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Introduction
Day-ahead load forecasting is an essential task for grid operators and utilities in mod-
ern smart power systems to optimize balancing groups and to match upcoming demand 
and supply. Currently, standard load profiles, which are provided by the German Fed-
eral Association of the Energy and Water Industry in every year, are widely used by 
grid operators and modelers to approximate energy consumption (Peters et  al. 2020). 
However, sector-coupled smart grids require improved forecasting methods, since 
new large consumers, such as heat pumps and electric vehicles, add significant loads to 
residential households. In addition, intermittent renewable generation, especially from 
photovoltaic, changes traditional load patterns. In smart grids, more accurate forecasts 
could enable an improved management of emerging flexibility potentials, e.g., from 
battery storage, electric vehicles and heat pumps. The emergence of smart meters cre-
ates further possibilities in the field of day-ahead forecasting through the availability 
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of high-resolution load data on household level. The authors of Zufferey et  al. (2016) 
show with smart meter data from over 10,000 households in Basel, Switzerland, that a 
higher number of smart meter load profiles increases the general prediction accuracy 
significantly.

Improving day-ahead load forecasts also plays a vital role for (smart) energy commu-
nities. Energy communities are an emerging concept in research and practice, where 
local communities are collectively managing and optimizing their electricity production 
and consumption, e.g., through peer-to-peer trading or the joint utilization of storage 
systems (Shrestha et al. 2019; Henni et al. 2021). The importance of energy communi-
ties has been recognized by the European Union who plans to promote and strengthen 
decentral structures and has introduced the concept of “Citizen Energy Communities” 
in the 2019 Directive on common rules for the internal market for electricity (Golla et al. 
2020; European Parliament and Council of the European Union 2019). A central task 
in these energy communities will be the planning and management of flexibility poten-
tials and electricity production. By improving community load forecasts, energy man-
agement can be improved, costs can be lowered and CO2 emissions reduced (Wen et al. 
2019; Grundmeier et al. 2014). While (day-ahead) load forecasting plays an important 
role on all levels of future smart grids, we specifically focus on energy communities in 
this work. A special feature of energy communities is their level of aggregation within 
a smart grid. In literature, energy communities typically consist of usually in between 
2 to 500 households: in Coignard et al. (2021), communities between 2-95 households 
are analyzed, in Reijnders et al. (2020; Abadi et al.2016) Dutch households are regarded, 
while Schlund et al. (2018) focuses on 500 distributed households within a network sec-
tion. This makes (day-ahead) load forecasting of energy communities based on smart 
meter data a different task than in individual households or larger grid sections. In indi-
vidual households, smart meter data is either available or not, and load profiles may dif-
fer significantly from one household to another. In energy communities, there is already 
some level of aggregation which means that standard load profiles could be applied here 
as a (naive) forecast. However, the level of aggregation is much lower than in the case 
of grid-level forecasts which can contain 10,000s of households (Zufferey et  al. 2016). 
(Day-ahead) load forecasting in energy communities therefore deserves special atten-
tion, since the question arises whether smart meter data can be utilized strategically 
(e.g., by only installing smart meters in selected households) to improve load forecasts. 
This work thus aims at investigating the potential to improve day-ahead load forecasting 
of smart energy communities.

Recent research works like (Wang et al. 2019) have identified bi-directional Bi-direc-
tional long Short-Term Memory recurrent neural networks (Bi-LSTM) as suitable 
method to achieve high load forecasting accuracy. Although Bi-LSTM-based forecasts 
often enable high prediction accuracy in general, the forecasting of peak load hours and 
peak load quantities remains an important issue, as shown in Sarduy et al. (2016); Liu 
and Brown (2019). Previous works in the field consider the forecasting of peak loads and 
peak load hours as part of the overall forecasting process, instead of separating the fore-
casting of the general load pattern (e.g., through an LSTM) from the explicit forecasting 
of peak loads. Forecasting peak loads is especially important for grid operators that have 
to prevent possible congestion situations in the grid or at transformer stations (Kucevic 
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et al. 2021). Only a fraction of existing works in the load foreacasting field incorporates 
smart meter data into the (LSTM-based) forecasting process. Furthermore, selection cri-
teria for smart metered-households are rarely discussed (Haben et al. 2021; Kong et al. 
2017; Ghiani et al. 2019).

