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Introduction
The previous decade has seen a boom in the commission of renewable energy power 
plants, in particular for solar farms. The global installed capacity in photovoltaic (PV) 
systems has seen a 16-fold increase to over 707 GW between 2010 and 2020  (IRENA 
2021). During the same time, the weighted-average cost per newly installed mega-watt 
has decreased by approximately  93%, mainly—but not solely—due to a decrease in 
cost of PV modules (IRENA 2021). In 2019, 116.9 GW of new PV capacity were added 
world-wide, out of which 75.3 GW were installed in utility-scale solar farms (SolarPower 
Europe 2020).

For the convenience of the reader, we give a general description of the main com-
ponents of a utility-scale solar farm. For further details, we refer to ABB Ltd (2019), 
Mertens (2019), which also served as references for the following elaboration. The most 
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visible parts of a solar farm are the solar cells. In those, sunlight is converted to tiny 
amounts of electric current. The cells are connected forming a PV module. These mod-
ules, in turn, are connected in series to form a string which is mounted on a rack. For the 
remainder of this work, we will consider the PV strings as the smallest building block, 
since we are mainly interested in optimizing the cable layout. The strings supply electric-
ity in form of Direct Current (DC), which is converted to Alternating Current (AC) in 
inverters. Strings can have their own inverters (string inverters, connected to one or at 
most to a few strings) or a larger number of strings is connected to only a few central 
inverters. We focus on central inverters but everything in this work can also be adapted 
to string inverters. In general, inverters have more functions than only conversion. 
They are used for monitoring and safety purposes and generally also incorporate con-
trol elements such as maximum power point trackers, by which the DC voltage in the 
connected components is adjusted according to environmental conditions to maximize 
electrical power harvest. Solar farms typically operate at low-voltage levels (the DC side 
is usually aimed at a maximum voltage of 1 kV or 1.5 kV), so that step-up transformers 
are needed to feed the generated power into the grid. Since inverters have only a finite 
number of input circuits, additional devices are installed between strings and inverters. 
These devices have different names, depending on the monitoring and safety equipment 
installed in them and on the components they connect. Y-connectors are the most sim-
ple device. They normally connect just two strings with no additional equipment [except 
maybe for fuses  (Every 2022)]. Combiner boxes connect a larger number of strings (or 
Y-connectors) and have additional safety and monitoring equipment. Recombiner boxes 
have the same equipment as combiner boxes but connect combiner boxes instead of 
strings. Which kind of components, in particular between strings and inverters, are used 
ultimately depends on a decision by the solar farm planners. In any case, the compo-
nents need to be connected by cables. For electrical reasons the cable layout should be 
balanced to some extent, e. g. to avoid reverse current. In particular, the layered struc-
ture should be respected, for example, connecting a recombiner box (to which multiple 
strings are connected) and a single string to an inverter should be avoided.

With all those restrictions in mind, solar farms appear to be mostly constructed on 
flat ground following one (of maybe several) pre-specified templates. However, there are 
exceptions: The Monte Mele photovoltaic plant is situated on the slope of a hill on Sic-
ily, Italy, and has irregular distances between its strings (Alpiq Holding AG 2022). For 
a solar farm of the size of the Monte Mele plant with its capacity of 718 kW, drawing a 
cable layout by hand might be feasible. For larger solar farms [the world’s currently larg-
est stands at 2245 MW (Sanjay 2022)], algorithmic approaches computing near-to-cost-
optimal cable layouts might be the way to go.

Related work
Various aspects of solar farms have been a target for optimization in the literature. Solar 
cells can be manifactured from different so-called photovoltaic absorber materials that 
influence the performance of a cell, for a review see  (Kirchartz and Rau 2018). The effi-
ciency of transformers can be influenced by using appropriate control methods (Liu et al. 
2019) and realized in a prototype. Shifting the focus to the overall electrical system of a 
solar farm and its operation, a variety of maximum power point tracking techniques can be 
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employed to maximize the power output of the farm (Bollipo et al. 2020). Concerning the 
early stages of the planning process, a fuzzy Analytic Hierarchy Process has been proposed 
to find an optimal site for a solar farm (Tavana et al. 2017).

A more holistic view on solar farm design is employed at Siemens Energy: In a multi-
criteria decision support system a set of pre-computed designs for a given site can be com-
pared and investigated by planners visually and with respect to different “key performance 
indicators” (Bischoff et al. 2014). The designs are computed using several (unspecified) heu-
ristics in a three-stage process involving three subproblems: placing service ways, placing 
strings in the area between ways, and inverter placement. Given the positions of strings and 
inverters, a cable layout is computed in “single-objective manner, [minimizing] cable cross 
sections such that specified losses are not exceeded” (Bischoff et al. 2014, p.337). The exact 
optimization problem is not stated.

Using a different setting, a formalization of the optimization problem of finding a 
cost-minimal cable layout is given in Luo et al. (2021). Computing cable layouts and the 
placement of combiner boxes assigned to a single inverter is modelled as a generalized 
capacitated minimum spanning tree problem and solved by a branch-and-price-and-cut 
algorithm. In this setting, strings are placed on a grid and edge lengths are given by the ℓ1 
metric. A capacitated spanning tree connecting strings and the inverter yields a cable lay-
out in which a combiner box is placed at each child string of the inverter such that the 
capacity of the combiner box is not exceeded. The costs arise from a linear-cost flow on 
edges between any two strings and from a step-cost function between combiner boxes and 
inverter. The latter models the installation costs of the combiner boxes.

