R+ × TN × Γ→ C given by

∂tu(t, x, y) = i∆u(t, x, y) + iV (x, y)u(t, x, y) + iχ|u(t, x, y)|2u(t, x, y), t ≥ 0, x ∈ TN , y ∈ Γ, (5.2a)

u(0, x, y) = u0(x, y), x ∈ TN , y ∈ Γ (5.2b)

with spatial dimension N ∈ N, T = R/(2πZ), Γ = [−1, 1]d, V : TN × Γ → R, χ ∈ R and initial value
u0 : TN×Γ→ C. Despite having changed the notation ψ ; u and applied some harmless transformations,
the reader should observe the similarity to the GPE (5.1) from the previous section. Here, t is the
temporal variable, x the spatial variable and y is some parameter which accounts for the uncertainty in
the potential V and the initial data u0. The variable y is new compared to the previous section. The
choice of the spatial domain TN corresponds to imposing periodic boundary conditions. These boundary
conditions are a standard choice in the literature as they admit an efficient spatial discretisation via
Fourier collocation methods. The spatial dimension N is not to be confused with the number of bosons
Nbos from the introductory section. In the context of BECs, we have N ∈ {1, 2, 3}, but Nbos is typically
a large integer of approximate size between 102 and 107 according to [7, Eq. (2.4)].

We note that the results in this chapter may be extended to the case where the parameter χ in the
non-linear term is a function which depends on y.

Most of the time, the spatial variable x will be hidden in our exposition since we regard u as a function
in the two variables t and y which takes values in a Banach space X. This Banach space will often be
L2(TN ), but occasionally also some higher-order Sobolev spaces Hs(TN ) with s ∈ N appear.

With this convention, (5.2) can be formulated as a parameter-dependent Cauchy problem

∂tu(t, y) = i∆u(t, y) + iV (y)u(t, y) + iχ|u(t, y)|2u(t, y), t ≥ 0, y ∈ Γ, (5.3a)

u(0, y) = u0(y), y ∈ Γ, (5.3b)

where the function u : R+ × Γ→ L2(TN ) is sought-after.
Now we discuss the time integration of (5.3) via the Strang splitting method.

5.3 Strang splitting

Despite the fact that some solution formulas for the NLS may be derived for specific initial values u0

and potentials V , the rather complicated structure of the NLS demands a reliable numerical solver
in general. The most prominent methods for this purpose are splitting methods such as the second-
order Strang splitting3. Combined with a space discretisation via trigonometric polynomials (for periodic
boundary conditions as in our case) or Hermite polynomials (in case of the full space RN without boundary
conditions), this method is second-order convergent and stable under reasonable assumptions. We refer
to [33] for an in-depth analysis of such a splitting method in case of the full space RN with a generic
smooth potential. More comments on the usage of Strang splitting in the literature will be given at the
end of Section 5.3.1.

3Higher-order splitting methods are also possible for the NLS, see [110], but are used less frequently.
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Now we describe the Strang splitting method in detail and then study how the additional parameter
y affects this method. Later in this section, our focus will be on the numerical analysis of the error of
this method in the norm of the space Ck(Γ, L2(TN )).

5.3.1 Description of the method

The splitting method we use for (5.3) is derived by dividing the problem into the two subproblems

∂tv(t, y) = i(V (y) + χ|v(t, y)|2)v(t, y), t ≥ 0, y ∈ Γ, (5.4a)

v(0, y) = v0(y), y ∈ Γ. (5.4b)

and

∂tw(t, y) = i∆w(t, y), t ≥ 0, y ∈ Γ, (5.5a)

w(0, y) = w0(y), y ∈ Γ. (5.5b)

Both of these problems are simpler than the “full” problem in the following sense: Equation (5.4) does not
contain spatial derivatives anymore and reduces to an ODE in each (spatial) grid point after performing
a space discretisation, whereas (5.5) is a linear equation. We introduce the abbreviation

B[v, y] = V (y) + χ|v(y)|2. (5.6)

The solution of (5.4) is given by
v(t, y) = eitB[v0,y]v0(y) (5.7)

for any t ≥ 0 and y ∈ Γ. This is not obvious, so a proof is provided in Lemma A.2 in Appendix A.
The solution of (5.5) is given by

w(t, y) = eit∆w0(y),

where (eit∆)t∈R is the strongly continuous group generated by i∆ on L2(TN ). In fact, this group is
unitary on each of the spaces Hs(TN ) for s ∈ N0 by Stone’s theorem [28, Thm. II.3.24].

Now that the solutions of both subproblems are known, we can combine them to obtain an approxi-
mation with step-size τ > 0 to the full problem (5.3) as follows:

1. Solve (5.4) over a time-step τ/2 with the result from the previous time-step as starting value.

2. Solve (5.5) over a time-step τ with the result from 1. as starting value.

3. Solve (5.4) over a time-step τ/2 with the result from 2. as starting value.

4. Repeat steps 1.–3. until a final time T is reached.

In a formula, the corresponding numerical flow can be written as

Φτ (v, y) = e τ
2 iB[u+,y]u+(y), where u+(y) = eτ i∆e τ

2 iB[v,y]v(y).

Thus, we successively compute approximations un(y) ≈ u(tn, y) at times tn = nτ via

un(y) := Φτ (un−1, y), n = 1, 2, . . . , (5.8)
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where τ > 0 is a given step-size and y ∈ Γ. If we set

Φn
τ (u0, y) := Φτ (Φn−1

τ (u0, y), y), n ∈ N, Φ0
τ (u0, y) = u0(y), (5.9)

then (5.8) can be cast into the form

un(y) = Φn
τ (u0, y), n ∈ N0, y ∈ Γ.

Observe that the flow Φτ (·, y) preserves the L2(TN )-norm for any y ∈ Γ. In the next section, we show
that the method is convergent of order 2 in the norm of L2(TN ) under reasonable assumptions. Thus,
we will be able to efficiently compute good approximations for the solution of (5.2) for any given value
of y ∈ Γ.

As we can only compute approximations for finitely many values of y in practice, we have to char-
acterise the regularity of the solution and its approximations with respect to the variable y in order to
successfully apply a stochastic collocation method. A result which is given in the next section implies
that the splitting approximation has the regularity Ck with respect to the variable y if the solution u

and the potential V already belong to the class Ck. This will be crucial to obtain good convergence rates
for the approximations in the parameter space later on.

Before we continue with the error analysis, let us briefly comment on the usage of this method in the
literature. Strang splitting has been applied to numerous problems by different authors, see e.g. [59,
73, 60, 110, 7, 33] and references therein for applications to different Schrödinger equations. Nowadays
the Strang splitting scheme seems to be the most attractive method for the numerical simulation of
the NLS in the literature. Besides its efficiency, the preservation of the L2(TN )-norm is an important
feature in applications. In the context of BECs presented in the introductory section of this chapter, this
preservation corresponds to a constant amount of bosons. Similar interpretations remain true in other
physical applications. It should be noted, however, that finite difference and other spectral schemes are
also present in the literature [76], but usually not preferred in light of the discussion at the end of [7,
Sec. 3.1].

Let us now discuss the main results of our error analysis for the Strang splitting scheme and the
assumptions under which they are valid.

5.3.2 Error analysis: The results

In the following, we consider the Banach spaces Ck(Γ, Hs(TN )) for k ∈ Nd
0 and s ∈ N0 and abbreviate

∥w∥k,s := ∥w∥Ck(Γ,Hs(TN )) = max
0≤j≤k

∥∂j
yw∥C(Γ,Hs(TN )) (5.10)

for w ∈ Ck(Γ, Hs(TN )). Note that the case s = 0 corresponds to the space L2(TN ), so ∥ · ∥0,0 is the
usual norm of the space C(Γ, L2(TN )).

We make the following assumptions.

Assumption E1. Let s > max
{

N
2 , 1

}
be an integer and k ∈ Nd

0. Assume that there is a function

u ∈ C([0, T ], Ck(Γ, Hs+2(TN ))) ∩ C1([0, T ], Ck(Γ, Hs(TN ))) ∩ C2([0, T ], Ck(Γ, L2(TN ))) (5.11)

that solves (5.2), in particular u(0, ·, ·) = u0.
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This strong assumption cannot be easily verified. In the linear case corresponding to χ = 0, however,
it is possible to prove similar regularity under assumptions on u0 and V . This will be discussed later in
Section 5.3.6, in particular in Theorem 5.3.10.

The requirement s > N
2 in Assumption E1 implies that Hs(TN ) is an algebra. This property plays

a central role throughout the error analysis and allows us to incorporate the non-linearity correctly. We
also need the following assumption on the potential.

Assumption E2. Let V ∈ Ck(Γ, Hs+2(TN )) for k = (k1, . . . , kd) ∈ Nd
0, so in particular

∥∂r1
x1 · · · ∂rN

xN
∂m1

y1 · · · ∂md
yd
V ∥0,0 <∞

for |r|1 ≤ s+ 2 and m = (m1, . . . ,md) ≤ k.

Notation. As u(t, ·, ·) belongs to Ck(Γ, Hs+2(TN )) for each t ∈ [0, T ] by Assumption E1, it is reasonable
to write u(t) instead of u(t, ·, ·) and omit both variables x and y in the notation. Other functions will be
treated similarly. Thus, we use the following convention from now on:

The variables x and y are omitted in the notation if possible.

This allows us to write expressions like ∥u(t)∥k,s for any t ∈ [0, T ] and reduces the number of function
arguments in lengthy formulas which will appear later on.

Now we present the main results of our error analysis.

Theorem 5.3.1 (Local error). Assume that Assumptions E1 and E2 hold with the same values of s and
k. The local error of the Strang splitting method with initial value v = u(0) and step-size 0 < τ ≤ T is
bounded by

∥Φτ (v)− u(τ)∥k,s ≤ Cτ2, (5.12)

∥Φτ (v)− u(τ)∥k,0 ≤ C̃τ3, (5.13)

where C and C̃ depend on

max
t∈[0,τ ]

∥u(t)∥k,s+2 and ∥V ∥Ck(Γ,Hs+2(TN )).

From this local error bound, the following global result will be deduced.

Theorem 5.3.2 (Global error). Assume that Assumptions E1 and E2 hold with the same values of s and
k. Then there exists a step-size τ0 > 0 such that the global error of the Strang splitting method after n
steps with step-size τ ∈ (0, τ0] is bounded by

∥Φn
τ (u0)− u(tn)∥k,s ≤ Cτ, (5.14)

∥Φn
τ (u0)− u(tn)∥k,0 ≤ C̃τ2, (5.15)

as long as tn = nτ ≤ T . The constants C and C̃ depend on tn,

M
(s+2)
k := max

t∈[0,tn]
∥u(t)∥k,s+2 and ∥V ∥Ck(Γ,Hs+2(TN )).
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If the reader is not primarily interested in the proof of this convergence result, we recommend to
skip the next three subsections completely. Our advise is then to continue reading either in Section 5.3.6,
where simplifications for the linear Schrödinger equation are presented, or in Section 5.4, where stochastic
collocation methods are discussed for the NLS.

Brave readers who are interested in the proofs are now confronted with some tools to compute multi-
variate derivatives of u and its numerical approximation.

5.3.3 Interlude: Multivariate differentiation formulas

In this technical section we state multivariate product and chain rules for certain differential operators
which we need in our error analysis later on. The idea of this framework is taken from [50], although our
notation is slightly different. We discovered recently that a similar framework was also used in an UQ
context in [9, App. A].

We introduce some notation. Let

Dη := ∂m

∂yη1 · · · ∂yηm

for η = (η1, . . . , ηm) ∈ {1, . . . , d}m.