In this work, we therefore contribute to the field of community load forecasting 
through two extensions of previous works. First, we demonstrate the improvements 
that can be achieved by incorporating smart meter data into day-ahead community 
load forecasts. We use the concept of feature permutation importance to identify the 
most important features for the training of a LSTM. This information could potentially 
be used to install smart meter infrastructure selectively by targeting the most relevant 
households for the community forecast. Second, we tackle the shortcomings regarding 
the incorporation of accurate peak load forecasting in previous works by proposing a 
hybrid bi-directional LSTM-XGBoost forecasting model. In the hybrid model, we deploy 
a LSTM which is suitable to accurately predict the general trend of aggregated com-
munity load. We then separately forecast peak load time and quantity with an XGBoost 
model using on smart meter data. Lastly, we combine the peak load forecast with the 
LSTM-based general forecast to obtain a holistic community load forecast. Also, cyclical 
type-of-day features, such as the sin and cos transformation of the hour, are engineered 
to further improve the forecast quality without requiring additional data as demon-
strated in Haben and Giasemidis (2016).

We therefore aim to investigate (i) if smart meter data can improve existing LSTM 
load forecasting models of energy communities and (ii) whether the problem of insuf-
ficient peak forecasts can be tackled with a novel hybrid model. The contributions of this 
work are thus threefold: 

1	 A bi-directional LSTM-based model for the forecast of the aggregated load of an 
energy community using individual and aggregated smart meter data as input.

2	 The identification of the most important forecast input features in terms of type-of-
day data as well as smart meter data of individual households using feature permuta-
tion.

3	 A novel hybrid LSTM-XGBoost approach is proposed to incorporate accurate peak 
load forecasting and to improve overall accuracy of existing day-ahead aggregated 
load forecasting methods.

The remainder of this study is structured as follows. The first section covers the theoreti-
cal background of LSTM-based day-ahead load forecasting and XGBoost. The second 
section describes the methodology of this study and additional feature engineering steps 
that were undertaken. The third section describes the underlying dataset and the setup 
of the case study in which we demonstrate the developed methodology. The fourth sec-
tion gives an overview of the results, whereas the fifth section discusses the findings of 
the case study. The final section summarizes the results and gives an outlook on further 
research directions in the field.
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Theoretical background
Day-ahead load forecasting has been a relevant topic in research for years. A traditional 
approach is the Autoregressive moving average (ARIMA) method, mostly combined 
with other methods like the lifting scheme (Lee and Ko 2011), generalised autoregres-
sive conditional heteroscedasticity (Hor et al. 2006) or artifical neural networks (Dube 
et al. 2017). More recent works have shown the good applicability and performance of 
LSTMs for day-ahead forecasting problems (Kong et al. 2017). LSTMs, which were first 
introduced by in Hochreiter and Schmidhuber (1997), are based on Recurrent neural 
networks (RNNs).RNNs are sequence-based networks that can establish temporal cor-
relations between previous and current information. This makes RNNs suitable for load 
forecasting problems, since upcoming loads often depend on daily patterns and rou-
tines as well as past load data. In Bouktif et  al. (2018), France’s metropolitan electric-
ity loads are forecasted with a combined model of LSTMs and genetic algorithms for 
feature selection and hyperparameter tuning. The forecasting error, compared with an 
ExtraTree model, can be reduced by over 20%. In Jiao et al. (2018), LSTMs are used to 
forecast the electricity consumption of 48 non-residential consumers. By using LSTMs, 
a Mean absolute percentage error (MAPE) in the amount of 22.45% is reached. In com-
parison, with the traditional ARIMA method only a MAPE of 35.87% is achieved. As 
stated in Bouktif et  al. (2020), it is important to find the right combination of LSTM 
hyperparameters in order to achieve accurate load forecasting results.

