
Solar farm cable layout optimization
as a graph problem
Sascha Gritzbach*   , Dominik Stampa and Matthias Wolf    

From The 11th DACH+ Conference on Energy Informatics 2022 Freiburg, Germany. 15-16 September 2022

Introduction
The previous decade has seen a boom in the commission of renewable energy power
plants, in particular for solar farms. The global installed capacity in photovoltaic (PV)
systems has seen a 16-fold increase to over 707 GW between 2010 and 2020 (IRENA
2021). During the same time, the weighted-average cost per newly installed mega-watt
has decreased by approximately 93%, mainly—but not solely—due to a decrease in
cost of PV modules (IRENA 2021). In 2019, 116.9 GW of new PV capacity were added
world-wide, out of which 75.3 GW were installed in utility-scale solar farms (SolarPower
Europe 2020).

For the convenience of the reader, we give a general description of the main com-
ponents of a utility-scale solar farm. For further details, we refer to ABB Ltd (2019),
Mertens (2019), which also served as references for the following elaboration. The most

Abstract 

We introduce the Solar Farm Cable Layout Problem (SoFaCLaP), a novel graph-theoretic
optimization problem. SoFaCLaP formalizes the task of finding a cost-optimal cable lay-
out in a solar farm where PV string positions are already determined but the positions
of other components such as transformers can be picked from a set of candidate posi-
tions. The problem statement incorporates a network flow model in which the flow
value of a connection represents the number of strings that are (indirectly) connected
to a transformer via this connection. A mixed-integer linear program (MILP) formula-
tion is proposed that uses binary variables to indicate which of several available cable
types is chosen for each connection. We propose a framework to randomly generate
benchmark instances to evaluate any algorithmic approach to SoFaCLaP. In particular,
we generate a set of instances based on real-world solar farm characteristics. With an
extensive evaluation of the MILP formulation on those instances we establish mixed-
integer linear programming as a baseline for future algorithmic approaches to finding
solar farm cable layouts.

Keywords:  Solar farm, Cable layout, Mixed-integer linear program, Benchmark
generation, Graph

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25
https://doi.org/10.1186/s42162-022-00200-z

Energy Informatics

*Correspondence:
sascha.gritzbach@kit.edu

Karlsruhe Institute of Technology,
Karlsruhe, Germany

http://orcid.org/0000-0002-2835-392X
http://orcid.org/0000-0003-1411-6330
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42162-022-00200-z&domain=pdf

Page 2 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25

visible parts of a solar farm are the solar cells. In those, sunlight is converted to tiny
amounts of electric current. The cells are connected forming a PV module. These mod-
ules, in turn, are connected in series to form a string which is mounted on a rack. For the
remainder of this work, we will consider the PV strings as the smallest building block,
since we are mainly interested in optimizing the cable layout. The strings supply electric-
ity in form of Direct Current (DC), which is converted to Alternating Current (AC) in
inverters. Strings can have their own inverters (string inverters, connected to one or at
most to a few strings) or a larger number of strings is connected to only a few central
inverters. We focus on central inverters but everything in this work can also be adapted
to string inverters. In general, inverters have more functions than only conversion.
They are used for monitoring and safety purposes and generally also incorporate con-
trol elements such as maximum power point trackers, by which the DC voltage in the
connected components is adjusted according to environmental conditions to maximize
electrical power harvest. Solar farms typically operate at low-voltage levels (the DC side
is usually aimed at a maximum voltage of 1 kV or 1.5 kV), so that step-up transformers
are needed to feed the generated power into the grid. Since inverters have only a finite
number of input circuits, additional devices are installed between strings and inverters.
These devices have different names, depending on the monitoring and safety equipment
installed in them and on the components they connect. Y-connectors are the most sim-
ple device. They normally connect just two strings with no additional equipment [except
maybe for fuses (Every 2022)]. Combiner boxes connect a larger number of strings (or
Y-connectors) and have additional safety and monitoring equipment. Recombiner boxes
have the same equipment as combiner boxes but connect combiner boxes instead of
strings. Which kind of components, in particular between strings and inverters, are used
ultimately depends on a decision by the solar farm planners. In any case, the compo-
nents need to be connected by cables. For electrical reasons the cable layout should be
balanced to some extent, e. g. to avoid reverse current. In particular, the layered struc-
ture should be respected, for example, connecting a recombiner box (to which multiple
strings are connected) and a single string to an inverter should be avoided.

With all those restrictions in mind, solar farms appear to be mostly constructed on
flat ground following one (of maybe several) pre-specified templates. However, there are
exceptions: The Monte Mele photovoltaic plant is situated on the slope of a hill on Sic-
ily, Italy, and has irregular distances between its strings (Alpiq Holding AG 2022). For
a solar farm of the size of the Monte Mele plant with its capacity of 718 kW, drawing a
cable layout by hand might be feasible. For larger solar farms [the world’s currently larg-
est stands at 2245 MW (Sanjay 2022)], algorithmic approaches computing near-to-cost-
optimal cable layouts might be the way to go.

Related work
Various aspects of solar farms have been a target for optimization in the literature. Solar
cells can be manifactured from different so-called photovoltaic absorber materials that
influence the performance of a cell, for a review see (Kirchartz and Rau 2018). The effi-
ciency of transformers can be influenced by using appropriate control methods (Liu et al.
2019) and realized in a prototype. Shifting the focus to the overall electrical system of a
solar farm and its operation, a variety of maximum power point tracking techniques can be

Page 3 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25	

employed to maximize the power output of the farm (Bollipo et al. 2020). Concerning the
early stages of the planning process, a fuzzy Analytic Hierarchy Process has been proposed
to find an optimal site for a solar farm (Tavana et al. 2017).

A more holistic view on solar farm design is employed at Siemens Energy: In a multi-
criteria decision support system a set of pre-computed designs for a given site can be com-
pared and investigated by planners visually and with respect to different “key performance
indicators” (Bischoff et al. 2014). The designs are computed using several (unspecified) heu-
ristics in a three-stage process involving three subproblems: placing service ways, placing
strings in the area between ways, and inverter placement. Given the positions of strings and
inverters, a cable layout is computed in “single-objective manner, [minimizing] cable cross
sections such that specified losses are not exceeded” (Bischoff et al. 2014, p.337). The exact
optimization problem is not stated.

Using a different setting, a formalization of the optimization problem of finding a
cost-minimal cable layout is given in Luo et al. (2021). Computing cable layouts and the
placement of combiner boxes assigned to a single inverter is modelled as a generalized
capacitated minimum spanning tree problem and solved by a branch-and-price-and-cut
algorithm. In this setting, strings are placed on a grid and edge lengths are given by the ℓ1
metric. A capacitated spanning tree connecting strings and the inverter yields a cable lay-
out in which a combiner box is placed at each child string of the inverter such that the
capacity of the combiner box is not exceeded. The costs arise from a linear-cost flow on
edges between any two strings and from a step-cost function between combiner boxes and
inverter. The latter models the installation costs of the combiner boxes.