The vector η contains the (perhaps multiply occuring) directions of the partial derivatives. Its length m
is exactly total order of the differential operator Dη. Let M = {1, . . . ,m}. We can associate a multi-index
to η which contains the number of derivatives in each direction,

k(η) = (|{s ∈M : ηs = 1}|, . . . , |{s ∈M : ηs = d}|) ∈ Nd
0.

Note that |k(η)|1 = m. Since we may exchange the order of the derivatives if the corresponding functions
are continuously differentiable up to the required order, it holds

Dηf = ∂mf

∂yη1 · · · ∂yηm

= ∂mf

∂yk(η)

for such functions f . If one tries to write down a “product rule” for such a differential operator Dη, i.e.
a formula for Dη(fg), one observes that all differential operators of lower order than Dη (i.e. operators
with some of the ∂yηj

omitted) are necessary to write it down. To make this more precise, we now
associate differential operators to subsets of M = {1, . . . ,m}. This allows us later to state product and
chain rules which look familiar.

We fix η and the corresponding value of m. (The following definitions only make sense for given η

and m, but we do not indicate this in the notation.) For a set S ⊆M = {1, . . . ,m}, we define

∂|S|

∂yS
:= ∂|S|∏

j∈S ∂yηj

.

As a special case, we have
∂m

∂yM
= ∂m

∂yη1 · · · ∂yηm

= Dη.

The power set of S is denoted by PS . We further define

PS
∗ = PS \ {∅} and PS

∗∗ = PS
∗ \ {S}.

The set of partitions of S into non-empty subsets (“blocks”) is denoted by Π(S). For a set S ⊆ M , the
complement Sc is always understood as the complement in M , i.e. Sc = M \ S.
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Example 5.3.3.

Let M = {1, 2, 3}. Then the five elements of Π(M) are the following.

Partitions with 1 block: {{1, 2, 3}}
Partitions with 2 blocks: {{1}, {2, 3}}, {{2}, {1, 3}}, and {{3}, {1, 2}}
Partitions with 3 blocks: {{1}, {2}, {3}}

We have

PM
∗ =

{
{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3},M

}
,

PM
∗∗ =

{
{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}

}
.

The empty set ∅ has exactly one partition, namely ∅ itself.

Now that a suitable notation is available, the multivariate chain rule (also known as Faà di Bruno’s
formula) may be stated in the form

∂|S|

∂yS
f(g(y)) =

∑
π∈Π(S)

f |π|(g(y))
∏

B∈π

∂|B|g(y)
∂yB

(5.16)

for a set S ⊆M , where |π| is the number of blocks in the partition π and f j denotes the j-th derivative
of f (and not the j-th power). The multivariate product rule may be stated in the form

∂|S|

∂yS
(fg) =

∑
T ∈PS

∂|T |f
∂yT

∂|S\T |g

∂yS\T
. (5.17)

We refer to [50, Prop. 1 and 5] for proofs of these equations and instead give an example for both formulas.

Example 5.3.4.

The following examples are taken from Ex. 1 and 2 and the beginning of Sec. 6 in [50].

• For η = (1, 2, 3) and hence m = 3, (5.16) yields the formula

∂3

∂y1 ∂y2 ∂y3
f(g(y)) = f ′(g(y)) ∂3g(y)

∂y1 ∂y2 ∂y3

+ f ′′(g(y))
(
∂g(y)
∂y1

· ∂
2g(y)

∂y2 ∂y3
+ ∂g(y)

∂y2
· ∂

2g(y)
∂y1 ∂y3

+ ∂g(y)
∂y3

· ∂
2g(y)

∂y1 ∂y2

)

+ f ′′′(g(y))∂g(y)
∂y1

· ∂g(y)
∂y2

· ∂g(y)
∂y3

.

By (5.17), we have

∂3

∂y1 ∂y2 ∂y3
(fg) = f · ∂3g

∂y1 ∂y2 ∂y3
+ ∂f

∂y1
· ∂2g

∂y2 ∂y3
+ ∂f

∂y2
· ∂2g

∂y1 ∂y3
+ ∂f

∂y3
· ∂2g

∂y1 ∂y2

+ ∂2f

∂y1 ∂y2
· ∂g
∂y3

+ ∂2f

∂y1 ∂y3
· ∂g
∂y2

+ ∂2f

∂y2 ∂y3
· ∂g
∂y1

+ ∂3f

∂y1 ∂y2 ∂y3
· g.
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• For η = (1, 2, 2) and k(η) = (1, 2), (5.16) yields

∂3

∂y1 ∂y2
2
f(g(y)) = f ′(g(y)) ∂

3g(y)
∂y1 ∂y2

2
+ f ′′′(g(y))∂g(y)

∂y1
·
(
∂g(y)
∂y2

)2

+ f ′′(g(y))
(
∂g(y)
∂y1

· ∂
2g(y)
∂y2

2
+ ∂g(y)

∂y2
· ∂

2g(y)
∂y1 ∂y2

+ ∂g(y)
∂y2

· ∂
2g(y)

∂y1 ∂y2

)
.

In fact, we use a slightly more general product rule than the one stated in (5.17). To explain it, let
X1, X2 and Z be general Banach spaces. We say that a function P : X1 ×X2 → Z is a product if P is
bilinear and continuous in the sense that there is C > 0 such that ∥P (x1, x2)∥Z ≤ C∥x1∥X1∥x2∥X2 holds
for all x1 ∈ X1 and x2 ∈ X2. Since there is a product rule for functions of the form y 7→ P (f(y), g(y))
(see [97, Kap. 2, Satz 2.7]) and the combinatorics of higher derivatives remain the same as in formula
(5.17), we get

∂|S|

∂yS
P (f, g) =

∑
T ∈PS

P

(
∂|T |f
∂yT

,
∂|S\T |g

∂yS\T

)
.

We use this formula later for

P : L(X2, Z)×X2 → Z, P (A, x) = Ax

and
P : Hs(TN )×Hs(TN )→ Hs(TN ), P (u, v) = ueiτ∆v

for s > N
2 , which are both products.

Now we state several other results which will be needed later on.

5.3.4 Preliminaries for the error analysis

The following lemma is crucial for the treatment of the non-linearity in (5.2). It is an extension of the
well-known product estimate

∥vw∥r ≤ C∥v∥r∗∥w∥r with r∗ = max
{
r, ⌊N

2 ⌋+ 1
}

(5.18)

for v ∈ Hr∗(TN ) and w ∈ Hr(TN ) which is a consequence of the Sobolev embedding theorem, see [10,
Sec. 2.1]. Here and in the following, we always set

r∗ = max
{
r, ⌊N

2 ⌋+ 1
}
.

It is easy to see that ⌊x⌋+ 1 is the smallest integer which is strictly larger than x.

Lemma 5.3.5. Let k ∈ N0 and r ∈ N0. If v ∈ Ck(Γ, Hr∗(TN )) and w ∈ Ck(Γ, Hr(TN )), then also
vw ∈ Ck(Γ, Hr(TN )) with

∥vw∥k,r ≤ C∥v∥k,r∗∥w∥k,r

for a constant C > 0 independent of v and w.

For the proof, we set m = |k|1, M = {1, . . . ,m} and

η = (1, . . . , 1︸ ︷︷ ︸
k1

, 2, . . . , 2︸ ︷︷ ︸
k2

, . . . , d, . . . , d︸ ︷︷ ︸
kd

) ∈ {1, . . . , d}m.

The notation introduced in Section 5.3.3 will be used throughout the error analysis.
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Proof. The product rule (5.17) implies that

∂|S|(vw)
∂yS

=
∑

T ∈PS

∂|T |v
∂yT

∂|S\T |w

∂yS\T

for S ⊆M . By applying the norm of C(Γ, Hr(TN )), the triangle inequality and (5.18), we get∥∥∥∥∂|S|(vw)
∂yS

∥∥∥∥
0,r

≤ C
∑

T ∈PS

∥∥∥∥∂|T |v
∂yT

∥∥∥∥
0,r∗

∥∥∥∥∂|S\T |w

∂yS\T

∥∥∥∥
0,r

≤ C max
T ∈PS

∥∥∥∥∂|T |v
∂yT

∥∥∥∥
0,r∗

∑
T ∈PS

∥∥∥∥∂|S\T |w

∂yS\T

∥∥∥∥
0,r

≤ C max
T ∈PS

∥∥∥∥∂|T |v
∂yT

∥∥∥∥
0,r∗

max
T ∈PS

∥∥∥∥∂|S\T |v

∂yS\T

∥∥∥∥
0,r

≤ C∥v∥k,r∗∥w∥k,r.

As S ⊆M was arbitrary, the statement follows.

Another simple consequence of Lemma 5.3.5 and the definition of B in (5.6) is the following result.

Corollary 5.3.6. If V ∈ Ck(Γ, Hr(TN )) and w ∈ Ck(Γ, Hr∗(TN )), then also B[w] ∈ Ck(Γ, Hr(TN ))
and

∥B[w]∥k,r ≤ ∥V ∥k,r + |χ|∥w∥k,r∗∥w∥k,r.

The above result will be frequently used throughout the next section and will not be mentioned
explicitly.

The next lemma is a variant of [60, Lem. 3] with y-dependency and is used later in the final step of
the proofs of the local error bounds. Here and in the entire next section, we abbreviate

B∗(w) = i
2B[w]. (5.19)

Lemma 5.3.7. Assume that Assumption E1 holds with u(0) = v. Let u+(τ) = ei∆τ eB∗(v)τv and set

b(τ) = ∂|S|

∂yS

[
B[u(τ)]−B[u+(τ)]

]
= χ

∂|S|

∂yS

[
|u(τ)|2 − |u+(τ)|2

]
.

Then we have
b(τ) =

∫ τ

0
∂τ b(r)dr =

∫ τ

0

∫ r

0
∂2

τ b(r̃)dr̃dr

with

∂τ b(τ) = 2χ∂
|S|

∂yS

(
Re(u(τ)∂τu(τ))− 2 Re(u+(τ)∂τu

+(τ))
)
,

∂2
τ b(τ) = 2χ∂

|S|

∂yS
Re
(
u(τ)∂2

τu(τ) + ∂τu(τ)∂τu(τ)− u+(τ)∂2
τu

+(τ)− ∂τu+(τ)∂τu
+(τ)

)
,

where ∂τ b(τ) ∈ C(Γ, Hs(TN )) and ∂2
τ b(τ) ∈ C(Γ, L2(TN )) are uniformly bounded in τ ∈ [0, T ].

Proof. By linearity of differentiation in y, it is enough to show the statement for S = ∅. By the funda-
mental theorem of calculus, we have

b(τ) = b(0) +
∫ τ

0
∂τ b(r)dr = b(0) + τ∂τ b(0) +

∫ τ

0

∫ r

0
∂2

τ b(r̃)dr̃dr.
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Since u(0) = v, it is clear that b(0) = 0. Now we show ∂τ b(0) = 0. We have

∂τ b(τ) = 2χRe(u(τ)∂τu(τ))− 2χRe(u+(τ)∂τu
+(τ)) (5.20)

by the product rule. Since v = u(0) by Assumption E1, it holds

∂τu|τ=0 = i∆v + iB[v]v,

∂τu
+|τ=0 = i∆v +B∗(v)v,

such that

∂τ b(0) = 2χRe(v∂τu(0))− 2χRe(v∂τu
+(0)) = 2χRe(viB[v]v)− 2χRe(vB∗(v)v) = 0,

because both functions inside Re are purely imaginary. The second derivative can be obtained by differ-
entiating (5.20). To see the boundedness, observe that

∂τu
+(τ) = i∆eτ i∆eτB∗(v)v + eτ i∆eτB∗(v)B∗(v)v,

∂2
τu

+(τ) = (i∆)2eτ i∆eτB∗(v)v + 2i∆eτ i∆eτB∗(v)B∗(v)v + eτ i∆eτB∗(v)B2
∗(v)v.