Load forecasting in energy communities is a special form of day-ahead load fore-
casting due to the level of load aggregation. For instance, the authors of Coignard et al. 
(2021) evaluate energy community load forecasts from 2 to 95 households. Furthermore, 
in Coignard et al. (2021) the importance of peak-load hour forecasts is emphasized in 
energy communities, since through accurate forecasts the scheduling of battery storage 
systems and flexible loads can be optimized for high self-sufficiency rates.

Another recent development in machine learning is so called Extreme gradient boost-
ing (XGBoost), which was introduced by Chen and Guestrin (2016). XGBoost is an effi-
cient implementation of gradient boosting that is based on parallel tree learning and 
efficient proposal calculation and caching for tree learning. The XGBoost algorithm 
has found a wide variety of use cases, also in the context of energy systems research. 
In Zheng and Wu (2019), the framework is used for short-term wind power forecast-
ing. In Wang et al. (2017), next month electricity consumption is forecasted through a 
hybrid wavelet transform and XGBoost model. First works have also combined XGBoost 
with day-ahead load forecasting models. For instance, in Wang et  al. (2021), an adap-
tive decomposition method is used together with an XGBoost-based regression model 
to forecast loads of industrial customers in China and Ireland. The authors of Li et al. 
(2019) separately forecast day-ahead loads through an LSTM neural network and 
XGBoost. Subsequently, an error-reciprocal method is used to combine the forecasts. 
However, both methods are used for a general load forecast, instead of focusing the 
XGBoost forecast on peak loads. Previous works like Shwartz-Ziv and Armon (2022) 
have shown that XGBoost outperforms neural networks for regression and classification 
tasks on tabular data.

Several studies have shown that LSTM models are accurately capturing temporal 
dependencies but often underestimate peak values (Karimian et  al. 2019; Feng et  al. 
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2020). Hence, this study combines the LSTM day-ahead forecast, which generally 
depicts the temporal structure of the load, with a XGBoost forecast of peak load times 
and quantities. To our knowledge, no studies have pursued this approach so far.

In machine learning, feature importance measures help to better understand relevant 
inputs. A commonly used method for feature importance analysis is the permutation 
importance measure, which was introduced by Altmann et  al. (2010). In this method, 
the decrease of prediction accuracy is measured after permuting input features. Thereby, 
a permutation importance score can be calculated for every feature to assess its impor-
tance for the model.

Building on these previous findings, we first develop a LSTM-based day-ahead fore-
cast model and identify the most important input features in terms of easy-to-observe 
and smart-meter data using permutation importance. We then expand previous models 
by introducing an XGBoost model for forecasting both peak load time and quantity and 
combine the two approaches into one holistic hybrid model to improve overall accuracy 
of day-ahead aggregated load forecasts of energy communities.

Methodology
In this section, we describe our methodology for smart meter data-based LSTM fore-
casting of day-ahead aggregated community loads. An overview of the research frame-
work of this study is depicted in Fig. 1. In the following, we describe each component of 
the framework in detail.

Input data and type‑of‑day features

In a first step, the underlying smart meter data is preprocessed to create additional input 
features and to create the aggregate load of all smart meters Pagg , which serves as target 
variable. The aggregate load Pagg at time t can be calculated by summing up every load 
Pn,t of all N smart metered households: Pagg ,t = N

n=1 Pn,t.
As shown in Kanda and Veguillas (2019), adding additional type-of-day features to the 

underlying dataset can improve the general forecasting accuracy. Type-of-day features in 
this work include variables for the weekday, hour and month. To achieve periodicity for 
type-of-day variables, sinusoidal transformation is used as described in Haben and Gia-
semidis (2016). Also, a binary variable for weekends is added.