This paper generalizes the task of determining an optimal cable layout and optimal posi-
tions of combiner boxes in a solar farm. It is assumed that the positions of the strings are 
already determined and that candidate positions for all other components, e. g. (re-)com-
biner boxes or transformers, of a solar farm are given. The goal is to find an optimal subset 
of the candidate positions that allows all strings to be connected to a transformer such that 
the total cabling costs are minimized—in Luo et al. (2021) only candidate positions of com-
biner boxes are considered and they are co-located with strings. As for the cabling, a set of 
available cable types is given (each with a thermal capacity and a cost per unit of length). 
For any two components that can be connected according to the aforementioned layered 
structure one of the cable types should be chosen such that the cable has sufficient capac-
ity and is as cheap as possible. This gives rise to a step-cost function for each connection, 
not only between combiner boxes and inverters. Such cost functions have been used in 
papers on optimizing the cable layout of a wind farm (Dutta and Overbye 2011, Lehmann 
et al. 2017), in which a network flow model with a step-cost function is used). The main dif-
ference between our solar farm model and the wind farm models lies in the way in which 
vertices can be connected. Our model has a layered structure which allows connections 
only between adjacent layers. In wind farms, there are only two types of vertices (turbines 
and substations) and turbines are connected to each other.

Contribution
On our endeavour to generalize the task of determining an optimal layout of a solar 
farm, we introduce a graph problem called the Solar Farm Cable Layout Prob-
lem  (SoFaCLaP,  Problem formulation). The problem statement uses a network flow 
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model to identify the point-to-point connections (edges) that are used for the cable lay-
out and to identify how many strings use each connection. The flow on each connec-
tion is used to identify which cable type is used for the respective connection. SoFaCLaP 
bears resemblance to the Steiner Arborescence Problem (Ljubić 2021) and to the Multi-
level Facility Location Problem (Ortiz-Astorquiza et al. 2018).

We propose a mixed-integer linear program (MILP) formulation (A mixed-integer lin-
ear program) to provide a first solution method for SoFaCLaP. This formulation uses real 
variables for the flow values and binary variables to indicate which cable type is used 
for which edge. An extensive evaluation of the performance of the optimizer Gurobi on 
the MILP formulation is carried out (Results: optimality and (in-)feasibility, Results: run-
ning time, and Results: solution quality) to establish  mixed-integer linear programming 
as a baseline for performance evaluations of future approaches to solving SoFaCLaP. For 
the evaluation of the MILP formulation we propose a framework to randomly generate 
synthetic benchmark instances (Framework for benchmark generation). We employ this 
framework using parameters based on real-world solar farms  (Generating benchmark 
instances). The benchmark instances used in the evaluation are publicly available.

The problem statement and the  MILP formulation can be adapted to cover further 
aspects of solar farm layouting (cf. Variants of the problem and SoFaCLaP from a practi-
cal perspective). The process for generating benchmark instances can incorporate such 
aspects. It can also be customized to address further requirements of solar farm plan-
ners and to use different characteristics of various electrical devices.

To summarize, this paper has four main purposes: to introduce SoFaCLaP as a graph 
optimization problem, to establish an  MILP formulation as a standalone solution 
method that can also be used as a baseline for future algorithms, to introduce a frame-
work for generating synthetic input instances, and to provide an example set of instances 
based on real-world characteristics.

Problem formulation
The Solar Farm Cable Layout Problem (SoFaCLaP) is a minimum-cost flow problem on 
a directed layered graph G = (V ,E) . The vertex set consists of the strings VS that need 
to be connected, as well as of the potential Y-connectors VY  , combiner boxes VC , recom-
biner boxes VR , inverters VI , and transformers VT . Edges have a length len : E → R and 
only exist between one layer and the next, i.e.,

For easier reference, the layers are enumerated from V1 = VS to V6 = VT . Vertices from 
layers V2, . . . ,V6 have an upper capacity ui ∈ N for i = 2, . . . , 6 on the amount of strings 
that can be routed via these vertices. Inverters also have a lower capacity ℓ5 . We may 
refer to the capacity bounds of a layer by a vertex of that layer, e. g. u2 = u(v) for any 
v ∈ V2 . The left-hand side of Fig. 1 shows an example of layered graph with capacities as 
given by a SoFaCLaP instance.

(1)V = VS ∪ VY ∪ VC ∪ VR ∪ VI ∪ VT ,

(2)E ⊆ VS × VY ∪ VY × VC ∪ VC × VR ∪ VR × VI ∪ VI × VT .
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The inverters split the instance into an AC-side with the transformers and a DC-side 
with the strings. Denote the edges on the AC-side byEAC = {(i, j) ∈ E : i ∈ VI , j ∈ VT } 
and by EDC = E \ EAC the edges on the DC-side. For either side, there is a set of possible 
cable types KAC and KDC . Each cable type k has a thermal capacity cap(k) and a cost per 
unit of length c(k) . For easier notation, the subscripts AC and DC are omitted. The cable 
types include a dummy cable type of capacity and cost 0.

The goal of  SoFaCLaP is to find a minimum-cost flow on G, i.  e. a function 
f : E → R≥0 of minimal cost. The flow must transport one unit of flow from each string 
to a transformer, conserve the flow at intermediate vertices, respect the vertex capaci-
ties, and have at most one outgoing edge from each vertex with positive flow. The latter 
enforces a cycle-free cable layout. The right-hand side of Fig. 1 shows an example layout. 
The cost of a flow on an edge is given by c(k⋆) · len(e) where k⋆ is the cheapest cable type 
with sufficient capacity to carry the flow. The total cost of a flow is the sum of costs over 
all edges. A flow that exceeds the maximum cable capacity on one or more edges is not 
considered a feasible solution.

SoFaCLaP is a computationally difficult problem.

Theorem  1  It is strongly NP-complete to decide if an instance of the Solar Farm 
Cable Layout Problem has a feasible solution.

Proof A candidate for a feasible solution to SoFaCLaP can be provided by specify-
ing the flow values on the edges. To verify feasibility, it must be checked that flow 
conservation holds and that all vertex and cable capacities are respected. This is pos-
sible in polynomial time. Thus, membership in NP is shown. Note that it is not neces-
sary to compute the costs, which could involve computations with real numbers.