Now we apply ∥ · ∥0,s to the first equation and ∥ · ∥0,0 to the second one. By Assumption E1, we get that
these expressions are uniformly bounded in τ ∈ [0, T ].

5.3.5 Error analysis: The proofs

We start the proof of the two main theorems with the proof of the local error bound in Hs(TN ). This
choice is made for two reasons: First, it is the simpler and shorter proof of the two local error bounds
and second, the global error bound in L2(TN ) requires the local error bound in Hs(TN ) such that the
L2(TN )-results somehow depend on the Hs(TN )-results. Thus, this subsection is structured as follows.

1. Proof of the local error bound (5.12) in Hs(TN )

2. Proof of the local error bound (5.13) in L2(TN )

3. Proof of two stability results

4. Proof of the global error bound (5.15) in L2(TN )

5. Proof of the global error bound (5.14) in Hs(TN ) (sketched)

In the proofs, we use the notation
Ok,s(τ j)

for j ∈ N to indicate that a function is O(τ j) as τ → 0 with respect to the norm ∥ · ∥k,s.

Proof of (5.12)

As a preparation, we set m = |k|1, M = {1, . . . ,m},

η = (1, . . . , 1︸ ︷︷ ︸
k1

, 2, . . . , 2︸ ︷︷ ︸
k2

, . . . , d, . . . , d︸ ︷︷ ︸
kd

) ∈ {1, . . . , d}m
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and abbreviate
D = Dη = ∂m

∂yM
= ∂|k|1

∂yk
(5.21)

with the notation from Section 5.3.3. Recall the Cauchy problem for the NLS

∂tu(t) = i∆u(t) + iB[u(t)]u(t), t ≥ 0, (5.22a)

u(0) = v (5.22b)

from (5.3). Note that we have set v = u0 in order to distinguish more clearly between the solution u and
the initial value v. We only prove that

∥Du(τ)−D(Φτ (v))∥0,s ≤ Cτ2

for D from (5.21), since the procedure for differential operators with lower order than D is completely
analogous.

The proof is divided into five steps.

Step 1: Representation of the solution. For the solution u of (5.22), we have

∂tDu(t) = i∆Du(t) + i
∑

S∈PM

∂|S|B[u(t)]
∂yS

∂|Sc|u(t)
∂ySc

and the variation-of-constants formula yields

Du(τ) = eiτ∆Dv +
∑

S∈PM

I1(S) (5.23)

with

I1(S) = i
∫ τ

0
ei(τ−r)∆

(
∂|S|B[u(r)]

∂yS

∂|Sc|u(r)
∂ySc

)
dr. (5.24)

For the integrand in (5.24), we apply the variation-of-constants formula once again to obtain

I1(S) = i
∫ τ

0
ei(τ−r)∆

(
∂|S|B[u(r)]

∂yS
eir∆ ∂

|Sc|v
∂ySc

)
dr +O0,s(τ2). (5.25)

Step 2: Representation of the numerical approximation. We use the notation

Φτ [ṽ] = e τ
2 iB[u+]eiτ∆e τ

2 iB[v]ṽ with u+ = eiτ∆e τ
2 iB[v]v

(observe the distinction between v and ṽ and note that Φτ [v] = Φτ (v)).
By the product rule (5.17), we have

D(Φτ [v]) = Φτ [Dv] +
∑

S∈PM
∗

∂|S|Φτ

∂yS

∂|Sc|v
∂ySc . (5.26)

Using again the product rule (5.17), B∗(w) = i
2B[w] and Faà di Bruno’s formula (5.16), we compute

(formally)

∂|S|Φτ

∂yS
=
∑

T ∈PS

∂|T |eτB∗(u+)

∂yT
eiτ∆ ∂

|S\T |eτB∗(v)

∂yS\T

=
∑

T ∈PS

∑
π∈Π(T )

∑
σ∈Π(S\T )

τ |π|+|σ| ∏
C1∈π

∂|C1|B∗(u+)
∂yC1

Φτ

∏
C2∈σ

∂|C2|B∗(v)
∂yC2

. (5.27)
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If we separate the terms with T = ∅ and T = S, we get

∂|S|Φτ

∂yS
= τf1(S) +O0,s(τ2)

with

f1(S) = Φτ
∂|S|B∗(v)
∂yS

+ ∂|S|B∗(u+)
∂yS

Φτ . (5.28)

Thus, we arrive at

D(Φτ [v]) = Φτ [Dv] +
∑

S∈PM
∗

τf1(S)∂
|Sc|v
∂ySc +O0,s(τ2), (5.29)

where expressions like f1(S)w have to be understood as

f1(S)w = Φτ

[
∂|S|B∗(v)
∂yS

w

]
+ ∂|S|B∗(u+)

∂yS
· Φτ [w].

Eq. (5.29) still contains the numerical flow Φτ in the first term on the right-hand side and also in the
definition of f1, too. The next step is to get rid of it.

Step 3: Eliminate numerical flows Φτ . Using the “Taylor expansion” for φ-functions (B.2) in
Appendix B, we obtain

eτB∗(w)v =
J−1∑
j=0

τ j

j! B
j
∗(w)v + τJBJ

∗ (w)φJ(τB∗(w))v, J ∈ N. (5.30)

We use this formula to expand the terms containing Φτ in (5.29). For any ṽ ∈ L2(TN ), it holds

Φτ [ṽ] = eτB∗(u+)eiτ∆eτB∗(v)ṽ

= eiτ∆eτB∗(v)ṽ + τB∗(u+)eiτ∆eτB∗(v)ṽ +O0,s(τ2)

= eiτ∆ṽ + τ
(
eiτ∆B∗(v) +B∗(u+)eiτ∆) ṽ +O0,s(τ2). (5.31)

Using this for the first and second summand in (5.29), we get

D(Φτ [v]) = eiτ∆Dv + τ
(
eiτ∆B∗(v) +B∗(u+)eiτ∆)Dv

+
∑

S∈PM
∗

τ

(
eiτ∆ ∂

|S|B∗(v)
∂yS

+ ∂|S|B∗(u+)
∂yS

eiτ∆
)
∂|Sc|v
∂ySc +O0,s(τ2). (5.32)

In total, we have the representation

D(Φτ [v]) = eiτ∆Dv +
∑

S∈PM

τ f̃1(S)∂
|Sc|v
∂ySc +O0,s(τ2), (5.33)

where f̃1 is defined as f1 in (5.28), but all numerical flows Φτ are replaced by eiτ∆. The expression (5.33)
is now free from numerical flows Φτ and can be compared to the expansion of the solution (5.23) – at
least after some quadrature approximations. The next step is to derive these quadrature expressions.
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Step 4: Quadrature approximation. Let

h(r) := e(τ−r)i∆
(
∂|S|B[u(r)]

∂yS
eri∆ ∂

|Sc|v
∂ySc

)
.

We approximate I1(S) from (5.25) by

I1(S) +O0,s(τ2) = i
∫ τ

0
h(r)dr ≈ iτ

2

(
h(0) + h(τ)

)
=: I□1 (S)

and use the first-order Peano form of the error of the trapezoidal rule

E = I□1 (S)− i
∫ τ

0
h(r)dr = iτ

2

(
h(0) + h(τ)

)
− i
∫ τ

0
h(r)dr = −iτ2

∫ 1

0
( 1

2 − θ)h′(θτ)dθ.

The last term can be estimated in a standard way: We have

h′(r) = −i∆e(τ−r)i∆
(
∂|S|B[u(r)]

∂yS
eri∆ ∂

|Sc|v
∂ySc

)
+ 2χe(τ−r)i∆

(
∂|S|(Re(u(r)∂ru(r)))

∂yS
eri∆ ∂

|Sc|v
∂ySc

)

+ e(τ−r)i∆
(
∂|S|B[u(r)]

∂yS
i∆eri∆ ∂

|Sc|v
∂ySc

)
and observe that h′ is bounded in ∥ · ∥0,s since u(r), v ∈ Ck(Γ, Hs(TN )) by Assumption E1. For (5.23),
we obtain the updated expansion

Du(τ) = eτ i∆Dv +
∑

S∈PM

I□1 (S) +O0,s(τ2). (5.34)

Step 5: Error expansion. Subtracting (5.33) from (5.34) yields

Du(τ)−D(Φτ [v]) =
∑

S∈PM

(
I□1 (S)− τ f̃1(S)∂

|Sc|v
∂ySc

)
+O0,s(τ2)

=
∑

S∈PM

E1(S) +O0,s(τ2), (5.35)

and with B∗ from (5.19), we get

E1(S) = τ

(
eiτ∆ ∂

|S|B∗(v)
∂yS

+ ∂|S|B∗(u(τ))
∂yS

eiτ∆ − eiτ∆ ∂
|S|B∗(v)
∂yS

− ∂|S|B∗(u+)
∂yS

eiτ∆
)
∂|Sc|v
∂ySc

= τ

(
∂|S|B∗(u(τ))

∂yS
− ∂|S|B∗(u+)

∂yS

)
eiτ∆ ∂

|Sc|v
∂ySc .

Lemma 5.3.7 implies that E1(S) is O0,s(τ2). Plugging this into (5.35), we arrive at

Du(τ)−D(Φτ [v]) = O0,s(τ2),

which finishes the proof. □

Now we can turn to the proof of the error bound in L2(TN ).
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Proof of (5.13)

This proof is divided into the same five steps as the previous proof. Again, we only show that

∥Du(τ)−D(Φτ (v))∥0,0 ≤ Cτ3,

since the procedure for differential operators with lower order than D is completely analogous. The main
differences compared to the previous proof of (5.12) are that the norm ∥ · ∥0,s is replaced by ∥ · ∥0,0 and
that we need an additional power of τ in the remainder terms.

Step 1: Representation of the solution. Expanding (5.24) once more via the variation-of-constants
formula, we obtain

Du(τ) = eτ i∆Dv +
∑

S∈PM

I1(S) +
∑

T ∈PSc

I2(S, T )

 (5.36)

with

I1(S) = i
∫ τ

0
ei(τ−r)∆ ∂

|S|B[u(r)]
∂yS

eri∆ ∂
|Sc|v
∂ySc dr, (5.37)

I2(S, T ) = i2
∫ τ

0

∫ r

0
ei(τ−r)∆ ∂

|S|B[u(r)]
∂yS

e(r−r̃)i∆ ∂
|T |B[u(r̃)]
∂yT

∂|Sc\T |u(r̃)
∂ySc\T

dr̃dr. (5.38)

Step 2: Representation of the numerical approximation. We start with a technical computation.
Equation (5.27) yields

∂|S|Φτ

∂yS
=
∑

T ∈PS

∑
π∈Π(T )

∑
σ∈Π(S\T )

τ |π|+|σ| ∏
C1∈π

∂|C1|B∗(u+)
∂yC1

Φτ

∏
C2∈σ

∂|C2|B∗(v)
∂yC2

,

again with B∗(w) = i
2B[w]. If we separate the terms with T = ∅ and T = S, we get

∂|S|Φτ

∂yS
=
∑

T ∈PS
∗∗

∑
π∈Π(T )

∑
σ∈Π(S\T )

τ |π|+|σ| ∏
C1∈π

∂|C1|B∗(u+)
∂yC1

Φτ

∏
C2∈σ

∂|C2|B∗(v)
∂yC2

+
∑

σ∈Π(S)

τ |σ|Φτ

∏
C∈σ

∂|C|B∗(v)
∂yC

+
∑

π∈Π(S)

τ |π| ∏
C∈π

∂|C|B∗(u+)
∂yC

Φτ . (5.39)

Let us reduce the horror of this equation a bit: First, we only have to keep an eye on the terms of order
1 and 2 in τ , so everything else can be hidden in O0,0(τ3). Second, T ∈ PS

∗∗ implies than we can only
achieve |π|+ |σ| = 2 in the first line for |π| = |σ| = 1, so π = {T} and σ = {S \ T}. Hence,

∂|S|Φτ

∂yS
=
∑

T ∈PS
∗∗

τ2 ∂
|T |B∗(u+)
∂yT

Φτ
∂|S\T |B∗(v)
∂yS\T

+
∑

σ∈Π(S)
|σ|≤2

τ |σ|
[

Φτ

∏
C∈σ

∂|C|B∗(v)
∂yC

+
∏
C∈σ

∂|C|B∗(u+)
∂yC

Φτ

]
+O0,0(τ3)

=
∑

T ∈PS
∗∗

τ2f2(S, T ) + τf1(S) +O0,0(τ3) (5.40)
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with

f1(S) = Φτ
∂|S|B∗(v)
∂yS

+ ∂|S|B∗(u+)
∂yS

Φτ , (5.41)

f2(S, T ) = ∂|T |B∗(u+)
∂yT

Φτ
∂|S\T |B∗(v)
∂yS\T

+ 1
2Φτ

∂|T |B∗(v)
∂yT

∂|S\T |B∗(v)
∂yS\T

+ 1
2
∂|T |B∗(u+)

∂yT

∂|S\T |B∗(u+)
∂yS\T

Φτ .

