KIT | KIT-Bibliothek | Impressum | Datenschutz

Classification of uranium ore concentrates applying support vector machine to spectrophotometric and textural features

Marchetti, M. 1; Fongaro, L. ; Bulgheroni, A.; Wallenius, M.; Mayer, K.
1 Institut für Nukleare Entsorgung (INE), Karlsruher Institut für Technologie (KIT)

Abstract:

Uranium ore concentrates (UOCs) are produced in the early stages of the nuclear fuel cycle, prior to conversion to uranium hexafluoride. Because of their high uranium content and the large-scale production, UOCs diversion from civilian use and proliferation are potential risks. This implies the necessity to develop methods able to recognise characteristic parameters correlating each UOC powder to its history and origin. Here, a novel methodology is proposed: first the reflectance spectra of 79 commercial UOCs are acquired and clustered by means of Ward's clustering analysis, then classified by Support Vector Machine (SVM). Second, SVM classification is applied to the image textural features extracted with the Grey Level Co-occurrence Matrix (GLCM) and the Angle Measure Technique (AMT) algorithms for powders in two different colour groups. The developed SVM models present good classification quality: a Matthews correlation coefficient (MCC) of 0.95 is obtained for the classification based on colours while macro-F1 is generally greater than 0.81 (MCC larger than 0.75) for the texture-based classification. These results reveal the potentiality of the present automated classification for the scopes of nuclear forensics in the identification of an unknown uranium ore concentrate sample.


Verlagsausgabe §
DOI: 10.5445/IR/1000151258
Veröffentlicht am 20.10.2022
Originalveröffentlichung
DOI: 10.1016/j.apgeochem.2022.105443
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nukleare Entsorgung (INE)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2022
Sprache Englisch
Identifikator ISSN: 0883-2927, 1872-9134
KITopen-ID: 1000151258
HGF-Programm 32.11.01 (POF IV, LK 01) Nuclear Waste Disposal
Erschienen in Applied Geochemistry
Verlag Elsevier
Band 146
Seiten Art.Nr. 105443
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page