This paper generalizes the task of determining an optimal cable layout and optimal posi-
tions of combiner boxes in a solar farm. It is assumed that the positions of the strings are
already determined and that candidate positions for all other components, e. g. (re-)com-
biner boxes or transformers, of a solar farm are given. The goal is to find an optimal subset
of the candidate positions that allows all strings to be connected to a transformer such that
the total cabling costs are minimized—in Luo et al. (2021) only candidate positions of com-
biner boxes are considered and they are co-located with strings. As for the cabling, a set of
available cable types is given (each with a thermal capacity and a cost per unit of length).
For any two components that can be connected according to the aforementioned layered
structure one of the cable types should be chosen such that the cable has sufficient capac-
ity and is as cheap as possible. This gives rise to a step-cost function for each connection,
not only between combiner boxes and inverters. Such cost functions have been used in
papers on optimizing the cable layout of a wind farm (Dutta and Overbye 2011, Lehmann
et al. 2017), in which a network flow model with a step-cost function is used). The main dif-
ference between our solar farm model and the wind farm models lies in the way in which
vertices can be connected. Our model has a layered structure which allows connections
only between adjacent layers. In wind farms, there are only two types of vertices (turbines
and substations) and turbines are connected to each other.

Contribution
On our endeavour to generalize the task of determining an optimal layout of a solar
farm, we introduce a graph problem called the Solar Farm Cable Layout Prob-
lem (SoFaCLaP, Problem formulation). The problem statement uses a network flow

Page 4 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25

model to identify the point-to-point connections (edges) that are used for the cable lay-
out and to identify how many strings use each connection. The flow on each connec-
tion is used to identify which cable type is used for the respective connection. SoFaCLaP
bears resemblance to the Steiner Arborescence Problem (Ljubić 2021) and to the Multi-
level Facility Location Problem (Ortiz-Astorquiza et al. 2018).

We propose a mixed-integer linear program (MILP) formulation (A mixed-integer lin-
ear program) to provide a first solution method for SoFaCLaP. This formulation uses real
variables for the flow values and binary variables to indicate which cable type is used
for which edge. An extensive evaluation of the performance of the optimizer Gurobi on
the MILP formulation is carried out (Results: optimality and (in-)feasibility, Results: run-
ning time, and Results: solution quality) to establish mixed-integer linear programming
as a baseline for performance evaluations of future approaches to solving SoFaCLaP. For
the evaluation of the MILP formulation we propose a framework to randomly generate
synthetic benchmark instances (Framework for benchmark generation). We employ this
framework using parameters based on real-world solar farms (Generating benchmark
instances). The benchmark instances used in the evaluation are publicly available.

The problem statement and the MILP formulation can be adapted to cover further
aspects of solar farm layouting (cf. Variants of the problem and SoFaCLaP from a practi-
cal perspective). The process for generating benchmark instances can incorporate such
aspects. It can also be customized to address further requirements of solar farm plan-
ners and to use different characteristics of various electrical devices.

To summarize, this paper has four main purposes: to introduce SoFaCLaP as a graph
optimization problem, to establish an MILP formulation as a standalone solution
method that can also be used as a baseline for future algorithms, to introduce a frame-
work for generating synthetic input instances, and to provide an example set of instances
based on real-world characteristics.

Problem formulation
The Solar Farm Cable Layout Problem (SoFaCLaP) is a minimum-cost flow problem on
a directed layered graph G = (V ,E) . The vertex set consists of the strings VS that need
to be connected, as well as of the potential Y-connectors VY  , combiner boxes VC , recom-
biner boxes VR , inverters VI , and transformers VT . Edges have a length len : E → R and
only exist between one layer and the next, i.e.,

For easier reference, the layers are enumerated from V1 = VS to V6 = VT . Vertices from
layers V2, . . . ,V6 have an upper capacity ui ∈ N for i = 2, . . . , 6 on the amount of strings
that can be routed via these vertices. Inverters also have a lower capacity ℓ5 . We may
refer to the capacity bounds of a layer by a vertex of that layer, e. g. u2 = u(v) for any
v ∈ V2 . The left-hand side of Fig. 1 shows an example of layered graph with capacities as
given by a SoFaCLaP instance.

(1)V = VS ∪ VY ∪ VC ∪ VR ∪ VI ∪ VT ,

(2)E ⊆ VS × VY ∪ VY × VC ∪ VC × VR ∪ VR × VI ∪ VI × VT .

Page 5 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25	

The inverters split the instance into an AC-side with the transformers and a DC-side
with the strings. Denote the edges on the AC-side byEAC = {(i, j) ∈ E : i ∈ VI , j ∈ VT }
and by EDC = E \ EAC the edges on the DC-side. For either side, there is a set of possible
cable types KAC and KDC . Each cable type k has a thermal capacity cap(k) and a cost per
unit of length c(k) . For easier notation, the subscripts AC and DC are omitted. The cable
types include a dummy cable type of capacity and cost 0.

The goal of SoFaCLaP is to find a minimum-cost flow on G, i. e. a function
f : E → R≥0 of minimal cost. The flow must transport one unit of flow from each string
to a transformer, conserve the flow at intermediate vertices, respect the vertex capaci-
ties, and have at most one outgoing edge from each vertex with positive flow. The latter
enforces a cycle-free cable layout. The right-hand side of Fig. 1 shows an example layout.
The cost of a flow on an edge is given by c(k⋆) · len(e) where k⋆ is the cheapest cable type
with sufficient capacity to carry the flow. The total cost of a flow is the sum of costs over
all edges. A flow that exceeds the maximum cable capacity on one or more edges is not
considered a feasible solution.

SoFaCLaP is a computationally difficult problem.

Theorem 1  It is strongly NP-complete to decide if an instance of the Solar Farm
Cable Layout Problem has a feasible solution.

Proof A candidate for a feasible solution to SoFaCLaP can be provided by specify-
ing the flow values on the edges. To verify feasibility, it must be checked that flow
conservation holds and that all vertex and cable capacities are respected. This is pos-
sible in polynomial time. Thus, membership in NP is shown. Note that it is not neces-
sary to compute the costs, which could involve computations with real numbers.

The hardness proof uses a reduction from the strongly NP-hard problem 3-Parti-
tion (Garey and Johnson 1979, SP15): Let m,T ∈ N and let S := {s1, . . . , s3m} be a mul-
tiset of natural numbers such that T/4 < s < T/2 for all s ∈ S and s∈S s = mT  . Can S
be partitioned into triplets S1, . . . , Sm such that

∑

s∈Si
s = T for all i = 1, . . . ,m?

u = 2 u = 3 u = 5 u = 8 u = 11
� = 3

VS VY VC VR VI VT

u = 2 u = 3 u = 5 u = 8 u = 11

VS VY VC VR VI VT

� = 3

Fig. 1  An example instance of SoFaCLaP showing the layered graph and the capacities of all layers (left)
and—assuming that there is a cable type with sufficient capacity—a feasible cable layout (right). The flow
values on the edges are omitted in this visualization. They are, however, uniquely determined, since the cable
layout is cycle-free, and can be computed by counting the strings in the respective subtrees of the layout

Page 6 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25

In the reduction, the Y-connectors represent the elements of the multiset and the
combiner boxes the triplets. The edges between strings and Y-connectors force an out-
flow from the Y-connector equal to the respective element of the multiset. So given an
instance of 3-Partition, we construct an instance of SoFaCLaP with 3m Y-connec-
tors y1, . . . , y3m , each with capacity T/2 , and mT strings such that the si strings have
an edge only to yi for all i = 1, . . . , 3m . The instance has m combiner boxes c1, . . . , cm ,
each with capacity T. Recombiner boxes, inverters and transformers are not needed for
this reduction, and neither are cable types, so there one of each, with capacity mT. All
layers are fully connected except for the string layer as mentioned above. This graph
has mT + 3m+ T + 3 vertices and mT + 3mT +m+ 2 edges. Thus, the construction
is possible in polynomial time since we may assume that T is polynomial in the size of
the input.