Fig. 1  Proposed research methodology framework. Arrows in different colors depict different input features 
for subsequent steps
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Data preprocessing

For the use of LSTM neural networks, the input data has to be preprocessed first. 
Every input feature I can be seen as a sequence of data points for the past K timesteps, 
as stated in Eq. 1:

In our case, K represents the amount of timesteps per day in the underlying dataset. 
Due to the sensitivity of LSTMs to the data scale, all input vectors are normalized to the 
range of (0,1) by min-max-normalization. The input matrix Xd for the forecast of any 
day d in the dataset consists of all input features I:

LSTM model

LSTMs are a special form of Recurrent neural networks (RNN), which solves the 
problem of exploding and vanishing gradients by adding a memory cell and gate 
(Wang et  al. 2019). Thereby, long-distance relationships between elements in 
sequence data can be processed. To create these temporal relationships, the LSTM 
defines and maintains a memory cell state over its life cycle. Three different types 
of timing modules exist in LSTMs: an input gate, a forget gate and an output gate. 
In turn, every timing module maintains its own memory cell and has its own task. 
The input gate is used to process incoming information, the forget gate decides about 
information retention of the historical cell state and the output gate processes outgo-
ing information. The decision about information affecting the cell’s state can be done 
selectively by using sigmoid activation functions. The output of the gates lies between 
0 and 1. Thereby, a decision is made about the amount of information that is passed 
through the respective structure. A recent advance of LSTMs are Bidirectional long 
Short-Term Memory recurrent neural networks (Bi-LSTM) , which can process both 
past and future information, whereas traditional LSTMs can only work with one-way 
transmission of information. Several works have shown that Bi-LSTM neural net-
works outperform traditional LSTMs in load forecasting problems (Wang et al. 2019; 
Atef and Eltawil 2020), hence they are preferred over traditional LSTMs in this work. 
The unfolded structure of a Bi-LSTM is depicted in Fig. 2.

(1)I = {it−K , . . . , it−2, it−1}

(2)Xd = {I1, I2, ...}

Fig. 2  Structure of Bi-LSTM network that both processes past and future information
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The bi-directional LSTM layer in this study is followed by a dense layer, another bi-
directional LSTM layer, two dense layers and a dropout layer to prevent overfitting 
(Tang et al. 2019).

LSTM hyperparameter tuning

To achieve a good combination of computational effort and accuracy, a randomized grid 
search is conducted for hyperparameter tuning, based on Wang et al. (2019). The param-
eters listed in Table 1 represent the parameter search space, 100 runs are conducted with 
new random combinations of hyperparameters. The parameters for the search space 
itself are defined based on existing studies that use LSTM neural networks for load fore-
casting (Kong et al. 2017; Muzaffar and Afshari 2019; Zheng et al. 2017; Bouktif et al. 
2018; Jiao et al. 2018; Bouktif et al. 2020; Jahangir et al. 2020).

Feature importance

Since this paper also aims to improve the general understanding of LSTM neural net-
works for energy community forecasting, the importance of the respective input features 
is investigated. Therefore, the measure importance Permutation importance (PIMP) is 
used, which was introduced by in Altmann et al. (2010). The permutation feature impor-
tance metric is deployed in many load forecasting studies and is model-agnostic (Huang 
et al. 2016; Lahouar and Slama 2015). To evaluate the importance of a certain feature I 
through permutation importance, its values are randomly shuffled to create a permuted 
input vector Iξ . Now, the decrease in prediction accuracy in terms of MAPEIξ is com-
pared to the MAPE of the unpermuted baseline model, as stated in Eq. 3:

A higher PIMPI means the model gets worse through a randomization of feature I, 
which indicates a higher feature importance.

XGB feature engineering

Previous studies on LSTM-based aggregated day-ahead load forecasting have shown 
improvements over alternative methods. However they are less well suited to predict 
varying peak load times and (extreme) peak quantities, as a time series forecast will 
always try to predict an expected value rather than extreme events. To improve the accu-
racy of peak load prediction within our day-ahead aggregated load forecast, we therefore 