The hardness proof uses a reduction from the strongly NP-hard problem  3-Parti-
tion (Garey and Johnson 1979, SP15): Let m,T ∈ N and let S := {s1, . . . , s3m} be a mul-
tiset of natural numbers such that T/4 < s < T/2 for all s ∈ S and  s∈S s = mT  . Can S 
be partitioned into triplets S1, . . . , Sm such that 

∑

s∈Si
s = T  for all i = 1, . . . ,m?

u = 2 u = 3 u = 5 u = 8 u = 11
� = 3

VS VY VC VR VI VT

u = 2 u = 3 u = 5 u = 8 u = 11

VS VY VC VR VI VT

� = 3

Fig. 1  An example instance of SoFaCLaP showing the layered graph and the capacities of all layers (left) 
and—assuming that there is a cable type with sufficient capacity—a feasible cable layout (right). The flow 
values on the edges are omitted in this visualization. They are, however, uniquely determined, since the cable 
layout is cycle-free, and can be computed by counting the strings in the respective subtrees of the layout
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In the reduction, the Y-connectors represent the elements of the multiset and the 
combiner boxes the triplets. The edges between strings and Y-connectors force an out-
flow from the Y-connector equal to the respective element of the multiset. So given an 
instance of  3-Partition, we construct an instance of  SoFaCLaP with 3m Y-connec-
tors y1, . . . , y3m , each with capacity T/2 , and  mT  strings such that the  si  strings have 
an edge only to  yi for all i = 1, . . . , 3m . The instance has m combiner boxes c1, . . . , cm , 
each with capacity T. Recombiner boxes, inverters and transformers are not needed for 
this reduction, and neither are cable types, so there one of each, with capacity mT. All 
layers are fully connected except for the string layer as mentioned above. This graph 
has mT + 3m+ T + 3 vertices and mT + 3mT +m+ 2 edges. Thus, the construction 
is possible in polynomial time since we may assume that T is polynomial in the size of 
the input.

We show that the instance of 3-Partition is a yes-instance if and only if the SoFaCLaP 
instance has a feasible solution. If the instance of 3-Partition is a yes-instance, then we 
connect a Y-connector yi to a combiner box cj if and only if si ∈ Sj . The edges between 
the strings and the Y-connectors yield that yi has an outflow of exactly si < T/2 = u(yi) . 
Since 

∑

s∈Sj
s = T  , the capacity of  cj is not exceeded either. Thus, we obtain a feasi-

ble SoFaCLaP instance.

On the other hand, let the constructed instance of SoFaCLaP be feasible. By means of 
T/4 < s , it follows that each combiner box has at most three Y-connectors connected to 
it. If one combiner box had only two Y-connectors, another one would have four. Thus, 
each combiner box is connected to exactly three Y-connectors. Since the total capacity 
of all combiner boxes is exactly mT, the inflow at each combiner box equals T. Thus, the 
assignment of Y-connectors to combiner boxes gives an assignment of the elements of S 
to m triplets with the desired property. � �

We have shown that already finding a feasible solution is a difficult task, at least in the 
most general setting of SoFaCLaP. One might hope that the whole problem becomes a 
lot easier with additional simplifications. On the positive side, we suspect that finding a 
feasible solution is easy (Conjecture 1). On the negative side, it can be shown the optimi-
zation remains difficult (Theorem 2, proof omitted).

Theorem  2  It is strongly NP-hard to decide if an instance admits a solution with a 
value below a given threshold, even if the instance respects all of the following:

•	 Vertex positions are given by points in Q2 and no two vertices have the same positions.
•	 Edge lengths are given by the Euclidean distance of the endvertices.
•	 All layers are fully connected.
•	 There is only one cable type, which has unlimited capacity.
•	 Lower vertex capacities do not apply.
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Conjecture 1  In the setting of Theorem 2, a feasible solution can be computed in poly-
nomial time.

These simplifications have multiple motivations: Euclidean coordinates and edge 
lengths are in line with real-world applications where vertices are placed in the plane. 
Fully connected layers occur when no connection is forbidden a priori by the solar farm 
planner (and on top of that, the construction in the proof of  Theorem  1 that forces a 
certain input to each Y-connector cannot be readily replicated). The remaining simpli-
fications are rather a feature of the complexity proof, i.e., we do not need multiple cable 
types nor lower capacities to show NP-hardness. Nonetheless, they may be reasons for 
hardness themselves.

Variants of the problem

The order of the layers in the graph resembles a solar farm with central invert-
ers. Solar farms can also be designed using string inverters  (Mertens 2019), in which 
case VS ,VY ,VI ,VC ,VR,VT would be the order of the layers. The MILP formulation pro-
posed in this paper can easily be adapted to the setting with string inverters.

Strings can also be understood as having multiple connection points (outlets), out of 
which one is chosen for the cable layout. Each outlet may have different Y-connectors it 
can be connected to. The model above already covers this variant: For any pair of string 
and Y-connector, only the connection point closest to the Y-connector could possibly be 
used in an optimal solution. Therefore, all outlets of a string can be contracted into a sin-
gle one (and therefore identified with the string itself ). The edge lengths from the string 
to Y-connectors are then adjusted to reflect the actual distance between Y-connector 
and closest outlet. The synthetic benchmark instances proposed in this paper employ 
this variant using three connection points per string.

The problem statement can naturally be extended to incorporate more potentially 
interesting aspects of solar farm layouting. Cable types can not only vary between the 
AC- and the DC-side but also between the layers. They may even vary between the 
edges, i. e. each edge may have its own set of cable types. This can for example be used to 
incorporate vertex installation costs or costs for different levels of utilization in relation 
to the capacity of a vertex.