We show that the instance of 3-Partition is a yes-instance if and only if the SoFaCLaP
instance has a feasible solution. If the instance of 3-Partition is a yes-instance, then we
connect a Y-connector yi to a combiner box cj if and only if si ∈ Sj . The edges between
the strings and the Y-connectors yield that yi has an outflow of exactly si < T/2 = u(yi) .
Since

∑

s∈Sj
s = T  , the capacity of cj is not exceeded either. Thus, we obtain a feasi-

ble SoFaCLaP instance.

On the other hand, let the constructed instance of SoFaCLaP be feasible. By means of
T/4 < s , it follows that each combiner box has at most three Y-connectors connected to
it. If one combiner box had only two Y-connectors, another one would have four. Thus,
each combiner box is connected to exactly three Y-connectors. Since the total capacity
of all combiner boxes is exactly mT, the inflow at each combiner box equals T. Thus, the
assignment of Y-connectors to combiner boxes gives an assignment of the elements of S
to m triplets with the desired property. � �

We have shown that already finding a feasible solution is a difficult task, at least in the
most general setting of SoFaCLaP. One might hope that the whole problem becomes a
lot easier with additional simplifications. On the positive side, we suspect that finding a
feasible solution is easy (Conjecture 1). On the negative side, it can be shown the optimi-
zation remains difficult (Theorem 2, proof omitted).

Theorem 2  It is strongly NP-hard to decide if an instance admits a solution with a
value below a given threshold, even if the instance respects all of the following:

•	 Vertex positions are given by points in Q2 and no two vertices have the same positions.
•	 Edge lengths are given by the Euclidean distance of the endvertices.
•	 All layers are fully connected.
•	 There is only one cable type, which has unlimited capacity.
•	 Lower vertex capacities do not apply.

Page 7 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25	

Conjecture 1  In the setting of Theorem 2, a feasible solution can be computed in poly-
nomial time.

These simplifications have multiple motivations: Euclidean coordinates and edge
lengths are in line with real-world applications where vertices are placed in the plane.
Fully connected layers occur when no connection is forbidden a priori by the solar farm
planner (and on top of that, the construction in the proof of Theorem 1 that forces a
certain input to each Y-connector cannot be readily replicated). The remaining simpli-
fications are rather a feature of the complexity proof, i.e., we do not need multiple cable
types nor lower capacities to show NP-hardness. Nonetheless, they may be reasons for
hardness themselves.

Variants of the problem

The order of the layers in the graph resembles a solar farm with central invert-
ers. Solar farms can also be designed using string inverters (Mertens 2019), in which
case VS ,VY ,VI ,VC ,VR,VT would be the order of the layers. The MILP formulation pro-
posed in this paper can easily be adapted to the setting with string inverters.

Strings can also be understood as having multiple connection points (outlets), out of
which one is chosen for the cable layout. Each outlet may have different Y-connectors it
can be connected to. The model above already covers this variant: For any pair of string
and Y-connector, only the connection point closest to the Y-connector could possibly be
used in an optimal solution. Therefore, all outlets of a string can be contracted into a sin-
gle one (and therefore identified with the string itself). The edge lengths from the string
to Y-connectors are then adjusted to reflect the actual distance between Y-connector
and closest outlet. The synthetic benchmark instances proposed in this paper employ
this variant using three connection points per string.

The problem statement can naturally be extended to incorporate more potentially
interesting aspects of solar farm layouting. Cable types can not only vary between the
AC- and the DC-side but also between the layers. They may even vary between the
edges, i. e. each edge may have its own set of cable types. This can for example be used to
incorporate vertex installation costs or costs for different levels of utilization in relation
to the capacity of a vertex.

SoFaCLaP from a practical perspective

We have mentioned that SoFaCLaP co-optimizes two aspects: picking a subset of
potential intermediate vertices and finding a cable layout using vertices from that sub-
set. A solar farm planner who wishes to use SoFaCLaP and any algorithmic approach
has to specify the input, i.e., graph and cable types. For the graph, the planner has to
decide on the (fixed) positions of all strings. They also have to provide possible loca-
tions for any intermediate device and the respective capacities. From those locations,
the algorithmic approach will pick a suitable subset to be used in the cable layout. In
their decisions, the planner has many degrees of freedom, which might not be obvi-
ous. Take, for example the edge set and the edge lengths. The planner can (but need
not) choose to disallow certain connections from the graph for whichever reason.
The edge lengths can (but need not) represent Euclidean lengths. One might choose

Page 8 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25

to use the ℓ1 metric [“Manhattan metric”, as in Luo et al. (2021)] which only allows
“horizontal” and “vertical” cable sections. Or the planner can assign arbitrary lengths
to account for difficult terrain. This also includes a constant additive offset to edge
lengths to account for necessary cables used inside the different devices.

With these and many more degrees of freedom, SoFaCLaP is supposed to be adapt-
able to many different modelling decisions a solar farm planner might want to take.

A mixed‑integer linear program
SoFaCLaP can be formulated as a MILP using variables fij ≥ 0 for the flow on (i, j) ∈ E
and binary variables xijk stating whether cable type k is used on edge (i, j). Here, the
zero-capacity cable type is omitted. This way of modelling the cable types has been
used for the Wind Farm Cabling Problem (Lehmann et al. 2017). The following for-
mulation is based on the standard variant of SoFaCLaP with the implicit inclusion of
string connection points as outlined in Variants of the problem.

The goal of SoFaCLaP is to minimize the total installation cost

The total flow leaving each string is the production of the string

and flow must be conserved at intermediate vertices

The capacities at the vertices must be respected

whereas lower capacities only apply if a vertex is indeed used.
For all vertices except transformers, only one outgoing edge may have flow and

thereby non-zero capacity

which implies that only one cable type is used per edge. This cable type must have suf-
ficient capacity to hold the flow

(3)min
∑

(i,j)∈E

∑

k∈K

xijk · c(k) · len((i, j)).

(4)
∑

(i,j)∈E

fij = 1 ∀i ∈ VS ,

(5)
∑

(i,j)∈E

fij =
∑

(j,l)∈E

fjl ∀j ∈ V \ (VS ∪ VT).

(6)
∑

(i,j)∈E

fij ≤ u(j) ∀j ∈ V \ VS ,

(7)
∑

(i,j)∈E

fij ≥ ℓ(j) ·
∑

(i,j)∈E

∑

k∈K

xijk ∀j ∈ VI ,

(8)
∑

(i,j)∈E

∑

k∈K

xijk ≤ 1 ∀i ∈ V \ VT ,

Page 9 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25	

In total, this linear program has O(|K | · |E|) binary and |E| real variables as well
as O(|V | + |E|) constraints.

Simulations and evaluation
An evaluation of the solution methods outlined in A mixed-integer linear program on
example instances shall give the reader insights into the performance of the MILP and
thereby establish it as a (first) solution method to SoFaCLaP. Since we have not been able
to obtain suitable real-world instances1 to evaluate the MILP, we resort to generating
synthetic instances as described in Framework for benchmark generation and in Gener-
ating benchmark instances. The benchmark instances use the GraphML format (Brandes
et al. 2002) and are available from http://​www.​doi.​org/​10.​35097/​676, where a thorough
specification of the format can be found as well.