(3)PIMPI = MAPEI ,ξ −MAPE

Table 1  In each run, a random combination of hyperparameters is tested

Hyperparameter Value

Past input timesteps as multiple of K 1, 2, 3

Batch size 32, 64

Epochs 50, 75, 100

Steps per epoch 75, 100, 125, 150, 200

Learning rate 0.1, 0.01, 0.005, 0.001

Number of units in LSTM-layer 20, 70, 130, 200, 260

Number of units in dense layers 20, 70, 130, 200, 260
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rely on a classification approach that specifically predicts peaks. We divide the task of 
peak load forecasting into two sub-tasks: predicting the time and quantity of the next 
day’s peak load. Therefore, two XGBoost models are separately trained to forecast peak 
load quantities and times. For the model input, the whole data set of smart meter loads 
is reduced to daily load indicators. Each day d is depicted as vector of K consecutive 
timesteps t, thus d = [t1, . . . , tK ].

The two target variables tPmax,d,agg and Pmax,d,agg are calculated for every day d. In 
Eq. 4, the peak load Pmax,d,agg is obtained by getting the highest load Pt,d,agg on day d:

In Eq. 5, the peak time tPmax,d,agg is obtained by getting the time step of the previously 
determined Pmax,d,agg:

Then, for every day d a range of statistical measures is calculated, as noted in Table 2, 
based on the previous day d − 1 or up to 21 previous days d − 1, . . . , d − 21 . In detail, 
maximum loads, minimum loads, mean loads, median loads and load standard devia-
tions are regarded. The subscript n denotes input features that are derived for each indi-
vidual household in the respective community, whereas the subscript agg denotes that 
the input features are derived based on the aggregated energy community load. For the 
peak time tPmax forecasting model, also the peak times of the 20 smart metered house-
holds with the largest annual energy consumption, Nlarge , are regarded for the past 21 
days. Only the 20 largest households are regarded due to computational limitations.

XGBoost model

XGBoost was introduced by in Chen and Guestrin (2016). The approach builds upon 
gradient tree boosting algorithms, which are extended by a second-order Taylor expan-
sion for a faster optimization process and to avoid overfitting. Previous works have 

(4)Pmax,d,agg = Max(P1,d,agg , . . . ,PK ,d,agg )

(5)tPmax,d,agg
= t(Pmax,d,agg )

Table 2  Features for XGBoost datasets for peak load Pmax and peak time tPmax forecasting for each 
day d, based on values from previous day ( d − 1 ) or previous days. Features are either based on the 
aggregated energy community load (agg) or smart meter data of households N 

Input features include day-before maximum loads, minimum loads, mean loads, median loads and load standard deviation 
( Pmax ,d−1,n , Pmin,d−1,n , Pmean,d−1,n , Pmedian,d−1,n , Pσ ,d−1,n ). For the peak time forecast, especially day-before peak load 
times tPmax ,d−1

 are relevant

Feature tPmax
 input data Pmax input 

data

Pmax ,d−1,n    ∀ n ∈ N Yes Yes

Pmin,d−1,n    ∀ n ∈ N Yes Yes

Pmean,d−1,n    ∀ n ∈ N Yes Yes

Pmedian,d−1,n    ∀ n ∈ N Yes Yes

Pσ ,d−1,n    ∀ n ∈ N Yes Yes

tPmax ,d−1,agg
 , . . . , tPmax ,d−21,agg

Yes No

tPmax ,d−1,n
 , . . . , tPmax ,d−21,n

    ∀ n ∈ Nlarge Yes No

Pmax ,d−1,agg , . . . , Pmax ,d−21,agg No Yes

Pmax ,d−1,agg No Yes

tPmax ,d−1,agg
Yes No
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shown that the XGBoost algorithm can be well applied for load forecasting tasks. For 
instance, the authors of Wang et  al. (2021) apply XGBoost to the load forcasting of 
industrial customers in Ireland and China.