SoFaCLaP from a practical perspective

We have mentioned that  SoFaCLaP co-optimizes two aspects: picking a subset of 
potential intermediate vertices and finding a cable layout using vertices from that sub-
set. A solar farm planner who wishes to use SoFaCLaP and any algorithmic approach 
has to specify the input, i.e., graph and cable types. For the graph, the planner has to 
decide on the (fixed) positions of all strings. They also have to provide possible loca-
tions for any intermediate device and the respective capacities. From those locations, 
the algorithmic approach will pick a suitable subset to be used in the cable layout. In 
their decisions, the planner has many degrees of freedom, which might not be obvi-
ous. Take, for example the edge set and the edge lengths. The planner can (but need 
not) choose to disallow certain connections from the graph for whichever reason. 
The edge lengths can (but need not) represent Euclidean lengths. One might choose 
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to use the ℓ1 metric [“Manhattan metric”, as in Luo et  al. (2021)] which only allows 
“horizontal” and “vertical” cable sections. Or the planner can assign arbitrary lengths 
to account for difficult terrain. This also includes a constant additive offset to edge 
lengths to account for necessary cables used inside the different devices.

With these and many more degrees of freedom, SoFaCLaP is supposed to be adapt-
able to many different modelling decisions a solar farm planner might want to take.

A mixed‑integer linear program
SoFaCLaP can be formulated as a MILP using variables  fij ≥ 0 for the flow on (i, j) ∈ E 
and binary variables xijk stating whether cable type k is used on edge (i, j). Here, the 
zero-capacity cable type is omitted. This way of modelling the cable types has been 
used for the Wind Farm Cabling Problem (Lehmann et al. 2017). The following for-
mulation is based on the standard variant of SoFaCLaP with the implicit inclusion of 
string connection points as outlined in Variants of the problem.

The goal of SoFaCLaP is to minimize the total installation cost

The total flow leaving each string is the production of the string

and flow must be conserved at intermediate vertices

The capacities at the vertices must be respected

whereas lower capacities only apply if a vertex is indeed used.
For all vertices except transformers, only one outgoing edge may have flow and 

thereby non-zero capacity

which implies that only one cable type is used per edge. This cable type must have suf-
ficient capacity to hold the flow

(3)min
∑

(i,j)∈E

∑

k∈K

xijk · c(k) · len((i, j)).

(4)
∑

(i,j)∈E

fij = 1 ∀i ∈ VS ,

(5)
∑

(i,j)∈E

fij =
∑

(j,l)∈E

fjl ∀j ∈ V \ (VS ∪ VT ).

(6)
∑

(i,j)∈E

fij ≤ u(j) ∀j ∈ V \ VS ,

(7)
∑

(i,j)∈E

fij ≥ ℓ(j) ·
∑

(i,j)∈E

∑

k∈K

xijk ∀j ∈ VI ,

(8)
∑

(i,j)∈E

∑

k∈K

xijk ≤ 1 ∀i ∈ V \ VT ,
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In total, this linear program has O(|K | · |E|) binary and |E| real variables as well 
as O(|V | + |E|) constraints.

Simulations and evaluation
An evaluation of the solution methods outlined in A mixed-integer linear program on 
example instances shall give the reader insights into the performance of the MILP and 
thereby establish it as a (first) solution method to SoFaCLaP. Since we have not been able 
to obtain suitable real-world instances1 to evaluate the  MILP, we resort to generating 
synthetic instances as described in Framework for benchmark generation and in Gener-
ating benchmark instances. The benchmark instances use the GraphML format (Brandes 
et al. 2002) and are available from http://​www.​doi.​org/​10.​35097/​676, where a thorough 
specification of the format can be found as well.

If the benchmark instances are sufficiently variable to cover a wide range of plausi-
ble inputs to the solution approaches, the use of synthetic instances has multiple advan-
tages. First, a larger number of different instances can be generated so that tendencies in 
the comparison of two approaches are less likely to be a result of statistical noise. Sec-
ond, the solar farms in consideration can include more strings than any currently exist-
ing solar farms. Thus, the applicability of the algorithms for a future increase in solar 
farm sizes can already be investigated now.

Framework for benchmark generation

We describe the general approach we propose for the generation of benchmark instances 
on a high level in this section. The next section is dedicated to breathing life into the 
framework by describing the process in more detailed steps with concrete values for 
the parameters. These values are based on real-world examples of devices used in solar 
farms as evidenced by Tables 1 and 2.

The first steps in the framework deal with placing the strings. For synthetic instances 
we opt for randomly sampling the strings with a minimum distance. Next, the location of 
vertices of higher layers are determined, starting at the Y-connectors. We let the number 
of vertices in a layer depend on the number of vertices in a previous layer. We assume 
fully connected layers, which leads to the maximum number of possible connections 
between layers. After the graph is determined, vertex capacities are set. We choose these 
randomly with bounds based on the minimum capacity necessary to connect all strings. 
Lastly, cable types are included which we derive from real-world photovoltaic cables.

Users of the proposed framework may want to alter any intermediate step to realize 
certain additionally desired properties on the solar farm instances. For example, users 
could prespecify all the string positions or fix the number of vertices within a layer. They 
may want to change the sampling process, for example to have all recombiner boxes 

(9)fij ≤
∑

k∈K

xijk · cap(k) ∀(i, j) ∈ E.

1  As alluded to in SoFaCLaP from a practical perspective, it does not suffice to merely have the positions of the strings 
and other devices in an existing solar farm. We rather need all potential positions of devices. This represents an interme-
diate step in the planning process which is, understandibly, not publicly available.

http://www.doi.org/10.35097/676
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close to each other. The edge set can be thinned out if, for example, cables should not 
exceed a certain length. Users can define their own cable types.