If the benchmark instances are sufficiently variable to cover a wide range of plausi-
ble inputs to the solution approaches, the use of synthetic instances has multiple advan-
tages. First, a larger number of different instances can be generated so that tendencies in
the comparison of two approaches are less likely to be a result of statistical noise. Sec-
ond, the solar farms in consideration can include more strings than any currently exist-
ing solar farms. Thus, the applicability of the algorithms for a future increase in solar
farm sizes can already be investigated now.

Framework for benchmark generation

We describe the general approach we propose for the generation of benchmark instances
on a high level in this section. The next section is dedicated to breathing life into the
framework by describing the process in more detailed steps with concrete values for
the parameters. These values are based on real-world examples of devices used in solar
farms as evidenced by Tables 1 and 2.

The first steps in the framework deal with placing the strings. For synthetic instances
we opt for randomly sampling the strings with a minimum distance. Next, the location of
vertices of higher layers are determined, starting at the Y-connectors. We let the number
of vertices in a layer depend on the number of vertices in a previous layer. We assume
fully connected layers, which leads to the maximum number of possible connections
between layers. After the graph is determined, vertex capacities are set. We choose these
randomly with bounds based on the minimum capacity necessary to connect all strings.
Lastly, cable types are included which we derive from real-world photovoltaic cables.

Users of the proposed framework may want to alter any intermediate step to realize
certain additionally desired properties on the solar farm instances. For example, users
could prespecify all the string positions or fix the number of vertices within a layer. They
may want to change the sampling process, for example to have all recombiner boxes

(9)fij ≤
∑

k∈K

xijk · cap(k) ∀(i, j) ∈ E.

1  As alluded to in SoFaCLaP from a practical perspective, it does not suffice to merely have the positions of the strings
and other devices in an existing solar farm. We rather need all potential positions of devices. This represents an interme-
diate step in the planning process which is, understandibly, not publicly available.

http://www.doi.org/10.35097/676

Page 10 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25

close to each other. The edge set can be thinned out if, for example, cables should not
exceed a certain length. Users can define their own cable types.

Generating benchmark instances

For our purposes, the framework introduced in the previous section is used as follows.
Benchmark instances are generated in three categories: Small (120–180 strings per
instance), Medium (500–750 strings), and Large (1200–1500 strings). We describe the
process of generating an instance: First, a rectangle is fixed that simulates the area of the
solar farm. One of the corners is defined as the origin giving rise to a coordinate system.
The (virtual) unit of length is irrelevant since SoFaCLaP solution values scale with the
underlying unit of length. Next, an angle α for the orientation of the strings in relation
to the coordinate system is chosen randomly. The total number of strings is drawn from
the intervals above and, one after another, the strings are placed in the rectangle: A ran-
dom point P is sampled from the rectangle serving as one of the connection points of the
string. For the purpose of describing the process, we refer to this point as the base of the
string. If P respects a globally specified minimum distance from the bases of all previ-
ously successfully sampled strings, the connection points are defined. On a ray start-
ing at P with angle α to the coordinate system’s x-axis two more connection points are

Table 2  Cable types used in simulations

Cable type Specifications as in HELUKABEL GmbH (2021)

Cost c Capacity cap Ampacity [A] at 60 °C Copper Weight
[kg per km]

4 5 55 38.4

34 22 218 336

120 50 488 1152

230 80 775 2304

750 180 Extrapolated

2300 400 Extrapolated

Table 1  Design parameters for graph layer sizes

a In the example solar farm by ABB (ABB Ltd. 2019, Annex B), each combiner box connectes 13 or 14 strings. A combiner box
by LS Electric has possible inputs of 12, 16, or 20 (LS ELECTRIC Co., Ltd. 2021). Combiner boxes by SMA connect up to 32
strings, but no recombiner boxes are used (SMA Solar Technology AG 2020)
bBased on the recombiner boxes in SolarBOS, Inc. (2022)
c 10 or (26− ratio VC : VS) , whichever is lower, based on the idea that parallel connections of many strings in both
combiner and recombiner boxes yields excessive amounts of electric current
d An example of two inverters connected to a transformer can be found in Gajda (2022)

Layer Category

In consideration Reference Small Medium Large

VS 1 120 – 180 500 – 750 1200 – 1500

VY VS 1.5 – 3 1.5 – 3 1.5 – 3

VC VS
a 10 – 20 10 – 20 10 – 20

VR VC
b 3 – 8 3 – 10c 3 – 10c

VI VS |VI | = 1 200 – 300 200 – 300

VT VI |VT | = 1 1 – 3d 1 – 3d

Page 11 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25	

placed equidistantly, with the distance being the same for all strings. If, however, P is too
close to another base, a new base P is sampled. If the process of placing a string fails too
often, the whole instance is discarded and a new rectangle is chosen.

With all the strings placed, the higher layers of vertices are randomly placed, starting
with the Y-connectors. For each layer, a ratio according to Table 1 is chosen randomly
and the number of vertices on the next layer is defined as Vnext = ⌈Vreference/ratio⌉ . The
ratios are chosen in a way to ensure decreasing sizes of layers. For the small instances,
the number of transformers and inverters is fixed as 1. Y-connectors and combiner boxes
are placed in close proximity to string connection points. Recombiner boxes are placed
close to combiner boxes. Inverters and transformers are placed on random points in the
rectangle, respecting minimum distances to the string bases as well as previously placed
inverters and transformers. The reasoning is that strings, inverters and transformers are
themselves bigger components and need to be more easily accessible for maintenance.

Picking (upper and lower) capacity values for the different layers can be a delicate
issue from an algorithmic point of view: With very tight capacities, the design questions
of picking one position for a, say, combiner box over another becomes easy: all possi-
ble positions have to be used. Very loose capacities mitigate the algorithmic difficulty
of picking a suitable subset of, say, strings to be assigned to a specific Y-connector. We
deem the assumption fair that all vertices of a layer have the same capacities since plan-
ners presumably would not design solar farms with two different versions of, say, invert-
ers. Given a layer Vi a capacity of at least lbi := ⌈|VS |/|Vi|⌉ is required. For each layer, a
random integer between lbi and � · lbi is chosen, where � = 1.2 for inverters and � = 1.5
for all other layers. The smaller value for inverters is selected with the idea in mind that
solar farm planners will not overly deviate the capacities of inverters from the capacity
best suited for the intended use. For recombiner boxes and inverters only, the capacity
will, however, be at least twice the capacity of the previous layer to ensure that two fully-
used vertices of the previous layer can be connected. The randomly chosen lower capac-
ity for inverters is at least 0.5 and at most 0.8 times the inverters’ upper capacity.

The edge set is assumed to be complete, i.e., equality holds in Eq. (2). We have no rea-
son to prohibit specific edges (although solar farm planners might). Thus, we leave it to
the algorithms to pick the most suitable edges from the complete set.

The cable types for the simulations as shown in Table 2 are based on the photovol-
taics cable SOLARFLEX-X PV1-F by HELUKABEL (HELUKABEL GmbH 2021). Four
sizes are considered, the forth one being the biggest size available. The rated ampacity
is approximately translated into a capacity on the amount of strings, where a current
of 10 A per string is assumed (ABB Ltd 2019, p. 121). Since cost quotations are not read-
ily available, we assumed that the costs are in essence proportional to the amount of
copper used in a cable. The exact unit for the costs is irrelevant since the optimization
function in SoFaCLaP can be scaled arbitrarily. For aesthetical reasons, we opted for
somewhat round values in the bigger cable types. No influence on the performance of
algorithms is expected from those changes. These four cable types are not big enough to
be used in the largest benchmark instances. Thus, we included two artificial cable types
to conduct meaningful experiments on the biggest instances. These cable types were
extrapolated from the smaller cables types, roughly following the motto “Doubling the
capacities yields triple the cost.”