(5.42)

The last equality in (5.40) follows from the fact that every partition σ ∈ Π(S) with |σ| = 2 consists of
an arbitrary subset ∅ ⊊ T ⊊ S and its complement in S. If we go through all such subsets T and notice
that T is the complement of S \ T , we have counted each partition σ ∈ Π(S) with |σ| = 2 twice. Hence
the factor 1/2 appears in the second and third term in the definition of f2(S, T ).

Now we have to deal with some set-theoretic considerations. In fact, S ∈ PM
∗ and T ∈ PS

∗∗ is equivalent
to saying that T ∈ PM

∗ and M ⊇ S ⊋ T . A set S ⊋ T can be written in a unique way as S = S′ ∪T with
S′ ∈ PT c

∗ . Hence, for any function f , we have the identity∑
S∈PM

∗

∑
T ∈PS

∗∗

f(S, T ) =
∑

T ∈PM
∗

∑
S′∈PT c

∗

f(S′ ∪ T, T ) =
∑

S∈PM
∗

∑
T ∈PSc

∗

f(T ∪ S, S).

The last step is changing the names of T and S′ to S and T . We will apply this formula to

f(S, T ) = f2(S, T )∂
|Sc|v
∂ySc ,

and thus we compute

f2(T ∪ S, S) = ∂|S|B∗(u+)
∂yS

Φτ
∂|T |B∗(v)
∂yT

+ 1
2Φτ

∂|S|B∗(v)
∂yS

∂|T |B∗(v)
∂yT

+ 1
2
∂|S|B∗(u+)

∂yS

∂|T |B∗(u+)
∂yT

Φτ ,

(5.43)
∂|(T ∪S)c|v

∂y(T ∪S)c = ∂|Sc|v
∂ySc

for T ∈ PSc

∗ . (For the second equality, use (T ∪ S)c = M \ (T ∪ S) = Sc \ T .) Plugging (5.40) into (5.26)
yields

D(Φτ [v]) = Φτ [Dv] +
∑

S∈PM
∗

∂|S|Φτ

∂yS

∂|Sc|v
∂ySc

= Φτ [Dv] +
∑

S∈PM
∗

τf1(S)∂
|Sc|v
∂ySc +

∑
S∈PM

∗

∑
T ∈PSc

∗

τ2f2(T ∪ S, S)∂
|Sc\T |v

∂ySc\T
+O0,0(τ3). (5.44)

This expression still contains the numerical flow Φτ in the first term and in the definitions of f1 and
f2. In the next step, we will eliminate it from this expression.

Step 3: Eliminate numerical flows Φτ . We use (5.30) to expand the terms containing Φτ in (5.44).
For ṽ ∈ L2(TN ), we have

Φτ [ṽ] = eτB∗(u+)eiτ∆eτB∗(v)ṽ

= eiτ∆eτB∗(v)ṽ + τB∗(u+)eiτ∆eτB∗(v)ṽ + τ2

2 B
2
∗(u+)eiτ∆eτB∗(v)ṽ +O0,0(τ3)

= eiτ∆ṽ + τ
(
eiτ∆B∗(v) +B∗(u+)eiτ∆) ṽ

+ τ2

2
(
B2

∗(u+)eiτ∆ + 2B∗(u+)eiτ∆B∗(v) + eiτ∆B2
∗(v)

)
ṽ +O0,0(τ3). (5.45)
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Using this for the first and second summand in (5.44), we get

D(Φτ [v]) = eiτ∆Dv + τ
(
eiτ∆B∗(v) +B∗(u+)eiτ∆)Dv

+
∑

S∈PM
∗

τ
(

eiτ∆ ∂|S|B∗(v)
∂yS + ∂|S|B∗(u+)

∂yS eiτ∆
)

∂|Sc|v
∂ySc

+
∑

S∈PM
∗

τ2
[
eiτ∆B∗(v) ∂|S|B∗(v)

∂yS +B∗(u+)eiτ∆ ∂|S|B∗(v)
∂yS

+ ∂|S|B∗(u+)
∂yS eiτ∆B∗(v) + ∂|S|B∗(u+)

∂yS B∗(u+)eiτ∆
]

∂|Sc|v
∂ySc

+ τ2 ( 1
2B

2
∗(u+)eiτ∆ +B∗(u+)eiτ∆B∗(v) + 1

2 eiτ∆B2
∗(v)

)
Dv

+
∑

S∈PM
∗

∑
T ∈PSc

∗

τ2f2(T ∪ S, S) ∂|Sc\T |v
∂ySc\T +O0,0(τ3). (5.46)

Since B commutes with all of its derivatives, we may expand the big [ ]-term to

eiτ∆B∗(v) ∂|S|B∗(v)
∂yS +B∗(u+)eiτ∆ ∂|S|B∗(v)

∂yS + ∂|S|B∗(u+)
∂yS eiτ∆B∗(v) + ∂|S|B∗(u+)

∂yS B∗(u+)eiτ∆

= 1
2 eiτ∆B∗(v) ∂|S|B∗(v)

∂yS +B∗(u+)eiτ∆ ∂|S|B∗(v)
∂yS + 1

2B∗(u+) ∂|S|B∗(u+)
∂yS eiτ∆

+ 1
2 eiτ∆ ∂|S|B∗(v)

∂yS B∗(v) + ∂|S|B∗(u+)
∂yS eiτ∆B∗(v) + 1

2
∂|S|B∗(u+)

∂yS B∗(u+)eiτ∆

= f2(S, ∅) + f2(S, S) +O0,0(τ).

In total, we get the rather compact representation

D(Φτ [v]) = eiτ∆Dv +
∑

S∈PM

τ f̃1(S)∂
|Sc|v
∂ySc +

∑
S∈PM

∑
T ∈PSc

τ2f̃2(T ∪ S, S)∂
|Sc\T |v

∂ySc\T
+O0,0(τ3), (5.47)

where f̃1, f̃2 are defined as f1 and f2 in (5.41) and (5.42), but all numerical flows Φτ are replaced by
eiτ∆. The expression (5.47) is now free from numerical flows Φτ and can be compared to the expansion
of the solution u after some quadrature approximations.

Step 4: Quadrature approximation. Let

h(r) := ei(τ−r)∆
(
∂|S|B[u(r)]

∂yS
eri∆ ∂

|Sc|v
∂ySc

)
.

We approximate I1(S) from (5.37) by

I1(S) = i
∫ τ

0
h(r)dr ≈ iτ

2

(
h(0) + h(τ)

)
=: I□1 (S)

and use the second-order Peano form for the quadrature error of the trapezoidal rule, i.e.

E = I□1 (S)− I1(S) = iτ
2

(
h(0) + h(τ)

)
− i
∫ τ

0
h(r)dr = − iτ3

2

∫ 1

0
θ(1− θ)h′′(θτ)dθ.

Again, this error can be estimated in a standard way. The second derivative of h looks rather complicated,
but is not hard to calculate. We observe that h′′ is bounded in ∥ · ∥0,0.

In a similar fashion, we proceed for I2(S, T ) from (5.38). Let

g(r, r̃) = ei(τ−r)∆ ∂
|S|B[u(r)]
∂yS

ei(r−r̃)∆ ∂
|T |B[u(r̃)]
∂yT

∂|Sc\T |v

∂ySc\T
.
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We approximate

I2(S, T ) +O0,0(τ3) = i2
∫ τ

0

∫ r

0
g(r, r̃)dr̃dr ≈ 1

2

(
iτ
2

)2
[g(0, 0) + 2g(τ, 0) + g(τ, τ)] =: I□2 (S, T ) (5.48)

via a standard triangle rule. To do that with O0,0(τ3) for the approximation indicated by ≈ in (5.48),
we need both partial derivatives of g with respect to r and r̃ to be bounded in ∥ · ∥0,0. They are given by

∂rg(r, r̃) = ei(τ−r)∆

[
− i∆∂|S|B[u(r)]

∂yS
+ 2χ

∂|S|(Re(u(r)∂ru(r))
)

∂yS
+ ∂|S|B[u(r)]

∂yS
i∆
]

× ei(r−r̃)∆ ∂
|T |B[u(r̃)]
∂yT

∂|Sc\T |v

∂ySc\T
,

∂
r̃
g(r, r̃) = ei(τ−r)∆ ∂

|S|B[u(r)]
∂yS

ei(r−r̃)∆

[
− i∆∂|T |B[u(r̃)]

∂yT

∂|Sc\T |v

∂ySc\T

+ 2χ
∂|T |(Re(u(r̃)∂

r̃
u(r̃)

)
∂yT

∂|Sc\T |v

∂ySc\T

]
,

and thus indeed bounded in ∥ · ∥0,0. For (5.36), we get the updated expansion

Du(τ) = eτ i∆Dv +
∑

S∈PM

I□1 (S) +
∑

T ∈PSc

I□2 (S, T )

+O0,0(τ3). (5.49)

Step 5: Error expansion. Subtracting (5.47) from (5.49), we arrive at

Du(τ)−D(Φτ [v]) =
∑

S∈PM

(
I□1 (S)− τ f̃1(S)∂

|Sc|v
∂ySc

)

+
∑

S∈PM

∑
T ∈PSc

(
I□2 (S, T )− τ2f̃2(T ∪ S, S)∂

|Sc\T |v

∂ySc\T

)
+O0,0(τ3)

=
∑

S∈PM

E1(S) +
∑

S∈PM

∑
T ∈PSc

E2(S, T ) +O0,0(τ3), (5.50)

where

E1(S) = τ

(
eiτ∆ ∂

|S|B∗(v)
∂yS

+ ∂|S|B∗(u(τ))
∂yS

eiτ∆ − eiτ∆ ∂
|S|B∗(v)
∂yS

− ∂|S|B∗(u+)
∂yS

eiτ∆
)
∂|Sc|v
∂ySc

= τ

(
∂|S|B∗(u(τ))

∂yS
− ∂|S|B∗(u+)

∂yS

)
eiτ∆ ∂

|Sc|v
∂ySc

and

E2(S, T ) = τ2
[

1
2 eiτ∆ ∂|S|B∗(v)

∂yS

∂|T |B∗(v)
∂yT + ∂|S|B∗(u(τ))

∂yS eiτ∆ ∂|T |B∗(v)
∂yT + 1

2
∂|S|B∗(u(τ))