Generating benchmark instances

For our purposes, the framework introduced in the previous section is used as follows. 
Benchmark instances are generated in three categories: Small  (120–180 strings per 
instance), Medium  (500–750 strings), and Large  (1200–1500 strings). We describe the 
process of generating an instance: First, a rectangle is fixed that simulates the area of the 
solar farm. One of the corners is defined as the origin giving rise to a coordinate system. 
The (virtual) unit of length is irrelevant since SoFaCLaP solution values scale with the 
underlying unit of length. Next, an angle α for the orientation of the strings in relation 
to the coordinate system is chosen randomly. The total number of strings is drawn from 
the intervals above and, one after another, the strings are placed in the rectangle: A ran-
dom point P is sampled from the rectangle serving as one of the connection points of the 
string. For the purpose of describing the process, we refer to this point as the base of the 
string. If P respects a globally specified minimum distance from the bases of all previ-
ously successfully sampled strings, the connection points are defined. On a ray start-
ing at P with angle α to the coordinate system’s x-axis two more connection points are 

Table 2  Cable types used in simulations

Cable type Specifications as in HELUKABEL GmbH (2021)

Cost c Capacity cap Ampacity [A] at 60 °C Copper Weight 
[kg per km]

4 5 55 38.4

34 22 218 336

120 50 488 1152

230 80 775 2304

750 180 Extrapolated

2300 400 Extrapolated

Table 1  Design parameters for graph layer sizes

a In the example solar farm by ABB (ABB Ltd. 2019, Annex B), each combiner box connectes 13 or 14 strings. A combiner box 
by LS Electric has possible inputs of 12, 16, or 20 (LS ELECTRIC Co., Ltd. 2021). Combiner boxes by SMA connect up to 32 
strings, but no recombiner boxes are used (SMA Solar Technology AG 2020)
bBased on the recombiner boxes in SolarBOS, Inc. (2022)
c 10 or (26− ratio VC : VS) , whichever is lower, based on the idea that parallel connections of many strings in both 
combiner and recombiner boxes yields excessive amounts of electric current
d An example of two inverters connected to a transformer can be found in Gajda (2022)

Layer Category

In consideration Reference Small Medium Large

VS 1 120 – 180 500 – 750 1200 – 1500

VY VS 1.5 – 3 1.5 – 3 1.5 – 3

VC VS
a    10 – 20 10 – 20 10 – 20

VR VC
b    3 – 8 3 – 10c   3 – 10c  

VI VS |VI | = 1 200 – 300 200 – 300

VT VI |VT | = 1 1 – 3d   1 – 3d  
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placed equidistantly, with the distance being the same for all strings. If, however, P is too 
close to another base, a new base P is sampled. If the process of placing a string fails too 
often, the whole instance is discarded and a new rectangle is chosen.

With all the strings placed, the higher layers of vertices are randomly placed, starting 
with the Y-connectors. For each layer, a ratio according to Table 1 is chosen randomly 
and the number of vertices on the next layer is defined as Vnext = ⌈Vreference/ratio⌉ . The 
ratios are chosen in a way to ensure decreasing sizes of layers. For the small instances, 
the number of transformers and inverters is fixed as 1. Y-connectors and combiner boxes 
are placed in close proximity to string connection points. Recombiner boxes are placed 
close to combiner boxes. Inverters and transformers are placed on random points in the 
rectangle, respecting minimum distances to the string bases as well as previously placed 
inverters and transformers. The reasoning is that strings, inverters and transformers are 
themselves bigger components and need to be more easily accessible for maintenance.

Picking (upper and lower) capacity values for the different layers can be a delicate 
issue from an algorithmic point of view: With very tight capacities, the design questions 
of picking one position for a, say, combiner box over another becomes easy: all possi-
ble positions have to be used. Very loose capacities mitigate the algorithmic difficulty 
of picking a suitable subset of, say, strings to be assigned to a specific Y-connector. We 
deem the assumption fair that all vertices of a layer have the same capacities since plan-
ners presumably would not design solar farms with two different versions of, say, invert-
ers. Given a layer Vi a capacity of at least lbi := ⌈|VS |/|Vi|⌉ is required. For each layer, a 
random integer between lbi and � · lbi is chosen, where � = 1.2 for inverters and � = 1.5 
for all other layers. The smaller value for inverters is selected with the idea in mind that 
solar farm planners will not overly deviate the capacities of inverters from the capacity 
best suited for the intended use. For recombiner boxes and inverters only, the capacity 
will, however, be at least twice the capacity of the previous layer to ensure that two fully-
used vertices of the previous layer can be connected. The randomly chosen lower capac-
ity for inverters is at least 0.5 and at most 0.8 times the inverters’ upper capacity.

The edge set is assumed to be complete, i.e., equality holds in Eq. (2). We have no rea-
son to prohibit specific edges (although solar farm planners might). Thus, we leave it to 
the algorithms to pick the most suitable edges from the complete set.

The cable types for the simulations as shown in Table  2 are based on the photovol-
taics cable SOLARFLEX-X PV1-F by HELUKABEL (HELUKABEL GmbH 2021). Four 
sizes are considered, the forth one being the biggest size available. The rated ampacity 
is approximately translated into a capacity on the amount of strings, where a current 
of 10 A per string is assumed (ABB Ltd 2019, p. 121). Since cost quotations are not read-
ily available, we assumed that the costs are in essence proportional to the amount of 
copper used in a cable. The exact unit for the costs is irrelevant since the optimization 
function in  SoFaCLaP can be scaled arbitrarily. For aesthetical reasons, we opted for 
somewhat round values in the bigger cable types. No influence on the performance of 
algorithms is expected from those changes. These four cable types are not big enough to 
be used in the largest benchmark instances. Thus, we included two artificial cable types 
to conduct meaningful experiments on the biggest instances. These cable types were 
extrapolated from the smaller cables types, roughly following the motto “Doubling the 
capacities yields triple the cost.”
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Some of the benchmark instances generated as outlined above may be infeasible. 
Since capacities are chosen in a way that the total capacity of a layer is at least the 
number of strings and since the edge set is complete, infeasibility can only arise from 
the interaction of the sizes and capacities of the layers as a whole. A toy example 
of such a constellation can be seen in  Fig.  2. We purposefully keep such instances 
because it may be a feature of algorithms developed for SoFaCLaP to be able to detect 
infeasibility (see also “Results: optimality and (in-)feasibility”).