XGBoost is based on an ensemble of Classification and Regression Tree (CART), 
which are used as weak learners. Weak learners are usually performing slightly better 
than random guesses in classification and prediction tasks and are modified over the 
iterations of the optimization process to form a well-performing ensemble model. The 
prediction ŷi for sample i is defined by Eq. 6,

where M is the number of CART, and fm(i) is the forecasted value for the sample i in 
tree m. The underlying objective function Obj is introduced in Eq. 7:

where Ij is the set of all samples in leaf j and l is the second-order loss function that 
measures the difference between predicted value ŷi and actual value yi . The regulariza-
tion term �

(
fm
)
 , as defined in Eq. 8, consists of the number of leaf nodes T. The score of 

leaf j is measured by wj . γ and β are parameters of the tree:

The structure of the CART and exact split points are determined by the quadratic objec-
tive function, which is simplified through the aforementioned second-order Taylor 
expansion, as noted in Eq. 9:

where gi is the first derivative of the loss function and hi is the second derivative. The 
quadratic Eq. 9 is solved to obtain the leaf node score w∗

j :

As a scoring function L̃(t)(q) , Eq.  11 is introduced to evaluate the quality of the tree 
structure q:

(6)ŷi =

M∑

m=1

fm(i)

(7)Obj =
∑

i∈Ij

l
(
yi, ŷi

)
+

M∑

m=1

�
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)
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fm
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= γT +
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2
β

T∑
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j
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






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gi


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


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

w2
j



+ γT

(10)w∗
j = −

∑
i∈Ij

gi
∑

i∈Ij
hi + β

(11)L̃
(t)(q) = −

1

2

T∑

j=1

(∑
i∈Ij

gi

)2

∑
i∈Ij

hi + β
+ γT
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Finally, to determine the tree structure and splitting decisions Lsplit , a greedy algorithm 
is used that starts with one leaf and then iteratively adds branches, as noted in Eq. 12:

where IL are sample sets of left nodes and IR are sample sets of right nodes. Given that 
I = IL ∪ IR , the loss reduction after a split is denoted by Lsplit . Through Eq. 12, possi-
ble split candidates are evaluated. For a more detailed explanation of the XGBoost algo-
rithm, we refer to Chen and Guestrin (2016).

Based on the previously introduced approach, two separate XGBoost models are trained 
to forecast tPmax,d,agg and Pmax,d,agg . Since forecasting tPmax,d,agg is a classification problem, 
the Receiver Operating Characteristic Curve (ROC AUC) is used as optimization metric. 
For the forecasting model of Pmax,d,agg , the Mean squared error (MSE) is used as optimiza-
tion metric, since this is a regression task.

The parameters of the XGBoost model are also determined through a hyperparameter 
search, based on parameters from Zheng et al. (2017); Wang et al. (2021); Li et al. (2019). 
The parameter search space is described in Table 3. Parameters are separately determined 
for the peak time and peak load model. In total, 1000 runs are conducted per model.

Hybrid LSTM‑XGB model

After forecasting tPmax,d,agg and Pmax,d,agg with the XGBoost model, the results have 
to be incorporated into the LSTM forecast, which is a vector of K forecasted loads P̂t : 
{P̂1, . . . , P̂k, . . . , P̂K} . For readability, we simplify the outputs of the XGBoost prediction as 
tXGB = tPmax,d and PXGB = Pmax, d.

The most straightforward approach would be to simply replace the value of the original 
LSTM load forecast, ˆ̂kP at time step k = tXGB with the predicted peak load quantity P̂XGB . 
However, this bears the risk that in case the peak load time has not been predicted cor-
rectly, the prediction will extremely overestimate the true load. We therefore scale down 
the predicted peak load by a parameter � ∈ [0,1]. In our case, we set � = 1

2 and calculate the 
new peak value P̂tXGB according to Eq. 13.