Page 12 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25

Some of the benchmark instances generated as outlined above may be infeasible.
Since capacities are chosen in a way that the total capacity of a layer is at least the
number of strings and since the edge set is complete, infeasibility can only arise from
the interaction of the sizes and capacities of the layers as a whole. A toy example
of such a constellation can be seen in Fig. 2. We purposefully keep such instances
because it may be a feature of algorithms developed for SoFaCLaP to be able to detect
infeasibility (see also “Results: optimality and (in-)feasibility”).

Simulation setup

The MILP formulation from A mixed-integer linear program is translated into C++ 14
code. The code uses the Open Graph Drawing Framework (Catalpa release) (Chim-
ani et al. 2013) for parsing the benchmark instances and the C++-API provided by
Gurobi (Gurobi Optimization, Inc. 2018). For compilation, GCC 10.3.0 is used with
the -Ofast -march=native flags. All simulations are run on a 64-bit architec-
ture with four 12-core AMD CPUs each with 2.1 GHz with the openSUSE Leap 15.3
operating system. The MILP formulation is solved by Gurobi 9.5.0 in single-threaded
mode with a maximum running time of one day per instance, with 40 instances run-
ning simultaneously.

For the simulations, 80 randomly generated instances of each of the three catego-
ries Small, Medium, and Large are considered. An overview of the characteristics of
these 240 instances is shown in Table 3.

The ranges for the number of strings are almost fully used. It stands out that the
median of number of strings in the large instances is much smaller than 1350, which
is what one would naïvely expect. A possible reason is that the process of placing a
large number of strings, inverters and transformers, each of which observe a mini-
mum distance to each other, failed too often. In that case, the instances would be

VI VT

u = 10 u = 15

|VS | = 30

10

10

10
15

15

Fig. 2  A toy example of a solar farm, in which all vertex capacities are sufficient but their interaction implies
infeasibility. Due to 30 strings, each inverter needs an inflow of 10 and each transformer an inflow of 15. But
with only one outgoing edge per vertex allowed, inverters and transformers cannot be connected

Table 3  Characteristics of instances used in simulations

Category |VS| |V | |E|

min median max min median max min median max

Small 120 145 180 176 224.5 305 5566 10528 20515

Medium 502 632 750 781 966.5 1234 108654 190792 345969

Large 1200 1248 1500 1726 1920 2459 538923 732858 1369140

Page 13 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25	

discarded and a new number of strings would be drawn randomly. A possible remedy
is to enlarge the initial rectangle for the solar farms for the large instances.

The number of vertices is linear in the number of strings with a small coefficient. This
is as expected from the ratios shown in Table 1. The number of edges grows fast with
over 1.3 million edges for instances with up to 1500 strings. From a theoretical perspec-
tive, a fast increase is expected: Layers are fully connected and the number of vertices
per layer is linear in the number of strings. Thus, the number of edges grows quadrati-
cally with the number of strings.

Results: optimality and (in‑)feasibility

In our setting, Gurobi terminates with one of four optimization states: Ideally, an
instance is solved to (proven) optimality (Status: optimal). Secondly, Gurobi may find a
feasible solution but fail to prove that it is optimal (Status: feasible). In that case, the best
proven lower bound (lb ) does not match the solution value (ub ), and the feasible solution
may or may not be optimal. Thirdly, Gurobi may be able to prove that an instance does
not admit any feasible solution (Status: infeasible). Lastly, Gurobi may not find any fea-
sible solution but fail to prove infeasibility. In that case, the instance may or may not be
feasible (Status: unknown).

In the following, we want to investigate how often Gurobi terminates in each of those
states across the different categories of instances to see what we can learn about the
applicability of the MILP formulation and Gurobi to solve SoFaCLaP.

The upper part of Table 4 shows how often Gurobi terminates in the different states at
the end of the maximum running time of one day. Nearly all of the small instances are
solved to optimality within one day. A solution is considered optimal once the MIP gap2
is below the optimality tolerance of 0.0001%. Since the number of variables and con-
straints in the MILP formulation grow linearly with the number of edges, Gurobi can
most probably not uphold the performance on bigger instances.

Table 4  Amount of instances per optimization status for different stages of MILP simulations

The specifications for the experiments are in the main text body

Category Total Optimal Feasible Infeasible Unknown

MILP (A mixed-integer linear program), one day

 Small 80 79 1 0 0

 Medium 80 16 48 12 4

 Large 80 0 50 5 25

MILP (A mixed-integer linear program), one cable type, 1 day

 Small 0 – – – –

 Medium 4 – 0 2 2

 Large 25 – 14 5 6

MILP, one cable type, additional constraints (Eq. 10)

 Small 0 – – – –

 Medium 2 – 0 1 1

 Large 6 – 0 1 5

2  Gurobi can bound the optimal value from above by the best incumbent solution (value of ub) and from below by more
sophisticated considerations (lb). The MIP Gap is defined as (ub− lb)/lb.

Page 14 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25

Indeed, for the medium instances, the number of instances that are solved to opti-
mality decreases by a big margin compared to the small instances, but still one in five
instances is solved optimally. About one in seven instances are shown to be infeasi-
ble. The fact that Gurobi does not find any feasible solution on 4 out of 80 instances
within one day (optimization status: unknown) makes us suspect that those instances
are infeasible. On instances of those sizes one would expect that Gurobi would
find a feasible solution within one day if a solution existed. We come back to those
“unknown” instances later in this section.

As for the biggest instances, Gurobi is not able to solve any instance to optimality.
For more than one in four instances, Gurobi can neither find an optimal solution nor
prove infeasibility. We speculate that allowing Gurobi more time or simplifying the
model can give further insights into the true status of these instances.

Thus, we run two additional sets of simulations on the remaining “unknown”
instances. The first set is intended to find feasible solutions. We suspect any then
remaining unknown instance to be infeasible. On those instances, we use a more
restricted but (in the context of infeasibility) equivalent MILP formulation which we
believe helps Gurobi to prove infeasibility. We describe the two sets of simulations in
more detail and see what we can learn about the instances of unknown status.

To make Gurobi’s life (supposedly) easier on the remaining instances of unknown
status, we allow only one cable type. This greatly reduces the number of binary vari-
ables at the start of the optimization. If the capacity of the cable type is set to a value
higher than the maximum vertex capacity, the simplified instance is feasible if and
only if the original instance is, since the biggest cable capacity exceeds the biggest
vertex capacity in all instances in question here. Again, we give Gurobi a maximum
running time of one day per instance in single-threaded mode. The outcome of these
simulations is shown in the middle part of Table . Gurobi can prove infeasibility on
two additional medium and on five additional large instances. Gurobi also finds a
first feasible solution on 14 out of 25 large instances. Yet, two medium and six large
instances remain unknown.