∂yS

∂|T |B∗(u(τ))
∂yT eiτ∆

− ∂|S|B∗(u+)
∂yS eiτ∆ ∂|T |B∗(v)

∂yT − 1
2 eiτ∆ ∂|S|B∗(v)

∂yS

∂|T |B∗(v)
∂yT − 1

2
∂|S|B∗(u+)

∂yS

∂|T |B∗(u+)
∂yT eiτ∆

]
∂|Sc\T |v
∂ySc\T

= τ2
[

∂|S|B∗(u(τ))
∂yS eiτ∆ ∂|T |B∗(v)

∂yT + 1
2

∂|S|B∗(u(τ))
∂yS

∂|T |B∗(u(τ))
∂yT eiτ∆

− ∂|S|B∗(u+)
∂yS eiτ∆ ∂|T |B∗(v)

∂yT − 1
2

∂|S|B∗(u+)
∂yS

∂|T |B∗(u+)
∂yT eiτ∆

]
∂|Sc\T |v
∂ySc\T

= τ2
[

∂|S|B∗(u(τ))
∂yS − ∂|S|B∗(u+)

∂yS

]
eiτ∆ ∂|T |B∗(v)

∂yT

+ τ2

2

[
∂|S|B∗(u(τ))

∂yS − ∂|S|B∗(u+)
∂yS

]
∂|T |B∗(u+)

∂yT eiτ∆ +O0,0(τ3).
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By Lemma 5.3.7, we obtain that

∂|S|B∗(u(τ))
∂yS

− ∂|S|B∗(u+)
∂yS

= O0,0(τ2)

and thus both E1(S) and E2(S, T ) are O0,0(τ3). Plugging this into (5.50), we arrive at

Du(τ)−D(Φτ (v)) = O0,0(τ3),

which finishes the proof. □

Now that the local error bounds are established, we may turn to the global error bounds. As usual,
the transition from local to global error bounds requires some stability results. In our case, we have the
following two lemmas. The first one deals with the flow of the non-linear subproblem.

Lemma 5.3.8. Let k ∈ Nd
0, r ∈ N0 and r∗ = max{r, ⌊N

2 ⌋+1}. Moreover, assume that V ∈ Ck(Γ, Hr∗(TN ))
and v0, w0 ∈ Ck(Γ, Hr∗(TN )) with

∥v0∥k,r∗ ≤ R and ∥w0∥k,r∗ ≤ R.

Then we have

∥eitB[v0]v0 − eitB[w0]w0∥k,r ≤ eC(∥V ∥k,r∗ +|χ|R2)t∥v0 − w0∥k,r,

∥eitB[v0]v0∥k,r ≤ ReC(∥V ∥k,r∗ +|χ|R2)t,

both for t ≥ 0 and the constant C > 0 does not depend on V , v0 and w0.

Proof. First observe that the functions v(t) = eitB[v0]v0 and w(t) = eitB[w0]w0 solve the initial value
problems

v′(t) = iB[v0]v(t), v(0) = v0,

w′(t) = iB[w0]w(t), w(0) = w0.

We start with the proof of the second inequality and then use it to show the first one.
Second inequality. Starting with

v(t) = v0 +
∫ t

0
iB[v0]v(s)ds, (5.51)

Lemma 5.3.5 and Corollary 5.3.6 imply

∥v(t)∥k,r ≤ ∥v0∥k,r +
∫ t

0
∥B[v0]v(s)∥k,rds ≤ ∥v0∥k,r + C

∫ t

0

(
∥V ∥k,r∗ + |χ|∥v0∥2

k,r∗
)
∥v(s)∥k,rds,

and thus, by Gronwall’s lemma,

∥v(t)∥k,r ≤ eC(∥V ∥k,r∗ +|χ|R2)t∥v0∥k,r. (5.52)

This shows the second inequality. Note that the same inequality also holds with r replaced by r∗.
First inequality. We have

B[v0]v(t)−B[w0]w(t) = (V + χ|v0|2)v(t)− (V + χ|w0|2)w(t)

= V (v(t)− w(t)) + χ(|v0|2v(t)− |w0|2w(t))

= V (v(t)− w(t)) + χ
[
(v0 − w0)v0v(t) + w0(v0 − w0)v(t) + |w0|2(v(t)− w(t))

]
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and hence, using (5.52) with r∗ instead of r,

∥B[v0]v(t)−B[w0]w(t)∥k,r ≤ C
[
∥V ∥k,r∗∥v(t)− w(t)∥k,r + |χ|∥v0∥k,r∗∥v(t)∥k,r∗∥v0 − w0∥k,r

+ |χ|∥w0∥k,r∗∥v(t)∥k,r∗∥v0 − w0∥k,r + |χ|∥w0∥2
k,r∗∥v(t)− w(t)∥k,r

]

≤ C
(

[∥V ∥k,r∗ + |χ|R2]∥v(t)− w(t)∥k,r

+ 2|χ|R2eC(∥V ∥k,r∗ +|χ|R2)t∥v0 − w0∥k,r

)
.

Using (5.51) (and its analogue for w(t)), we obtain

∥v(t)− w(t)∥k,r ≤ ∥v0 − w0∥k,r +
∫ t

0
∥B[v0]v(s)−B[w0]w(s)∥k,rds

≤
(

1 + 2C|χ|R2
∫ t

0
eC(∥V ∥k,r∗ +|χ|R2)sds

)
∥v0 − w0∥k,r

+ C(∥V ∥k,r∗ + |χ|R2)
∫ t

0
∥v(s)− w(s)∥k,rds.

Using that the integral is monotonic, we estimate

1 + 2C|χ|R2
∫ t

0
eC(∥V ∥k,r∗ +|χ|R2)sds ≤ e2C(∥V ∥k,r∗ +|χ|R2)t.

By Gronwall’s lemma, we arrive at

∥v(t)− w(t)∥k,r ≤ e2C(∥V ∥k,r∗ +|χ|R2)t∥v0 − w0∥k,retC(∥V ∥k,r∗ +|χ|R2)

= e3C(∥V ∥k,r∗ +|χ|R2)t∥v0 − w0∥k,r.

The previous result only deals with the non-linear part of the problem. Now we extend the result to
treat the “full” numerical flow.

Lemma 5.3.9. If V ∈ Ck(Γ, Hr∗(TN )), v0, w0 ∈ Ck(Γ, Hr∗(TN )) with ∥v0∥k,r∗ ≤ R and ∥w0∥k,r∗ ≤ R

for some r ∈ N0 and k ∈ Nd
0, then there exists a constant C > 0 such that

∥Φτ (v0)− Φτ (w0)∥k,r ≤ eC(∥V ∥k,r∗ +|χ|R̃2)τ∥v0 − w0∥k,r

for all 0 < τ ≤ 2, where R̃ = eC(∥V ∥k,r∗ +|χ|R2)R. The constant C > 0 does not depend on V , v0 and w0.

Proof. We set v+ = ei∆τ eτB∗(v0)v0 and w+ = ei∆τ eτB∗(w0)w0. Applying Lemma 5.3.8 twice, we obtain

∥Φτ (v0)− Φτ (w0)∥k,r = ∥eτB∗(v+)v+ − eτB∗(w+)w+∥k,r

≤ eC(∥V ∥k,r∗ +|χ|R̃2)τ/2∥v+ − w+∥k,r

= eC(∥V ∥k,r∗ +|χ|R̃2)τ/2∥eτB∗(v0)v0 − eτB∗(w0)w0∥k,r

≤ eC(∥V ∥k,r∗ +|χ|R̃2)τ∥v0 − w0∥k,r.

We are now in the position to prove (5.15), the global error bound in L2(TN ).
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Proof of Theorem 5.3.2 / (5.15)

In this proof, we combine the local error bounds (5.12) and (5.13) with the Hs(TN )-conditional stability
estimate from Lemma 5.3.9 (with r = 0) to derive the global error bound. This is a typical “Lady
Windermere’s fan” argument.

As a preparation, we prove by induction on n that there exists τ0 > 0 such that for all n ∈ N0 and
ℓ ∈ N0 with tℓ+n = (ℓ+ n)τ ≤ T , it holds that

∥Φn
τ (u(tℓ))∥k,s ≤ 2M (s)

k (5.53)

for all 0 < τ ≤ τ0, where
M

(s)
k = max

t∈[0,T ]
∥u(t)∥k,s.

This is clear for n = 0. Now assume that

∥Φk
τ (u(tℓ))∥k,s ≤ 2M (s)

k for k = 0, . . . , n− 1, ℓ ∈ N0 with tℓ+k ≤ T.

We estimate the norm of Φn
τ (u(tℓ)) using the telescoping sum

Φn
τ (u(tℓ)) = u(tℓ+n) +

n−1∑
j=0

(
Φn−j

τ (u(tℓ+j))− Φn−j−1
τ (u(tℓ+j+1))

)
(5.54)

and
Φn−j

τ (u(tℓ+j))− Φn−j−1
τ (u(tℓ+j+1)) = Φτ (Φn−j−1

τ (u(tℓ+j)))− Φτ (Φn−j−2
τ (u(tℓ+j+1)))

whenever 0 ≤ j ≤ n−2. Combining the stability result from Lemma 5.3.9 with the induction hypothesis,
we get

∥Φn−j
τ (u(tℓ+j))− Φn−j−1

τ (u(tℓ+j+1))∥k,s

≤ eC(∥V ∥k,s+|χ|R̃2)τ∥Φn−j−1
τ (u(tℓ+j))− Φn−j−2

τ (u(tℓ+j+1))∥k,s

≤ eC(∥V ∥k,s+|χ|R̃2)τ(n−j−1)∥Φτ (u(tℓ+j))− u(tℓ+j+1)∥k,s

≤ eC(∥V ∥k,s+|χ|R̃2)τ(n−j−1)Cloc,sτ
2 (5.55)

for all 0 < τ ≤ 2, where R̃ = eC(∥V ∥k,s+|χ|R2)R and R = 2M (s)
k . The constant Cloc,s comes from (5.12),

the local error bound in Hs(TN ). Note that (5.55) also holds for j = n− 1 (no stability result is needed
then, just the local error). Using (5.55) for (5.54) yields

∥Φn
τ (u(tℓ))∥k,s ≤ ∥u(tℓ+n)∥k,s +

n−1∑
j=0

eC(∥V ∥k,s+|χ|R̃2)τjCloc,sτ
2

≤M (s)
k + T eC(∥V ∥k,s+|χ|R̃2)TCloc,sτ

for (ℓ+ n)τ ≤ T , which can be bounded by 2M (s)
k for any

τ ≤ τ0 := min
{

M
(s)
k

T eC(∥V ∥k,s+|χ|R̃2)TCloc,s

, 2
}
. (5.56)

This finishes the induction step and establishes (5.53).



124 Chapter 5. Multi-level stochastic collocation for Schrödinger equations

Now we can tackle the proof of the theorem itself. By Lemma 5.3.9 for r = 0 and the local error
bound (5.13), we have

∥Φn
τ (u0)− u(tn)∥k,0 ≤

n−1∑
j=0
∥Φj

τ (Φτ (u(tn−j−1))− Φj
τ (u(tn−j))∥k,0

≤
n−1∑
j=0

eC(∥V ∥k,s+|χ|R̃2)τj∥Φτ (u(tn−j−1))− u(tn−j)∥k,0

≤
n−1∑
j=0

eC(∥V ∥k,s+|χ|R̃2)τjCloc,0τ
3

≤ eC(∥V ∥k,s+|χ|R̃2)τn − 1
eC(|χ|R̃2+∥V ∥k,s)τ − 1

Cloc,0τ
3

≤ eC(∥V ∥k,s+|χ|R̃2)tn − 1
C(|χ|R̃2 + ∥V ∥k,s)

Cloc,0τ
2.