Simulation setup

The MILP formulation from A mixed-integer linear program is translated into C++ 14 
code. The code uses the Open Graph Drawing Framework (Catalpa release)  (Chim-
ani et  al. 2013) for parsing the benchmark instances and the C++-API provided by 
Gurobi (Gurobi Optimization, Inc. 2018). For compilation, GCC 10.3.0 is used with 
the -Ofast -march=native flags. All simulations are run on a 64-bit architec-
ture with four 12-core AMD CPUs each with 2.1 GHz with the openSUSE Leap 15.3 
operating system. The MILP formulation is solved by Gurobi 9.5.0 in single-threaded 
mode with a maximum running time of one day per instance, with 40 instances run-
ning simultaneously.

For the simulations, 80 randomly generated instances of each of the three catego-
ries Small, Medium, and Large are considered. An overview of the characteristics of 
these 240 instances is shown in Table 3.

The ranges for the number of strings are almost fully used. It stands out that the 
median of number of strings in the large instances is much smaller than 1350, which 
is what one would naïvely expect. A possible reason is that the process of placing a 
large number of strings, inverters and transformers, each of which observe a mini-
mum distance to each other, failed too often. In that case, the instances would be 

VI VT

u = 10 u = 15

|VS | = 30

10

10

10
15

15

Fig. 2  A toy example of a solar farm, in which all vertex capacities are sufficient but their interaction implies 
infeasibility. Due to 30 strings, each inverter needs an inflow of 10 and each transformer an inflow of 15. But 
with only one outgoing edge per vertex allowed, inverters and transformers cannot be connected

Table 3  Characteristics of instances used in simulations

Category |VS| |V | |E|

min median max min median max min median max

Small 120 145 180 176 224.5 305 5566 10528 20515

Medium 502 632 750 781 966.5 1234 108654 190792 345969

Large 1200 1248 1500 1726 1920 2459 538923 732858 1369140
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discarded and a new number of strings would be drawn randomly. A possible remedy 
is to enlarge the initial rectangle for the solar farms for the large instances.

The number of vertices is linear in the number of strings with a small coefficient. This 
is as expected from the ratios shown in Table 1. The number of edges grows fast with 
over 1.3 million edges for instances with up to 1500 strings. From a theoretical perspec-
tive, a fast increase is expected: Layers are fully connected and the number of vertices 
per layer is linear in the number of strings. Thus, the number of edges grows quadrati-
cally with the number of strings.

Results: optimality and (in‑)feasibility

In our setting, Gurobi terminates with one of four optimization states: Ideally, an 
instance is solved to (proven) optimality (Status: optimal). Secondly, Gurobi may find a 
feasible solution but fail to prove that it is optimal (Status: feasible). In that case, the best 
proven lower bound (lb ) does not match the solution value (ub ), and the feasible solution 
may or may not be optimal. Thirdly, Gurobi may be able to prove that an instance does 
not admit any feasible solution (Status: infeasible). Lastly, Gurobi may not find any fea-
sible solution but fail to prove infeasibility. In that case, the instance may or may not be 
feasible (Status: unknown).

In the following, we want to investigate how often Gurobi terminates in each of those 
states across the different categories of instances to see what we can learn about the 
applicability of the MILP formulation and Gurobi to solve SoFaCLaP.

The upper part of Table 4 shows how often Gurobi terminates in the different states at 
the end of the maximum running time of one day. Nearly all of the small instances are 
solved to optimality within one day. A solution is considered optimal once the MIP gap2 
is below the optimality tolerance of  0.0001%. Since the number of variables and con-
straints in the MILP formulation grow linearly with the number of edges, Gurobi can 
most probably not uphold the performance on bigger instances.

Table 4  Amount of instances per optimization status for different stages of MILP simulations

The specifications for the experiments are in the main text body

Category Total Optimal Feasible Infeasible Unknown

MILP (A mixed-integer linear program), one day

 Small 80 79 1 0 0

 Medium 80 16 48 12 4

 Large 80 0 50 5 25

MILP (A mixed-integer linear program), one cable type, 1 day

 Small 0 – – – –

 Medium 4 – 0 2 2

 Large 25 – 14 5 6

MILP, one cable type, additional constraints (Eq. 10)

 Small 0 – – – –

 Medium 2 – 0 1 1

 Large 6 – 0 1 5

2  Gurobi can bound the optimal value from above by the best incumbent solution (value of ub) and from below by more 
sophisticated considerations (lb). The MIP Gap is defined as (ub− lb)/lb.
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Indeed, for the medium instances, the number of instances that are solved to opti-
mality decreases by a big margin compared to the small instances, but still one in five 
instances is solved optimally. About one in seven instances are shown to be infeasi-
ble. The fact that Gurobi does not find any feasible solution on 4 out of 80 instances 
within one day (optimization status: unknown) makes us suspect that those instances 
are infeasible. On instances of those sizes one would expect that Gurobi would 
find a feasible solution within one day if a solution existed. We come back to those 
“unknown” instances later in this section.

As for the biggest instances, Gurobi is not able to solve any instance to optimality. 
For more than one in four instances, Gurobi can neither find an optimal solution nor 
prove infeasibility. We speculate that allowing Gurobi more time or simplifying the 
model can give further insights into the true status of these instances.

Thus, we run two additional sets of simulations on the remaining “unknown” 
instances. The first set is intended to find feasible solutions. We suspect any then 
remaining unknown instance to be infeasible. On those instances, we use a more 
restricted but (in the context of infeasibility) equivalent MILP formulation which we 
believe helps Gurobi to prove infeasibility. We describe the two sets of simulations in 
more detail and see what we can learn about the instances of unknown status.