Given the amount of help we gave Gurobi to find feasible solutions, we believe that
the remaining instances are in fact infeasible. To facilitate Gurobi’s proof of infeasibil-
ity, we again change the MILP formulation. Since the capacities within a layer are equal
and layers are fully connected, we observe that any feasible solution can be transformed
into other feasible solutions by a permutation of the vertices of a layer. In order to prove
infeasibility, Gurobi needs to outrule all these possibilities. Presumably, this can be facili-
tated by imposing a fixed order on the vertices of each layer, in which the inflow into the
vertices decreases. In formulae, fix a layer V ′ (other than the strings) and enumerate the
vertices inside this layer as V ′ = {v1, . . . , vk} . Then, add the constraints

for all layers V ′ . Additionally, we set the target function to a constant, so that Gurobi
terminates once it finds a feasible solution. With this formulation, we allow Gurobi
four threads per instance and lift the time limit. Surprisingly, these changes do not
help Gurobi much. Even with a total computation time over all threads per instance of

(10)|VS | ≥
∑

(u,v1)∈E

fuv1 ≥ . . . ≥
∑

(u,vk)∈E

fuvk ≥ 0

Page 15 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25	

more than six weeks, only two additional instances are proven infeasible (cf. lower part
of Table 4). At the time of writing, the simulations are still running.

We conclude from these investigations on the optimization status with which Gurobi
terminates that Gurobi is very well suited for solving small instances and obtaining feasi-
ble solutions on quite a number of instances representing medium and large solar farms.
We also note that Gurobi is able to prove infeasibility quite often in reasonable time
(with a bit of help), even though our trick with the additional constraints from Eq. (10)
proved less useful than hoped for. For some large instances, Gurobi cannot find a feasi-
ble solution within one day even though these instances are in fact feasible. While allow-
ing Gurobi more time is always an option, one could think about other approaches to
find a feasible solution (cf. Conjecture 1), give it to Gurobi as a warmstart and see what
Gurobi can do from there.

Results: running time

We take another look into the instances that are solved to optimality concerning the
time Gurobi needs to reach this state. 79 out of 80 small instances are solved to optimal-
ity. Gurobi reaches this result within half a minute on 55 instances and within 5 min
on 78 instances. The longest proof of optimality on the small instances needs just under
10 min. We suspect that Gurobi has no difficulties on the small instances, since the num-
ber of potentially non-zero binary variables can be greatly reduced by combining the
constraints: For string edges it is never beneficial to use another than the smallest cable
type. Also, the biggest cable type is never used on small instances since the second big-
gest suffices. More sophisticatedly, the small number of strings and therefore small num-
ber of vertices in further layers limits the number of cable types that can be used to due
the vertex capacities. For example, consider a solar farm with 180 strings and 60 Y-con-
nectors. By the formulae outlined in Generating benchmark instances, Y-connectors can
only have a capacity of 3 or 4. In both cases, the smallest cable type also suffices for
the edges between Y-connectors and combiner boxes. For all these reasons, we believe
Gurobi is able to cut off many suboptimal solutions very easily, which results in short
running times.

One medium instance is solved to optimality within 1 h (within 20 min actually) and
seven more within 4 h. The longest time for a proof of optimality here is 18 h. Clearly,
with more running time, the number of instances solved to optimality would increase
further. Unfortunately, it cannot be known how long Gurobi needs. So it is more insight-
ful to look into the worst-case deviation of a best solution from the (unknown) optimal
solution value. For this, we go back to the MIP gap in the following section.

Results: solution quality

We look into the quality of the solutions Gurobi has found within one day using the orig-
inal MILP formulation. By the upper part of Table , the instances in consideration are all
with status optimal or feasible. These are 80 small, 64 medium and 50 large instances.
There is not much to say about the small instances; they are almost all solved to optimal-
ity. The remaining instance has 180 strings (the maximum) and 11749 edges. On this
instance, Gurobi terminates with a MIP gap of 0.0161%. That means between the best
solution found is at most 0.0161% worse than the optimal solution.

Page 16 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25

In the other two categories, there are a lot more feasible but not optimal instances. Fig-
ure depicts the gaps sorted increasingly for the medium and large instances. Note that
these instances include all instances for which Gurobi has found a solution, whether
these solutions have been proven to be optimal or not. All but one medium instance
are solved with a gap of less than 5%, that means that the best solution found by Gurobi
is at most 5% worse than the optimal solution. A gap of less than 1% has been com-
puted for 53 out of 64 instances and a gap of less than 0.1% for 29 instances. On the large
instances, the gap remains bigger than 10% on twelve instances. A gap of less than 5%
has been proven for 30 instances and of less than 1% for 17 instances. The smallest gap
on the large instances is at approximately 0.13%.

One may reasonably expect that the bigger the instances, the more difficult it is for
Gurobi to prove optimality or infeasibility. While this is certainly true when compar-
ing medium with large instances (evidence shown in Fig. 3 and Table 4), it is not clear
when only somewhat similarly sized instances are considered, e. g. only the medium
instances. Since the number of provably infeasible and of “unknown” instances is very
small, we will not address that relation in the context of infeasibility. Any observation
on such a small data set might be pure coincidence. Concerning the proof of opti-
mality, however, we depict the MIP gaps as a function of the number of edges for the

0

5

10

15

20

25

30

0 10 20 30 40 50 60
Instance

M
IP

 G
ap

 [%
]

0

5

10

15

20

25

30

0 10 20 30 40 50
Instance

M
IP

 G
ap

 [%
]

0

2

4

6

8

10

0 10 20 30 40 50 60
Instance

M
IP

 G
ap

 [%
]

0

2

4

6

8

10

0 10 20 30 40 50
Instance

M
IP

 G
ap

 [%
]

Fig. 3  MIP gaps sorted in ascending order for medium (on the left) and large instances (on the right). Depicted
are 64 medium and 50 large instances, including those solved to optimality. The upper figures show the gaps
for all instances, the lower figures are zoomed in for better view

Page 17 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25	

aforementioned 64 medium and 50 large instances in Fig. 4. For the medium instances it
stands out is that the smallest instance in terms of edges has the second highest gap and
that the three biggest instances have very small gaps, including the fifth lowest. Look-
ing at the bulk of the instances, no tendency between MIP gap and number of edges is
apparent. In the large instances, the gaps are more spread but also no pattern can be
seen. With these pieces of evidence, we conclude that the number of edges cannot solely
explain the different performance of Gurobi within the categories of instances. Presum-
ably, the interaction of layer sizes with vertex and cable capacities also plays a role here.

As a side note: Fig. 4 shows only a small number of instances at the upper end of the
edge set sizes. We have made a similar observation concerning the number of verti-
ces of large instances in the discussion of Table 3 in Simulation Setup. We believe that
the problem that many of the bigger instances in the category large are discarded in
the process of placing strings, inverters, and transformers also persists for the medium
instances (and maybe even for the small instances).

Comparison to gaps from a similar optimization problem

Having small MIP gaps provides certainty that the best solution found is close to the
optimal. As we have seen, Gurobi delivers this certainty on a vast amount of instances
across all categories. One might suspect that Gurobi is just very good in general at prov-
ing such small gaps. We look into simulations using Gurobi for a somewhat similar opti-
mization problem to see if that is the case.