In the last step, we used 1 + x ≤ ex for x ≥ 0. Note that Cloc,0 is exactly the constant from the local
error bound (5.13) and thus depends on M

(s+2)
k . □

Proof of Theorem 5.3.2 / (5.14)

Here we have to combine the local error bound (5.12) with the Hs(TN )-conditional stability estimate
from Lemma 5.3.9 for r = s = r∗. The procedure is completely analogous to the previous proof and thus
omitted here. □

Now that we have shown both error bounds which were stated in Theorem 5.3.2, the proof is completed.
We do not verify Theorem 5.3.2 numerically, since it has to be seen merely as a tool for the analysis

of the multi-level method. The error in the norms ∥ · ∥k,0 for k ̸= 0 is usually not a quantity one is
interested in. Another reason for omitting a numerical verification of the theorem is the difficulty of
computing the norms ∥ · ∥k,0 for k ̸= 0 in practice – the main reason for that is the presence of the (in
practice unavailable) y-derivatives of the solution. That being said, the case k = 0 is an exception – but
in this case the statement of the theorem is not new.

5.3.6 Error analysis for the linear Schrödinger equation

All results from this chapter so far hold for the special case χ = 0, too. However, some of the results can
be simplified. We present these simplifications now. The content presented here will appear in a more
detailed version in [61].

Throughout this section we consider the linear Schrödinger equation (LSE) for u : R+ × TN × Γ→ C
given by

∂tu(t, x, y) = i∆u(t, x, y) + iV (x, y)u(t, x, y), t ≥ 0, x ∈ TN , y ∈ Γ, (5.57a)

u(0, x, y) = u0(x, y), x ∈ TN , y ∈ Γ, (5.57b)

where N ∈ N, T = R/(2πZ), Γ = [−1, 1]d, V : TN × Γ→ R and u0 : TN × Γ→ C. This equation is equal
to (5.2) for χ = 0.
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Since this PDE is linear in u, it is not required anymore to use the algebra structure of Hr(TN ) for
r > N

2 in the analysis and we may easily generalise our results from the previous sections for Sobolev
spaces of lower order. The precise assumptions and results are stated below.

The first assumption deals with the initial value.

Assumption E3. Let u0 ∈ Ck(Γ, H2(TN )) for a multi-index k = (k1, . . . , kd) ∈ Nd
0.

For the potential, we assume the following.

Assumption E4a. Let V ∈ Ck(Γ,W 2,∞(TN )) for a multi-index k = (k1, . . . , kd) ∈ Nd
0.

We also consider the following stronger version of E4a.

Assumption E4b. Let V ∈ Ck(Γ,W 4,∞(TN )) for a multi-index k = (k1, . . . , kd) ∈ Nd
0.

Assumption E3, E4a, and E4b can be checked rather easily in practice since they are all requirements
on the given data of the problem, and not on the solution. This is different from the non-linear case
before, as Assumption E1 was an assumption on the (unknown) solution.

For the linear equation considered here, the above assumptions can be used to show the existence of
a classical solution, as stated in the next theorem.

Theorem 5.3.10. Suppose that E3 and E4a hold for the same multi-index k ∈ Nd
0. Then, a classical

solution of the initial value problem (5.57) exists and has the regularity

u ∈ C1([0, T ], Ck(Γ, L2(TN ))
)
∩ C

(
[0, T ], Ck(Γ, H2(TN ))

)
.

A proof of Theorem 5.3.10 will appear in the supplementary material of [61]. Theorem 5.3.10 also
implies that the quantity

M
(s)
k = max

t∈[0,T ]
∥u(t)∥Ck(Γ,Hs(TN )) (5.58)

is finite for s ∈ {1, 2}.
The following theorem is the main convergence result for the linear Schrödinger equation.

Theorem 5.3.11. Let 0 < τ ≤ 1 and set tn = nτ for n ∈ N0. Let H(y) = ∆ + V (y) such that the
solution of (5.57) is u(t, x, y) = eitH(y)u0(x, y).

(a) If E3 and E4a hold for the same k ∈ Nd
0, then Φn

τ u0 ∈ Ck(Γ, H2(TN )) for all n ∈ N0. Moreover,
there is a constant C such that

∥u(tn)− Φn
τ u0∥Ck(Γ,L2(TN )) ≤ CM (1)

k τ

as long as 0 ≤ tn ≤ T , with M
(1)
k from (5.58). The constant C depends on T and on the norm

∥V ∥Ck(Γ,W 2,∞(TN )).

(b) If, in addition, E4b holds (again with the same k ∈ Nd
0), then there is a constant C such that

∥u(tn, ·)− Φn
τ u0∥Ck(Γ,L2(TN )) ≤ CM (2)

k τ2

as long as 0 ≤ tn ≤ T , with M
(2)
k from (5.58). The constant C depends on T and on the norm

∥V ∥Ck(Γ,W 4,∞(TN ))
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The proof of Theorem 5.3.11 is not given here, but is similar to the proof of Theorem 5.3.2 and uses
the same techniques. It will appear in [61].

Let us now return to the NLS with uncertain parameters and discuss the application of single-level
collocation methods.

5.4 Single-level stochastic collocation

The single-level approximation of the solution u of the NLS (5.2) at time tn = nτ is given by

uL,n = Ip,g
L un, (5.59)

where Ip,g
L is the sparse grid interpolant from (2.15) and un is the Strang splitting approximation after

n steps with step-size τ > 0, as defined in (5.8). The sparse grid interpolant Ip,g
L is based on Clenshaw-

Curtis abscissas and p and g are given by the “Smolyak” case from Table 2.1.
Unfortunately, the error analysis for this method cannot be performed with the same tools as in the

parabolic case in Section 4.6. The deduction of an error bound has to be adapted to the fact that the
solution of the NLS does usually not have an analytic extension to a complex polyellipse in the parameter
space, but instead belongs to Ck(Γ, X) with X = L2(TN ). Let us explain this briefly, since it is the main
reason why the approach from the parabolic case is not suitable here.

Recall the fact from complex analysis that the map C→ C, z 7→ |z|2 is not holomorphic (= complex
analytic). We observe that the right-hand side in the NLS (5.2a) contains the term |u|2u and thus a
classical solution u of (5.2) cannot have an analytic derivative ∂tu in a region in Cd. So it is very unlikely
that u itself is analytic.

Remark 5.4.1. Solutions of wave equations are typically not analytic with respect to their parameters
either. This was examined in detail in [80] and [81] for linear wave equations. It should be noted, however,
that a noticeable exception was also given there: If very smooth quantities of interest of the solution are
considered, then analyticity arguments can be used again. ⋄

Now we explain how the error of the stochastic collocation method for the NLS can be analysed
instead. Suppose that the Assumptions E1 and E2 hold for k = (k, . . . , k) ∈ Nd

0. Then Theorem 2.6.6
implies that the sparse grid interpolation error at time t ∈ [0, T ] is bounded by

∥u(t)− Ip,g
L u(t)∥L2

ϱ(Γ,X) ≤ CR(ηL, k, d)∥u(t)∥Ck(Γ,X)

with R(ηL, k, d) from (2.23) and X = L2(TN ).
Now consider the splitting approximation un for n ∈ N0. By Theorem 5.3.2, un ∈ Ck(Γ, X) for every

n ∈ N0 such that 0 ≤ nτ ≤ T . Moreover, the triangle inequality and (5.15) imply that its norm is
bounded by

∥un∥Ck(Γ,X) ≤ ∥un − u(tn)∥Ck(Γ,X) + ∥u(tn)∥Ck(Γ,X) ≤ C̃τ2
0 + max

t∈[0,T ]
∥u(t)∥Ck(Γ,X),

in particular independently of n and τ . The quantities C̃ and τ0 are the ones from Theorem 5.3.2. Again,
Theorem 2.6.6 implies

∥un − Ip,g
L un∥L2

ϱ(Γ,X) ≤ CR(ηL, k, d)∥un∥Ck(Γ,X).
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The total error of the single-level stochastic collocation method after n steps with step-size τ > 0 can be
split into

∥u(tn)− uL,n∥L2
ϱ(Γ,X) ≤ ∥u(tn)− un∥L2

ϱ(Γ,X) + ∥un − Ip,g
L un∥L2

ϱ(Γ,X).

The first term can be treated by Theorem 5.3.2 for k = 0, and the second term was estimated immediately
before. Thus we have shown the following theorem.

Theorem 5.4.2 (Error of single-level collocation). Suppose that the Assumptions E1 and E2 hold for
s > max

{
N
2 , 1

}
and k = (k, . . . , k) ∈ Nd

0. Then there exists τ0 > 0 such that for all step-sizes τ ∈ (0, τ0],
the stochastic collocation error is bounded by

∥u(tn)− uL,n∥L2
ϱ(Γ,L2(TN )) ≤ C(τ2 +R(ηL, k, d))

as long as 0 ≤ nτ ≤ T , where R(ηL, k, d) is given by (2.23). The constant C depends on

max
t∈[0,T ]

∥u(t)∥Ck(Γ,Hs+2(TN )),

k and d, but is independent of ηL, τ and n.

We proceed with the multi-level method.

5.5 Multi-level stochastic collocation

Here we verify the general Assumptions B1 and B2 for the multi-level method from Section 3.4. In
particular Assumption B2 cannot be verified as in the parabolic case due to the fact that an analytic
extension of the solution u to a complex polyellipse is not available here, as discussed in the previous
section.

We suppose as in the previous section that the Assumptions E1 and E2 hold for k = (k, . . . , k) ∈ Nd
0.

Let T > 0. Recall the notation introduced in Section 3.4,

uτj
= ΦNj

τj
(u0)

with the numerical flow of the Strang splitting scheme Φτ from (5.9). Let τj = 2−jτ0 and T = τjNj for
j ∈ N0, where the largest step-size τ0 with N0 = T/τ0 ∈ N is chosen either as the (in practice unknown)
value τ0 from Theorem 5.3.2 or smaller, but not larger.

To show Assumption B1, we apply Theorem 5.3.2 for k = 0 and obtain

∥u(T )− uτj∥L2
ϱ(Γ,X) ≤ ∥u(T )− uτj∥C0(Γ,X) ≤ Cτα

j

for j ∈ N0 with α = 1 for X = Hs(TN ) or α = 2 for X = L2(TN ). This verifies Assumption B1.
The main challenge is to prove that Assumption B2 is true. We choose ζ : Λ(Γ,X )→ R with

Λ(Γ,X ) = Ck(Γ, X) and ζ(v) = ∥v∥Ck(Γ,X).

The interpolation error estimate in Assumption B2, (3.10), follows directly from Theorem 2.6.6 with

κℓ = R(ηℓ, k, d) (5.60)
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from (2.23). Alternatively, it holds with

κℓ = η−k
ℓ (log(ηℓ))(k+2)(d−1)+1

by (2.24). To show the remaining estimates in (3.11), we apply the triangle inequality and Theorem 5.3.2
to arrive at

ζ(uτj+1 − uτj ) ≤ ∥uτj+1 − u(T )∥Ck(Γ,X) + ∥u(T )− uτj∥Ck(Γ,X) ≤ C(1 + 2β)τβ
j+1,

ζ(uτj
) ≤ ∥uτj

− u(T )∥Ck(Γ,X) + ∥u(T )∥Ck(Γ,X) ≤
(
C + τ−β

0 ∥u(T )∥Ck(Γ,X)
)
τβ

0 ,

where β = 1 for X = Hs(TN ) and β = 2 for X = L2(TN ). Thus, Assumption B2 is satisfied.
So far, the sequence (κℓ)ℓ∈N0 from (5.60) was different from κℓ = η−µ

ℓ (as required by the ε-cost
theorem). By Remark 3.5.1, however, we may indeed choose κℓ = η

−(k−1)
ℓ and thus µ = k − 1.