(12)Lsplit =
1

2




��

i∈IL
gi
�2

�
i∈IL

hi + β
+

��
i∈IR

gi

�2

�
i∈IR

hi + β
−

��
i∈I gi

�2
�

i∈I hi + β



− γ

Table 3  In each run, a random combination of hyperparameters is tested

The number of nestimators and the maxdepth is determined by drawing random integers. Minchildweight and gamma are 
determined by drawing from a set of pre-determined values. The remaining hyperparameters are drawn from uniform 
distributions

Hyperparameter Space Distribution

N estimators [40,1000] Randint

Max depth [1, 100] Randint

Learning rate [0.01, 0.59] Uniform

Subsample [0.3, 0.6] Uniform

Colsample bytree [0.5, 0.4] Uniform

Min child weight [0.05, 0.1, 0.02,1, 2, 3, 4] None

Gamma [0,0.5,2,10] None
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Since load peaks are usually patterns of subsequent, elevated loads, in Eq.  14 also the 
previous load P̂tXGB−1 and subsequent load P̂tXGB+1 are adapted by a quarter of the differ-
ence between the XGB and LSTM-based peak load forecast:

Thereafter, the adjusted values are inserted into the forecasting vector:

Performance evaluation

Finally, the forecasting performance is evaluated by the most commonly used metric in 
day-ahead forecasting, the Mean absolute percentage error (MAPE). The MAPE divides 
the sum of percentual deviations from the forecasted loads Pft by the actual loads Prt 
with the number of time steps K, as described in Eq. 16:

As a second metric, the Root-mean-squared error is used, which is the root of the mean 
squared error from Pft and Prt , as denoted in Eq. 17:

In this work, the MAPE is calculated for all forecasted day-ahead loads as well as only 
for the highest forecasted load, averaged over all days in the test data set. For the general 
load forecast, also the RMSE metric is regarded. Through this, we can assess both overall 
load forecast quality and the peak load forecasting capabilities of our model.

In order to achieve more stable and unbiased results, the dataset is further split with 
a twelvefold-cross-validation, where every split represents 30 days (Burman 1989). To 
achieve comparable results within splits and even-sized train-validation-test sets, the 
dataset is shifted for 30 days in every iteration.

In the following, we apply the developed methodology to a case study in order to dem-
onstrate the achievable improvements in energy community load forecasting through 
our developed model.

Case study
In this section, the setup of our study is described. In particular, the underlying dataset is 
described, the results of the LSTM and XGBoost hyperparameter tuning are presented 
and the four forecast scenarios are introduced.

(13)P̂tXGB = P̂t +
1

2
(P̂XGB − P̂t)

(14)P̂tXGB−1 = P̂t−1 +
1

4
(P̂XGB − P̂t) P̂tXGB+1 = P̂t+1 +

1

4
(P̂XGB − P̂t)

(15){P̂1, . . . , P̂tXGB−1, P̂tXGB , P̂tXGB+1
, . . . , P̂k, . . . , P̂K}

(16)MAPE =
1

K

K∑

t=1

∣∣∣∣
Pft − Prt

Prt

∣∣∣∣× 100

(17)RMSE =

√√√√ 1

n

n∑

i=1

|Pft − Prt|2
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Dataset

The introduced method is evaluated based on a dataset of German smart meter 
household data from 2019 published by Beyertt et  al. (2020). The dataset includes 
200 households that agreed on the publication of their loads, thereof 70 households 
participated in a behavioral experiment. The data of the remaining 130 households 
is used in this study. The households from the study are distributed all over Ger-
many, which prevents us from adding geographically dependent weather features to 
the data set. The calculated aggregated load of all 130 households represents the load 
of an hypothetical energy community. In Table 4, the dataset is described. In Fig. 3, 
an exemplary load of the energy community is depicted. We can observe an repeat-
ing pattern of load peaks in the morning and evening and load valleys in the night. 
The households in the dataset are relatively small with a mean annual household con-
sumption of 779kWh.

The number of housheholds in the energy community constructed in this paper lies 
in the range of the community sizes from existing studies. In Coignard et al. (2021), 
the communities are randomly sampled with 5 to 95 households with 4MWh annual 
consumption each, resulting in an aggregated load between 20MWh to 380MWh. 
In a case study from Heeten, Netherlands an energy community of 47 households 
is depicted, with a calculated energy usage of 164.500kWh per year Reijnders et  al. 
(2020). In Schlund et  al. (2018), different configurations of up to 500 distributed 
households are regarded.