As we have mentioned in Contribution, a similar MILP formulation has been used for
computing cable layouts of wind farms. The difference lies in the layered structure of
solar farms including vertex capacities and the tree structure enforced by Eq. (8). [Gritz-
bach et al. (2019), ArXiv version, Fig. 6] report MIP gaps for their MILP simulations
on the synthetic benchmark instances proposed in Lehmann et al. (2017). These bench-
mark instances each supposedly have a number of edges linear in the number of verti-
ces, since an approach employing k-nearest neighbours is used to define the edge set.
To the contrary, the edge sets of the solar farm instances proposed here grow quad-
ratically in the number of vertices. One set of wind farm instances (originally denoted
by N3 ) has between 80 and 180 turbines per instance and is therefore a bit smaller but

0

5

10

15

1.0 1.5 2.0 2.5 3.0 3.5
Number of edges [10^5]

M
IP

 G
ap

 [%
]

0

10

20

30

6 8 10 12 14
Number of edges [10^5]

M
IP

 G
ap

 [%
]

Fig. 4  The MIP gap as a function of the number of edges in medium (left) and large instances (right).
Depicted are 64 medium and 50 large instances, including those solved to optimality. Be aware of the
differently scaled y-axes

Page 18 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25

still comparable to our small instances. Another set of wind farms (denoted by N4 ) has
between 200 and 499 turbines. These wind farms are a lot smaller than our medium
instances. The MIP gaps reported by Gritzbach et al. for these wind farm benchmark
sets are roughly between 25% and 30% with no outliers after a running time of one day
per instance. In comparison, all but one small solar farm have been solved to optimality
and all but one medium solar farm have a MIP gap below 5%. Even for the large solar
farms, our MIP gaps look better, at least as long Gurobi finds a feasible solution. To be
fair, Gritzbach et al. have used Gurobi 8.0.0, while we use Gurobi 9.5.0. Still, this can-
not explain the remarkable difference in the MIP gaps. The reason for the low MIP gaps
probably lies within the structural properties of SoFaCLaP and the corresponding MILP
formulation. Most notably, the layered structure of the graph yields MILP constraints
that only involve a local part of the graph.

Parting notes about the evaluation

The goal of the extensive evaluation of Gurobi’s performance on synthetic instances
was to establish the MILP as a first solution approach to SoFaCLaP. The performance
characteristics we have reported can serve as a baseline for future evaluations of other
algorithmic methods, be it improvements to the MILP itself or any other way of solv-
ing SoFaCLaP. In Conclusion, we give some hints on how SoFaCLaP can be approached
alternatively.

Conclusion
The Solar Farm Cable Layout Problem is, to the best of our knowledge, the first graph-
theoretic model of the optimization problem to find a cost-optimal cable layout from
strings to transformers in a solar farm while also deciding which of several positions for
intermediate vertices such as combiner boxes are best. This model can not only be easily
adapted to consider solar farms with string inverters instead of central inverters. It also
allows the inclusion of further aspects for the optimization such as vertex installation
costs or further constraints such as prohibiting the use of mutually exclusive candidate
positions. We introduce a MILP formulation to solve SoFaCLaP and propose a process
to generate synthetic benchmark instances. This process builds instances modularly and
customizations can be included at various points. We populate this process with input
parameters based on real-world solar farms and electrical equipment to obtain three cat-
egories of benchmark instances covering solar farms with between 120 and 1500 strings.

The simulations on the MILP formulation from A mixed-integer linear program using
our synthetic benchmark instances show that Gurobi is able to efficiently solve small-
and medium-sized solar farm instances; almost all small and many medium instances
are solved to optimality within one day. For the larger instances, one day is not quite
enough on some instances to find feasible solutions. But when Gurobi does find solu-
tions, these are for the most part already quite acceptable in terms of the MIP gap.

Moving forward, we see two main directions. From a practical perspective, the vast
amount of customization in the problem formulation and in the process of generating
benchmark instances can be exploited to investigate different aspects of optimizing the
layout of solar farms. From an algorithmic perspective, Gurobi could use some help to
find feasible solutions. Solutions from any heuristic approach could be passed on to

Page 19 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25	

Gurobi as a warmstart solution. Inspiration for algorithmic approaches can be found
in similar optimization problems: Network flows in many variations are a very classical
and well-studied problem in theoretical computer science. Equation (8) enforces a tree
structure, so the Steiner Tree Problem could be a different point of attack. There a given
subset of vertices (think: strings) of a directed graph need to be connected to a specified
vertex (here: grid point beyond the transformers) using a directed tree incorporating a
subset of intermediate vertices. The layers in SoFaCLaP already give a sense of direction.
A similar problem is the Multi-Level Facility Location Problem, in which in a layered
graph lower-level vertices need to be assigned to higher-level vertices. Any algorithmic
approach can of course also stand on its own. To evaluate these, we have established
the MILP as a possible baseline, which is one of the main purposes of this work.
Acknowledgements
The authors would like to thank Robin Grab for giving most valuable insights into the finer details of solar farms, Torsten
Ueckerdt for fruitful discussions on graph theory and algorithms, Dorothea Wagner for proofreading parts of this work,
and an anonymous reviewer for a very helpful hint on literature previously unknown to the authors.

About this supplement
This article has been published as part of Energy Informatics Volume 5 Supplement 1, 2022: Proceedings of the 11th
DACH+ Conference on Energy Informatics. The full contents of the supplement are available online at https://​energ​yinfo​
rmati​cs.​sprin​gerop​en.​com/​artic​les/​suppl​ements/​volume-​5-​suppl​ement-1.

Author contributions
SG: conceptualization, validation, formal analysis, investigation, resources, data curation, writing—original draft, review
and editing, visualization. DS: methodology, software, investigation, writing—original draft, review and editing. MW: con-
ceptualization, validation, resources, writing—review and editing. All authors read and approved the final manuscript.

Funding
This research was funded by the Helmholtz Association under the program “Energy System Design” and by the German
Research Foundation (DFG) as part of the Research Training Group GRK 2153: Energy Status Data—Informatics Methods
for its Collection, Analysis and Exploitation.

Availability of data and materials
The benchmark instances introduced in this work are available in the RADAR4KIT repository, http://​www.​doi.​org/​10.​
35097/​676. The dataset supporting the conclusions of this article is available in the RADAR4KIT repository, http://​doi.​org/​
10.​35097/​683.

Declarations

Competing interests
The authors declare that they have no competing interests.

Published: 7 September 2022

References
ABB Ltd.: Photovoltaic Plants. (2019). Retrieved on January 20, 2022. https://​libra​ry.​abb.​com/d/​9AKK1​07492​A3277
Alpiq Holding AG: Società Agricola Solar Farm 2. Retrieved on January 24, 2022. https://​www.​alpiq.​com/​power-​gener​

ation/​new-​renew​able-​energy-​sourc​es/​solar-​energy/​socie​ta-​agric​ola-​solar-​farm-2/
Bischoff M, Ewe H, Plociennik K, Schüle I (2014) Multi-objective planning of large-scale photovoltaic power plants. In:

Helber S, Breitner M, Rösch D, Schön C, Graf von der Schulenburg J-M, Sibbertsen P, Steinbach M, Weber S, Wolter A
(eds) Operations research proceedings 2012. Springer, Cham, pp 333–338

Bollipo RB, Mikkili S, Bonthagorla PK (2020) Critical review on pv mppt techniques: classical, intelligent and optimisation.
IET Renew Power Gener 14(9):1433–1452

Brandes U, Eiglsperger M, Herman I, Himsolt M, Marshall MS (2002) Graphml progress report structural layer proposal. In:
Mutzel P, Jünger M, Leipert S (eds) Graph Drawing. Springer, Berlin, pp 501–512