To make Gurobi’s life (supposedly) easier on the remaining instances of unknown 
status, we allow only one cable type. This greatly reduces the number of binary vari-
ables at the start of the optimization. If the capacity of the cable type is set to a value 
higher than the maximum vertex capacity, the simplified instance is feasible if and 
only if the original instance is, since the biggest cable capacity exceeds the biggest 
vertex capacity in all instances in question here. Again, we give Gurobi a maximum 
running time of one day per instance in single-threaded mode. The outcome of these 
simulations is shown in the middle part of Table . Gurobi can prove infeasibility on 
two additional medium and on five additional large instances. Gurobi also finds a 
first feasible solution on 14 out of 25 large instances. Yet, two medium and six large 
instances remain unknown.

Given the amount of help we gave Gurobi to find feasible solutions, we believe that 
the remaining instances are in fact infeasible. To facilitate Gurobi’s proof of infeasibil-
ity, we again change the MILP formulation. Since the capacities within a layer are equal 
and layers are fully connected, we observe that any feasible solution can be transformed 
into other feasible solutions by a permutation of the vertices of a layer. In order to prove 
infeasibility, Gurobi needs to outrule all these possibilities. Presumably, this can be facili-
tated by imposing a fixed order on the vertices of each layer, in which the inflow into the 
vertices decreases. In formulae, fix a layer V ′ (other than the strings) and enumerate the 
vertices inside this layer as V ′ = {v1, . . . , vk} . Then, add the constraints

for all layers V ′ . Additionally, we set the target function to a constant, so that Gurobi 
terminates once it finds a feasible solution. With this formulation, we allow Gurobi 
four threads per instance and lift the time limit. Surprisingly, these changes do not 
help Gurobi much. Even with a total computation time over all threads per instance of 

(10)|VS | ≥
∑

(u,v1)∈E

fuv1 ≥ . . . ≥
∑

(u,vk )∈E

fuvk ≥ 0
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more than six weeks, only two additional instances are proven infeasible (cf. lower part 
of Table 4). At the time of writing, the simulations are still running.

We conclude from these investigations on the optimization status with which Gurobi 
terminates that Gurobi is very well suited for solving small instances and obtaining feasi-
ble solutions on quite a number of instances representing medium and large solar farms. 
We also note that Gurobi is able to prove infeasibility quite often in reasonable time 
(with a bit of help), even though our trick with the additional constraints from Eq. (10) 
proved less useful than hoped for. For some large instances, Gurobi cannot find a feasi-
ble solution within one day even though these instances are in fact feasible. While allow-
ing Gurobi more time is always an option, one could think about other approaches to 
find a feasible solution (cf. Conjecture 1), give it to Gurobi as a warmstart and see what 
Gurobi can do from there.

Results: running time

We take another look into the instances that are solved to optimality concerning the 
time Gurobi needs to reach this state. 79 out of 80 small instances are solved to optimal-
ity. Gurobi reaches this result within half a minute on  55  instances and within 5 min 
on 78 instances. The longest proof of optimality on the small instances needs just under 
10 min. We suspect that Gurobi has no difficulties on the small instances, since the num-
ber of potentially non-zero binary variables can be greatly reduced by combining the 
constraints: For string edges it is never beneficial to use another than the smallest cable 
type. Also, the biggest cable type is never used on small instances since the second big-
gest suffices. More sophisticatedly, the small number of strings and therefore small num-
ber of vertices in further layers limits the number of cable types that can be used to due 
the vertex capacities. For example, consider a solar farm with 180 strings and 60 Y-con-
nectors. By the formulae outlined in Generating benchmark instances, Y-connectors can 
only have a capacity of  3  or  4. In both cases, the smallest cable type also suffices for 
the edges between Y-connectors and combiner boxes. For all these reasons, we believe 
Gurobi is able to cut off many suboptimal solutions very easily, which results in short 
running times.

One medium instance is solved to optimality within 1 h (within 20 min actually) and 
seven more within 4 h. The longest time for a proof of optimality here is 18 h. Clearly, 
with more running time, the number of instances solved to optimality would increase 
further. Unfortunately, it cannot be known how long Gurobi needs. So it is more insight-
ful to look into the worst-case deviation of a best solution from the (unknown) optimal 
solution value. For this, we go back to the MIP gap in the following section.

Results: solution quality

We look into the quality of the solutions Gurobi has found within one day using the orig-
inal MILP formulation. By the upper part of Table , the instances in consideration are all 
with status optimal or  feasible. These are 80 small, 64 medium and 50  large instances. 
There is not much to say about the small instances; they are almost all solved to optimal-
ity. The remaining instance has  180  strings (the maximum) and  11749  edges. On this 
instance, Gurobi terminates with a MIP gap of 0.0161%. That means between the best 
solution found is at most 0.0161% worse than the optimal solution.
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In the other two categories, there are a lot more feasible but not optimal instances. Fig-
ure depicts the gaps sorted increasingly for the medium and large instances. Note that 
these instances include all instances for which Gurobi has found a solution, whether 
these solutions have been proven to be optimal or not. All but one medium instance 
are solved with a gap of less than 5%, that means that the best solution found by Gurobi 
is at most  5% worse than the optimal solution. A gap of less than  1% has been com-
puted for 53 out of 64 instances and a gap of less than 0.1% for 29 instances. On the large 
instances, the gap remains bigger than 10% on twelve instances. A gap of less than 5% 
has been proven for 30 instances and of less than 1% for 17 instances. The smallest gap 
on the large instances is at approximately 0.13%.

One may reasonably expect that the bigger the instances, the more difficult it is for 
Gurobi to prove optimality or infeasibility. While this is certainly true when compar-
ing medium with large instances (evidence shown in Fig. 3 and Table 4), it is not clear 
when only somewhat similarly sized instances are considered, e.  g. only the medium 
instances. Since the number of provably infeasible and of “unknown” instances is very 
small, we will not address that relation in the context of infeasibility. Any observation 
on such a small data set might be pure coincidence. Concerning the proof of opti-
mality, however, we depict the MIP gaps as a function of the number of edges for the 
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Fig. 3  MIP gaps sorted in ascending order for medium (on the left) and large instances (on the right). Depicted 
are 64 medium and 50 large instances, including those solved to optimality. The upper figures show the gaps 
for all instances, the lower figures are zoomed in for better view
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aforementioned 64 medium and 50 large instances in Fig. 4. For the medium instances it 
stands out is that the smallest instance in terms of edges has the second highest gap and 
that the three biggest instances have very small gaps, including the fifth lowest. Look-
ing at the bulk of the instances, no tendency between MIP gap and number of edges is 
apparent. In the large instances, the gaps are more spread but also no pattern can be 
seen. With these pieces of evidence, we conclude that the number of edges cannot solely 
explain the different performance of Gurobi within the categories of instances. Presum-
ably, the interaction of layer sizes with vertex and cable capacities also plays a role here.