Altogether, we have verified the assumptions from the ε-cost theorem Theorem 3.5.2. Thus, we obtain
the ε-cost scalings for the multi-level estimator which were stated in Example 3.5.3.

Let us put that theory into practice in the next section.

5.6 Numerical experiments

Here we present some numerical experiments for linear and non-linear Schrödinger equations with uncer-
tain parameters which confirm the theoretical predictions from the previous section. We start with the
simpler one, the linear Schrödinger equation.

5.6.1 Application to the linear Schrödinger equation

This section will appear in a similar form in [61].
We consider the one-dimensional parametric linear Schrödinger equation

∂tu(t, x, y) = i
2∂

2
xu(t, x, y) + iV (x, y)u(t, x, y), t ∈ [0, T ], x ∈ TK , y ∈ Γ, (5.61a)

u(0, x, y) = u0(x, y), x ∈ TK , y ∈ Γ (5.61b)

on a scaled torus TK = R/(2πKZ) with potential V : TK × Γ → R and initial data u0 : TK × Γ → C.
Typical quantities of interest are the position of the particle

P : L2(TK)→ R, u 7→
∫
TK

x|u(x)|2dx, (5.62)

and the probability that the particle is located in a set S ⊆ TK ,

MS : L2(TK)→ R, u 7→
∫

S

|u(x)|2dx. (5.63)

Besides approximating the solution of (5.61) itself, we are also interested in computing these two quan-
tities.

In order to study the convergence of the MLSC method, we compare the multi-level approximation
u

(ML)
J = u

(ML)
J (T ) from equation (3.13) computed at time T to a reference uref(T ). Now we explain how

such a reference can be obtained without relying on a very fine collocation approximation and without
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using a splitting method for the time integration. The reference solution is thus independent of the
methods we try to verify here.

In order to simplify the formulas, the factor 1/2 in front of the second derivative was introduced in
(5.61a). This factor was missing in (5.2) but does not affect the preceding analysis substantially.

Reference solutions in spatial dimension N = 1. If we replace the scaled torus TK by R and
assume that the potential is a quadratic polynomial in x of the form

V (x, y) = −ν(y)(x− κ(y))2 − γ(y), (5.64)

then a family of solutions to the linear Schrödinger equation (5.61) is given by

u(t, x, y) = exp(w(t, x)) (5.65a)

with w(t, x, y) = i
2C(t, y)(x− q(t, y))2 + ip(t, y)(x− q(t, y)) + iξ(t, y), (5.65b)

see [72, Sec. II.4.1]. The quantities p(t, y), q(t, y) ∈ R and C(t, y), ξ(t, y) ∈ C are related by the (ordinary)
differential equations

∂tq(t, y) = p(t, y), (5.66a)

∂tp(t, y) = −2ν(y)(q(t, y)− κ(y)), (5.66b)

∂tξ(t, y) = iC(t, y)
2 + 1

2p(t, y)2 − ν(y)(q(t, y)− κ(y))2 − γ(y), (5.66c)

∂tC(t, y) = −C(t, y)2 − 2ν(y), (5.66d)

supplied with initial values. If the imaginary part of C(t, y) is strictly positive for t = 0, then this is
the case for all t ≥ 0 and |u(t, ·, y)| is a real-valued Gaussian. However, neither the potential (5.64) nor
the solution (5.65) are periodic in space, and thus this construction does not seem to be compatible with
the periodic boundary conditions in (5.61). But as the absolute value of the Gaussian (5.65a) decays
exponentially, the error caused by imposing periodic boundary conditions at ±πK is negligible if K is
chosen sufficiently large. If this is the case, then (5.65) provides indeed sufficiently accurate solutions to
the Schrödinger equation (5.61) on TK = R/(2πKZ).

To obtain a reference solution for (5.61) with potential (5.64) and initial value given by (5.65) for
t = 0, ηref = 100.000 vectors y1, . . . , yηref ∈ Γ from a Halton sequence in Γ = [−1, 1]d were used. For
each yj , the ODE system (5.66) was solved with a Dormand-Prince method with relative error tolerance
set to 10−9. Since we focus on the error induced by discretising the stochastic and temporal variables,
we use the same space discretisation for the reference solution and the approximations coming from the
MLSC method, namely a Fourier collocation method with M = 210 grid points.

In the following examples, computations are made on the time interval [0, 1] and the spatial domain
[−3π, 3π] with periodic boundary conditions, so K = 3. All errors are computed at the endpoint of the
time interval T = 1.

Example 5.6.1 (Two-dimensional example).

As a first test, we consider a toy problem with two-dimensional parameter space, so Γ = [−1, 1]2. For
y = (y1, y2) ∈ Γ, the potential is given by (5.64) with

ν(y) = 1 + δ

3(y1 + 2y2), κ(y) = 1
2

(
1 + δ

2(y1 + y2)
)
, γ(y) = 1 + δ

3(y1 + y2
2)
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and δ = 1
20 . The initial values for (5.66) at time t = 0 are set to

(
C(0, y), q(0, y), p(0, y), ξ(0, y)

)
=
(

1 + δ

4y
2
2 + i,−2 + δy2

1y
2
2 , 2, 1

)
,

which defines u(0, x, y) via (5.65). The initial value u(0, x, y) and the corresponding reference solution
uref at time T = 1 is shown in Figure 5.1. The reference solution uref was computed as explained in the
paragraph before this example (ηref = 100.000, M = 210).
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(d) Approx. to V[u(1, x, ·)]

Figure 5.1: Gaussian solution to the LSE at times t = 0 and t = 1

The error in the norm of the space L2
ϱ(Γ, X) with X = L2(TK) is computed numerically by

( 2πK
NrefM

Nref∑
j=1

M∑
k=1
|u(ML)

J (xk, y
j)− uref(T, xk, y

j)|2
)1/2

≈ ∥u(ML)
J − uref(T )∥L2

ϱ(Γ,X),

where xk ∈ TK , k = 1, . . . ,M = 210, are the Fourier collocation points. This error is labelled by “error
in L2

ϱ(Γ, X)” in diagrams. We investigate the following two other types of error:
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• The error in the quantity P from (5.62),∣∣∣E[P (u(ML)
J (T )

)
− P (uref(T ))

]∣∣∣. (5.67)

• The error in MTK
defined in (5.63), which is∣∣∣E[MTK

(
u

(ML)
J (T )

)
−MTK

(uref(T ))
]∣∣∣ . (5.68)

These two errors are denoted by “error in P” and “error in MTK
” in diagrams. Of course, (5.67) and

(5.68) are computed by suitable discrete versions. The quantity MTK
is a conserved quantity of the NLS

and its splitting approximation. It is nevertheless worth examining the error in this quantity, since the
stochastic discretisation contributes to the error, but not the temporal discretisation.

As the solution is smooth enough, the requirements B1 and B2 for the multi-level method are satisfied
with α = β = 2 for X = L2(TK). Using the maximal step-size τ0 = 0.1, we could confirm Assumption
B1 numerically with CT = 0.89, α = 1.99 and, after setting β = α, Assumption B2 with µ = 1.86 and
C = CIC⋆ = 1291. This was done as explained in Section 3.5.2. Note that the value α = 1.99 agrees
very well with the order 2 expected from Theorem 5.3.11 for k = 0.

In this example we use the “up/down” rounding strategy. The result of a convergence test series is
shown in Figure 5.2. In contrast to all other numerical examples, the computations for this small toy
problem were carried out on a laptop with Intel(R) Core(TM) i7-7500U CPU, so comparing the wall
times here to the ones in other experiments later does not make any sense.
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(a) Cost vs. given ε, rounding “up/down”
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error in MTK
tolerance ε

(b) Error vs. given ε, rounding “up/down”

Figure 5.2: MLSC for the LSE: d = 2, T = 1, µ = 1.86, µobs = 2.05, M = 210

Figure 5.2(b) confirms that the error in L2
ϱ(Γ, X) is indeed smaller than the given tolerance ε. The

same is true for the other two types of error. Since 2 = β > µ = 1.86, we expect from the ε-cost theorem
(Theorem 3.5.2) that the computational cost scales as ε−1/µ. Figure 5.2(a) shows, however, that the wall
time of the method scales rather as ε−1/µobs ( ) with the slightly larger value µobs = 2.05 > µ.
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We have also included a line with slope ε−1/µ−1/α which corresponds to the theoretical scaling
of the single-level collocation method in light of (3.23).

In the next example, we examine more uncertainty in the problem in the sense of a larger stochastic
dimension.

Example 5.6.2 (Ten-dimensional example).

Here we consider a ten-dimensional parameter space Γ = [−1, 1]10 and the quadratic potential (5.64)
with

ν(y) = 1 + δ

3(y1 + 2y2), κ(y) = 1
2

(
1 + δ

2(y3 + y4)
)
, γ(y) = 1 + δ

3(y5 + y2
6)

and δ = 1
20 for y = (y1, . . . , y10) ∈ Γ. The initial values at time t = 0 are given by(

C(0, y), q(0, y), p(0, y), ξ(0, y)
)

=
(

1 + δ

4y
2
7 + i,−2 + δy2

8y
2
9 , 2 + δy10, 1

)
.

The remaining parameters of the equation are the same as in the two-dimensional example before.
Here we apply the multi-level approach for QoIs from Section 3.6 to approximate the functional P

from (5.62). Thus, our is goal is to achieve

|E[P (u(T ))− P (u(ML)
J (T ))]| ≤ ε

for given ε > 0, where T = 1. In general, approximating the functional P should be easier than
approximating the solution itself. The challenge in this example is certainly the large dimension of the
parameter set Γ.

The assumptions for the ε-cost theorem for QoIs Theorem 3.6.1 with Υ = P were confirmed numeri-
cally with constants and parameters µ = 1.11, C = CIC⋆ = 265, CT = 0.077 and β = α = 2.10.

The reference solution uref was computed as in the previous example with ηref = 100.000 and M = 210.
Results are shown in Figure 5.3 for maximal step-size τ0 = 0.1 and two different choices of rounding

strategy, “up/down” and “down”. The second one is considered because we expect that the overhead of
rounding up in this dimension could be too large and cause a deterioration of the computational cost.

Figure 5.3(a) shows that the computational cost scales as ε−1/µobs ( ) with µobs = 1.21. This
is significantly better than expected, because Theorem 3.5.2 states that the computational cost grows
proportional to ε−1/µ ( ) with µ = 1.11 when ε→ 0. We explain this as follows: In dimensions where
generally less levels are feasible, it is possible to reuse already computed solutions more often. This is
plausible since rounding to the nearest sparse grid depth often requires a solution which has already been
computed. So whenever a single-level collocation approximation with depth L and τ is required in the
multi-level estimator, we first check if such a solution has already been computed. If this is the case,
then there is no necessity to compute it again. This explains that sometimes improved cost scalings can
be observed.

Figure 5.3(b) shows that the error in the quantity P stays below the tolerance for all ε. Thus the
results agree with the theoretical statement from Theorem 3.5.2.

In the next section, we finally treat the non-linear Schrödinger equation.
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(d) Error vs. given ε, rounding “down”

Figure 5.3: MLSC for the LSE: d = 10, T = 1, µ = 1.11, M = 210

5.6.2 Application to the non-linear Schrödinger equation

We examine a problem with spatial dimension N = 1 and a five-dimensional parameter space, so d = 5.
Thus, we consider

∂tu(t, x, y) = i∂2
xu(t, x, y) + iV (x, y)u(t, x, y) + i|u(t, x, y)|2u(t, x, y), t ∈ [0, T ], x ∈ TK , y ∈ Γ,

u(0, x, y) = u0(x, y), x ∈ TK , y ∈ Γ

with Γ = [−1, 1]5 and K = 2. The initial data is given by

u0(x, y) = sin(0.5x)5 · (1 + 0.1y1 + 0.01y2).
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The potential is almost quadratic, but smoothened towards the boundary such that its derivatives also
fulfill the periodic boundary condition. We choose

V (x, y) = −κ(x)x
2

2 · (1 + 0.1y3 + 0.05y4 + 0.025y5)

with the smoothing function

κ(x) =

exp(−1.2 · (π − x)2) + exp(−1.2 · (−π − x)2), |x| > π,

1, else.