Chimani M, Gutwenger C, Jünger M, Klau GW, Klein K, Mutzel P (2013) The open graph drawing framework (OGDF). In:
Tamassia R (ed) Handbook of graph drawing and visualization. CRC Press, Boca Raton, pp 543–569

Dutta S, Overbye TJ (2011) A clustering based wind farm collector system cable layout design. In: Power and Energy
Conference at Illinois (PECI), IEEE, pp. 1–6

Every E (2022) Using Y Connectors in String Inverter Systems. Retrieved on January 24. https://​solec​tria.​com/​blog/​using-
y-​conne​ctors-​in-​string-​inver​ter-​syste​ms-​part-i/

https://energyinformatics.springeropen.com/articles/supplements/volume-5-supplement-1
https://energyinformatics.springeropen.com/articles/supplements/volume-5-supplement-1
http://www.doi.org/10.35097/676
http://www.doi.org/10.35097/676
http://doi.org/10.35097/683
http://doi.org/10.35097/683
https://library.abb.com/d/9AKK107492A3277
https://www.alpiq.com/power-generation/new-renewable-energy-sources/solar-energy/societa-agricola-solar-farm-2/
https://www.alpiq.com/power-generation/new-renewable-energy-sources/solar-energy/societa-agricola-solar-farm-2/
https://solectria.com/blog/using-y-connectors-in-string-inverter-systems-part-i/
https://solectria.com/blog/using-y-connectors-in-string-inverter-systems-part-i/

Page 20 of 20Gritzbach et al. Energy Informatics 2022, 5(Suppl 1):25

Gajda JW (2022) Solar Farms: Design & Construction. Retrieved on February 1. https://​stand​ards.​ieee.​org/​wp-​conte​nt/​
uploa​ds/​import/​docum​ents/​prese​ntati​ons/​nesc_​works​hop__​solar_​farms-​design_​const​ructi​on.​pdf

Garey MR, Johnson DS (1979) Computers and Intractability: a Guide to the Theory of NP-completeness. A series of books
in the mathematical sciences. W. H. Freeman & Co., New York

Gritzbach S, Ueckerdt T, Wagner D, Wegner F, Wolf M (2019) Engineering Negative Cycle Canceling for Wind Farm Cabling.
In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms (ESA 2019). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 144, pp. 55:1–55:16. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl. ArXiv version available at https://arxiv.org/abs/1908.02129. http://​drops.​dagst​uhl.​de/​opus/​
vollt​exte/​2019/​11176

Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual. (2018). Gurobi Optimization, Inc. http://​www.​gurobi.​com
HELUKABEL GmbH: Cables and Cable Systems for Photovoltaic Installations. Retrieved on December 11, 2021. https://​

www.​heluk​abel.​com/​media/​publi​cation/​de/​broch​ures/​pv_​20/​PV_​BROCH​URE_​Photo​volta​ik_​EN~1.​pdf
IRENA: Renewable power generation costs in 2020. Technical report, International Renewable Energy Agency, Abu

Dhabi (June 2021). Retrieved on January 24, (2022). https://​www.​irena.​org/​publi​catio​ns/​2021/​Jun/​Renew​
able-​Power-​Costs-​in-​2020

Kirchartz T, Rau U (2018) What makes a good solar cell? Adv Energy Mater 8(28):1703385
Lehmann S, Rutter I, Wagner D, Wegner F (2017) A simulated-annealing-based approach for wind farm cabling. In: Pro-

ceedings of the Eighth International Conference on Future Energy Systems. e-Energy ’17, pp. 203–215. ACM, New
York

Liu T, Yang X, Chen W, Li Y, Xuan Y, Huang L, Hao X (2019) Design and implementation of high efficiency control scheme
of dual active bridge based 10 kv/1 mw solid state transformer for pv application. IEEE Trans Power Electron
34(5):4223–4238

Ljubić I (2021) Solving steiner trees: recent advances, challenges, and perspectives. Networks 77(2):177–204. https://​doi.​
org/​10.​1002/​net.​22005

LS ELECTRIC Co., Ltd.: Photovoltaic Combiner Box. (2021). Retrieved on January 20, 2022. https://​www.​ls-​elect​ric.​com/
Luo Z, Qin H, Cheng T, Wu Q, Lim A (2021) A branch-and-price-and-cut algorithm for the cable-routing problem in solar

power plants. INFORMS J Comput 33(2):452–476
Mertens K (2019) Photovoltaics: fundamentals, technology, and practice, 2nd edn. Wiley, Chichester, West Sussex
Ortiz-Astorquiza C, Contreras I, Laporte G (2018) Multi-level facility location problems. Eur J Oper Res 267(3):791–805
Sanjay P (2022) With 2,245 MW of Commissioned Solar Projects, World’s Largest Solar Park Is Now at Bhadla. Retrieved on

January 25. https://​merco​mindia.​com/​world-​large​st-​solar-​park-​bhadla/
SMA Solar Technology AG: SMA String-Combiner. (2020). Retrieved on January 20, 2022. https://​files.​sma.​de/​downl​oads/​

DC-​CMB-U-​DEN18​34-​V16web.​pdf
SolarBOS, Inc.: Standard Recombiners. Retrieved on January 20, 2022. http://​www.​solar​bos.​com/​Stand​ard-​Recom​biners
SolarPower Europe: Global market outlook for solar power 2020–2024. Technical report (2020). Retrieved on January 31,

(2022). https://​www.​solar​power​europe.​org/​global-​market-​outlo​ok-​2020-​2024/
Tavana M, Santos Arteaga FJ, Mohammadi S, Alimohammadi M (2017) A fuzzy multi-criteria spatial decision support

system for solar farm location planning. Energy Strategy Rev 18:93–105

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://standards.ieee.org/wp-content/uploads/import/documents/presentations/nesc_workshop__solar_farms-design_construction.pdf
https://standards.ieee.org/wp-content/uploads/import/documents/presentations/nesc_workshop__solar_farms-design_construction.pdf
http://drops.dagstuhl.de/opus/volltexte/2019/11176
http://drops.dagstuhl.de/opus/volltexte/2019/11176
http://www.gurobi.com
https://www.helukabel.com/media/publication/de/brochures/pv_20/PV_BROCHURE_Photovoltaik_EN%7e1.pdf
https://www.helukabel.com/media/publication/de/brochures/pv_20/PV_BROCHURE_Photovoltaik_EN%7e1.pdf
https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020
https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020
https://doi.org/10.1002/net.22005
https://doi.org/10.1002/net.22005
https://www.ls-electric.com/
https://mercomindia.com/world-largest-solar-park-bhadla/
https://files.sma.de/downloads/DC-CMB-U-DEN1834-V16web.pdf
https://files.sma.de/downloads/DC-CMB-U-DEN1834-V16web.pdf
http://www.solarbos.com/Standard-Recombiners
https://www.solarpowereurope.org/global-market-outlook-2020-2024/

	Solar farm cable layout optimization as a graph problem
	Abstract
	Introduction
	Related work
	Contribution
	Problem formulation
	Variants of the problem
	SoFaCLaP from a practical perspective

	A mixed-integer linear program
	Simulations and evaluation
	Framework for benchmark generation
	Generating benchmark instances
	Simulation setup
	Results: optimality and (in-)feasibility
	Results: running time
	Results: solution quality
	Comparison to gaps from a similar optimization problem

	Parting notes about the evaluation

	Conclusion
	Acknowledgements
	References