As a side note: Fig. 4 shows only a small number of instances at the upper end of the 
edge set sizes. We have made a similar observation concerning the number of verti-
ces of large instances in the discussion of Table 3 in Simulation Setup. We believe that 
the problem that many of the bigger instances in the category  large are discarded in 
the process of placing strings, inverters, and transformers also persists for the medium 
instances (and maybe even for the small instances).

Comparison to gaps from a similar optimization problem

Having small MIP gaps provides certainty that the best solution found is close to the 
optimal. As we have seen, Gurobi delivers this certainty on a vast amount of instances 
across all categories. One might suspect that Gurobi is just very good in general at prov-
ing such small gaps. We look into simulations using Gurobi for a somewhat similar opti-
mization problem to see if that is the case.

As we have mentioned in Contribution, a similar MILP formulation has been used for 
computing cable layouts of wind farms. The difference lies in the layered structure of 
solar farms including vertex capacities and the tree structure enforced by Eq. (8).  [Gritz-
bach et  al. (2019), ArXiv version, Fig.  6] report MIP gaps for their  MILP simulations 
on the synthetic benchmark instances proposed in Lehmann et al. (2017). These bench-
mark instances each supposedly have a number of edges linear in the number of verti-
ces, since an approach employing k-nearest neighbours is used to define the edge set. 
To the contrary, the edge sets of the solar farm instances proposed here grow quad-
ratically in the number of vertices. One set of wind farm instances (originally denoted 
by N3 ) has between 80 and 180 turbines per instance and is therefore a bit smaller but 
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still comparable to our small instances. Another set of wind farms (denoted by N4 ) has 
between  200 and  499  turbines. These wind farms are a lot smaller than our medium 
instances. The MIP gaps reported by Gritzbach et  al. for these wind farm benchmark 
sets are roughly between 25% and 30% with no outliers after a running time of one day 
per instance. In comparison, all but one small solar farm have been solved to optimality 
and all but one medium solar farm have a MIP gap below 5%. Even for the large solar 
farms, our MIP gaps look better, at least as long Gurobi finds a feasible solution. To be 
fair, Gritzbach et al. have used Gurobi 8.0.0, while we use Gurobi 9.5.0. Still, this can-
not explain the remarkable difference in the MIP gaps. The reason for the low MIP gaps 
probably lies within the structural properties of SoFaCLaP and the corresponding MILP 
formulation. Most notably, the layered structure of the graph yields  MILP constraints 
that only involve a local part of the graph.

Parting notes about the evaluation

The goal of the extensive evaluation of Gurobi’s performance on synthetic instances 
was to establish the MILP as a first solution approach to SoFaCLaP. The performance 
characteristics we have reported can serve as a baseline for future evaluations of other 
algorithmic methods, be it improvements to the MILP itself or any other way of solv-
ing SoFaCLaP. In Conclusion, we give some hints on how SoFaCLaP can be approached 
alternatively.

Conclusion
The Solar Farm Cable Layout Problem is, to the best of our knowledge, the first graph-
theoretic model of the optimization problem to find a cost-optimal cable layout from 
strings to transformers in a solar farm while also deciding which of several positions for 
intermediate vertices such as combiner boxes are best. This model can not only be easily 
adapted to consider solar farms with string inverters instead of central inverters. It also 
allows the inclusion of further aspects for the optimization such as vertex installation 
costs or further constraints such as prohibiting the use of mutually exclusive candidate 
positions. We introduce a MILP formulation to solve SoFaCLaP and propose a process 
to generate synthetic benchmark instances. This process builds instances modularly and 
customizations can be included at various points. We populate this process with input 
parameters based on real-world solar farms and electrical equipment to obtain three cat-
egories of benchmark instances covering solar farms with between 120 and 1500 strings.

The simulations on the MILP formulation from A mixed-integer linear program using 
our synthetic benchmark instances show that Gurobi is able to efficiently solve small- 
and medium-sized solar farm instances; almost all small and many medium instances 
are solved to optimality within one day. For the larger instances, one day is not quite 
enough on some instances to find feasible solutions. But when Gurobi does find solu-
tions, these are for the most part already quite acceptable in terms of the MIP gap.

Moving forward, we see two main directions. From a practical perspective, the vast 
amount of customization in the problem formulation and in the process of generating 
benchmark instances can be exploited to investigate different aspects of optimizing the 
layout of solar farms. From an algorithmic perspective, Gurobi could use some help to 
find feasible solutions. Solutions from any heuristic approach could be passed on to 
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Gurobi as a warmstart solution. Inspiration for algorithmic approaches can be found 
in similar optimization problems: Network flows in many variations are a very classical 
and well-studied problem in theoretical computer science. Equation (8) enforces a tree 
structure, so the Steiner Tree Problem could be a different point of attack. There a given 
subset of vertices (think: strings) of a directed graph need to be connected to a specified 
vertex (here: grid point beyond the transformers) using a directed tree incorporating a 
subset of intermediate vertices. The layers in SoFaCLaP already give a sense of direction. 
A similar problem is the Multi-Level Facility Location Problem, in which in a layered 
graph lower-level vertices need to be assigned to higher-level vertices. Any algorithmic 
approach can of course also stand on its own. To evaluate these, we have established 
the MILP as a possible baseline, which is one of the main purposes of this work.
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