Important quantities of interest for the solution of this equation in the context of BECs are the energy
inside the set S ⊆ TK given by

ES(u(t, ·, y), y) =
∫

S

|∇u(t, x, y)|2 −
(
V (x, y) + 1

2 |u(t, x, y)|2
)
|u(t, x, y)|2dx, (5.70)

or the expected amount of bosons located in S,

MS(u(t, ·, y)) =
∫

S

|u(t, x, y)|2dx.

Thus, these two quantities are also examined in this example. As for the LSE, MTK
is a conserved

quantity of the solution and the splitting approximation, so

MTK
(u(t, ·, y)) = MTK

(u0(·, y)) for all t ∈ [0, T ].

To obtain a reference solution for this problem, we take a fine single-level collocation approximation
resolved with a sparse grid of depth Lref = 8 (with ηLref = 51713 nodes) and a temporal step-size
τref = 10−5. The spatial discretisation for the reference solution and the approximations is done via
Fourier collocation, as in case of the linear Schrödinger equation before. We use M = 210 spatial grid
points.

The constants for the multi-level approximation of the solution itself at final time T = 1 are computed
as µ = 1.55, C = 2770, CT = 3.49 and β = α = 2. The result with rounding strategy “down” and τ0 = 0.1
is depicted in Figure 5.4. The error in the energy ETK

from (5.70) is displayed, too, and denoted by
“error in ETK

”.
Although the spatial dimension in all of the examples in this section was N = 1, it is of course possible

to consider N = 2 or N = 3, too. We treated the one-dimensional case mainly in order to spent the
computing power in the resolution of the parameter space, and not the spatial domain. Of course, the
simulation of the higher-dimensional equations is certainly more interesting. Nevertheless, the above
examples can be seen as a proof of concept for the MLSC method. The simulation of the two- and
three-dimensional non-linear Schrödinger equations with uncertain parameters is left as a goal for future
research.
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Figure 5.4: MLSC for the NLS: d = 5, T = 1, µ = 1.55, µobs = 1.46, M = 210
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CHAPTER 6

Summary and outlook

Summary

In this thesis, we examined two different types of time-dependent partial differential equations, namely
non-linear parabolic and non-linear Schrödinger equations. For both of them, we assumed that some
of their parameters are only given with an amount of uncertainty which is modelled by an additional
parameter. This parameter, the stochastic variable, is thought of being a realisation of a uniformly
distributed d-dimensional random variable and is discretised via a collocation strategy based on sparse
grids. The choice of sparse grids takes into account that d is typically larger than the spatiotemporal
dimensions of the equations under consideration and the parameter space is therefore affected by the
curse of dimensionality.

As the PDEs are time-dependent, computing approximations to the solutions of these equations
requires discretisations for the stochastic and the temporal variable (not to mention the third – spatial
– discretisation, which was not studied in detail here). These two discretisations were combined via
single-level and multi-level strategies, and the goal of using various levels is the reduction of the total
computational cost. A multi-level strategy with respect to these two variables is seldom studied in the UQ
literature and our work thus presents a relevant contribution to this research area. We stated assumptions
under which the multi-level approximation is both convergent and computable with a more preferable
scaling of the computational cost compared to a naive single-level approach. The verification of these
assumptions, however, is not straightforward but possible, as we demonstrate in two specific situations:

• In the parabolic case, the uncertainty investigated here enters in diffusion, convection and reaction
terms and the initial data in a smooth, more specifically analytic way. The regularity of the solution
in terms of the stochastic variable is then usually analytic, too. For the temporal discretisation, we
choose an implicit-explicit trapezoidal splitting (IMEXT) method which treats the potentially stiff
linear terms implicitly and the reaction terms explicitly. We prove that this method is second-order
convergent under certain regularity assumptions. Both the result and some of the techniques to
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prove it seem to be new and are not only interesting in the context of uncertainty quantification,
but also for the time integration community. To our knowledge, the error bound stating second-
order convergence of the IMEXT method closes a current gap in the literature. Additionally, the
convergence result is uniform in the parameter space, which is used in the convergence analysis of
the single-level method and for the verification of the assumptions for the multi-level approach.

• In the Schrödinger case, the uncertainty enters in the potential and the initial data of the problem,
but not in the dispersive part. Here, the regularity in terms of the stochastic variable y is not
analytic anymore, but finite in the sense of Ck with respect to the individual dimensions of the
parameter space. If the solution has this y-regularity, then the approximations of the Strang splitting
method used for the temporal discretisation have the same regularity, too. In the corresponding
(multivariate) Ck-norm, we prove that the method is second-order convergent. This new result
is an extension of the convergence results for the “deterministic” non-linear Schrödinger equation
(meaning the NLS without uncertain parameters).

For both problem classes, convergence results for the single- and multi-level stochastic collcation
methods are stated and proved. They are accompanied by statements about their theoretical cost.

These theoretical results are supported by several numerical experiments. They confirm the cost
and error analysis for the multi-level method. Additionally, we indicate some practical limitations of
the multi-level stochastic collocation approach – both in comparison with the single-level method, and
regarding the usability for very high stochastic dimensions, problems with low regularity in the stochastic
variable, or in connection with time integration methods with severe step-size restrictions.

The results developed in this thesis are novel contributions in two areas of mathematics: The first one
is (analysis and implementation of) numerical methods for uncertainty quantification and the second one
is numerical analysis of time integration schemes for partial differential equations. The in-depth analysis
of the interplay between stochastic and temporal discretisations in this thesis is a relevant contribution
to the current state of the literature.

Outlook

There are many ways to proceed from here: Further theoretical study of multi-level methods, extension
of the problem classes for which they can be used, extension of the class of numerical methods with which
they can be combined, or improvement of their implementation. More specifically, we propose further
research on the following points:

• Extension of the error analysis for multi-level methods and verification of the conditions for conver-
gence for other time integrators or in a more general framework

• Incorporate the spatial discretisation as a third discretisation type into the multi-level approach; for
example by using the multi-index stochastic collocation method or one of its variants

• Extension of the problem class to hyperbolic problems

• Extension of the problem class to problems where the time integration itself is very demanding, such
as highly oscillatory problems
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• Anisotropy in the stochastic variables, potentially extending the stochastic dimension even further
in applications

• Implementations of multi-level methods which are not only parallel with respect to the different
stochastic collocation points, but also parallel in space and/or in time. This could potentially
increase their usability on large supercomputers to tackle more interesting real-world problems.

• Gain further insights concerning the limitations of stochastic collocation methods by comparing
them with (multi-level) Monte Carlo methods and Gaussian regression in situations where they
might be competitive.

This list almost fills itself as multi-level stochastic collocation methods rely on many techniques from
different areas and most of them have some extensions which might be worth incorporating. Nevertheless,
we believe that the above-mentioned points are certainly the most interesting ones and some of them
could be tackled with the current state of knowledge, but we do not claim that this list is anywhere near
complete.
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APPENDIX A

Miscellaneous results

Lemma A.1 (Growth of log-powers). For E ∈ N, we have the estimate

log(η)E ≤
(
E

e

)E

η

for all η ≥ 1.

Proof. Consider the function f : [1,∞)→ R, f(x) = x−1 (log(x))E . The derivative of f is

f ′(x) = E log(x)E−1 − log(x)E

x2 = log(x)E−1E − log(x)
x2 ,

and thus f ′(x) = 0 holds if and only if

x = x∗ := eE or x = x∗∗ := 1.

As f(x∗∗) = 0, the maximum of f is to be found presumably at x∗. The second derivative of f is

f ′′(x) = (E − 1) log(x)E−2E − log(x)
x3 − log(x)E−1 1 + (E − log(x))2

x3

= log(x)E−2

x3
[
(E − 1)E − 3E log(x) + 2 log(x)2]

and it holds

f ′′(x∗) = −E
E−1

e3E
< 0.

Clearly, f(1) = 0 and limx→∞ f(x) = 0, thus we obtain f(x) ≤ f(x∗) for all x ∈ [1,∞) and hence

log(x)E ≤ f(x∗)x =
(
E

e

)E

x

as claimed.
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Lemma A.2. For V, χ ∈ R and w ∈ C, let

B[w] = V + χ|w|2.

The solution of the initial value problem

v′(t) = iB[v(t)]v(t), t ≥ 0, (A.1a)

v(0) = v0 (A.1b)

for given v0 ∈ C is given by
v(t) = eitB[v0]v0 (A.2)

for t ≥ 0.

Proof. First, observe that
|eitB[v0]v0| = |v0|

for t ≥ 0 since B[v0] ∈ R. Now we compute

d
dt (e

itB[v0]v0) = iB[v0]eitB[v0]v0 = iB
[
eitB[v0]v0

]
eitB[v0]v0

and obtain that v from (A.2) solves (A.1).
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APPENDIX B

On φ-functions

Here we introduce the so-called φ-functions which often appear in the context of inhomogeneous ODEs
or PDEs and in the construction of exponential integrators, see e.g. [53, 60].

For us, they are quite useful in the derivation of error formulas for the IMEXT method in Section 4.5.2
and the splitting method in Section 5.3.5.

Definition B.1 (φ-functions). Let (A,D(A)) be a generator of a strongly continuous semigroup on X .
For t ≥ 0, we define φj(tA) : X → X as the linear operator on X with

φ0(tA)v = etAv,

φj(tA)v =
∫ 1

0

ϑj−1

(j − 1)!e
(1−ϑ)tAvdϑ, j ∈ N,

for v ∈ X .

The most important properties of φ-functions are summarised in the following lemma.

Lemma B.2 (Properties of φ-functions). Let (A,D(A)) be a generator of a strongly continuous semigroup
on X . The following statements hold.

(a) For every j, k ∈ N0 and t ≥ 0, the operator

φj(tA) : D(Ak)→ D(Ak)

is bounded. If (A,D(A)) generates a semigroup of contractions, then ∥φj(tA)∥L(D(Ak)) ≤ 1
j! .

(b) If v ∈ D(Ak) and t > 0, then φj(tA)v ∈ D(Ak+1) for all j ∈ N and the equation

tAφj(tA)v = φj−1(tA)v − 1
(j − 1)!v, j ∈ N, (B.1)

holds in D(Ak).
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(c) For every m ∈ N, recursion (B.1) implies the “Taylor expansion”

etAv =
m−1∑
j=0

tj

j!A
jv + (tA)mφm(tA)v (B.2)

for any v ∈ D(Am−1).

The following lemma is useful to extract additional t-powers from differences of successive φ-functions.

Lemma B.3. The φ-functions satisfy the recursion formula

φj−1(tA)v − φj(tA)v = tA(φj(tA)− φj+1(tA))v + j − 1
j! v

for v ∈ X , j ∈ N and t > 0.

Observe that for j ≥ 2, the left-hand side is contained in D(A), whereas the individual summands on
the right-hand side only belong to X in general.

Proof. By (B.1), we have

tA(φj(tA)− φj+1(tA)) = tAφj(tA)− φj(tA) + 1
j!

= φj−1(tA)− 1
(j − 1)! − φj(tA) + 1

j!

= φj−1(tA)− φj(tA) + 1
j! −

1
(j − 1)! .

This shows the statement.
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