Table 4  General information and descriptive statistics about the underlying dataset

Parameter Value

Time covered 01.01.2019 - 31.12.2019

Time resolution 15 min

Smart-metered households (N) 130

Minimum annual household consumption 116.65kWh

Maximum annual household consumption 2011.03kWh

Mean annual household consumption 779.91kWh

Aggregated annual load of energy community 101.4 MWh

Mean load of energy community 11.57 kW

Minimum load of energy community 4.92 kW

Maximum load of energy community 31.57 kW

Fig. 3  Aggregated energy community load from 07.01.2019 to 14.01.2019
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The dataset is split in twelve parts for the twelve-fold cross-validation. The first 252 
days (36 weeks) of data serve as training data, the following 83 days (11.86 weeks) 
for validation and the remaining 30 days (4 weeks) as test data, representing approxi-
mately one month each. After every iteration, the dataset is shifted by 30 days. There-
fore, our train-validate-test split is 70%, 23% and 7%.

LSTM model

The proposed LSTM is set up based on best practices from existing research (Kong 
et  al. 2017; Muzaffar and Afshari 2019; Zheng et  al. 2017; Bouktif et  al. 2018; Jiao 
et al. 2018; Bouktif et al. 2020; Jahangir et al. 2020). Several optimizers are compared 
(SGD, Adagrad, RMSProp, Adam). Due to slightly better results, the Adam optimizer 
is used. For improved computational efficiency, training is stopped early when no 
further improvements in valuation loss can be observed. The final LSTM parameters 
obtained from the hyperparameter search are listed in Table 5.

The models are trained and evaluated on a Google virtual machine with 8 virtual 
CPUs and 64 GB RAM. The LSTM neural networks are realized with the help of the 
tensorflow toolkit (Abadi et al. 2016).

Table 5  Final LSTM parameters

Parameter Value

Optimizer Adam

Time steps per day K 96

Past input timesteps as multiple of K 1

Batch size 64

Epochs 75

Steps per epoch 200

Learning rate 0.001

Number of units in LSTM-layer 200

Number of units in dense layers 130

Table 6  Final XGBoost parameters for peak time and peak load model

Parameter Value peak time model Value peak 
load model

N estimators 87 929

Max depth 41 96

Learning rate 0.18 0.43

Subsample 0.88 0.46

Colsample bytree 0.75 0.88

Min child weight 4 0.05

Gamma 10 2
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XGBoost

To find the optimal parameters for the XGBoost models for peak time and peak load 
forecasting, a hyperparameter search has been conducted. The resulting parameters 
are listed in Table 6.

Scenarios

In this work, four different scenarios are compared. Standard load profiles (SLP) for the 
year 2019 are used as baseline case, obtained from Standardlastprofil Haushalt (2019). 
The standard load profiles are scaled proportionally to the aggregated energy commu-
nity load (Meier 2000). In a second scenario, the LSTM is used to forecast day-ahead 
energy community loads, with the only input features being day-before aggregated 
energy community load Pagg and type-of-day features as inputs, such as the sin and cos of 
the hour, weekday or month. The second scenario is in the following denoted as LSTM. 
In the third scenario, we add the smart metered loads of the past day of each individual 
household of the 130 consumers (LSTM SM). Finally, in the fourth scenario we combine 
the results of the third scenario with the XGB peak load finetuning (LSTM SM XGB) 
(Table 7). All four scenarios and the respective input datasets are summarized in Table 8.

Results
In this section we describe and compare the results of the four introduced scenarios. We 
also evaluate the standalone performance of the XGBoost model and present the results 
of the permutation feature importance analysis.

In Fig. 4, the day-ahead forecast for October 17 2019, a weekday, is displayed for the 
standard load profiles (SLP), the general LSTM model (LSTM) and the LSTM model 
with smart meter data (LSTM SM). We can observe that both the LSTM and LSTM SM 
manage to forecast the general load pattern quite well, whereas the SLP overestimates 
the actual load profile on this certain day. When we also take the day-ahead forecasts of 
other days into account, we can see that the SLP follows a rather generic pattern, that 
only manages to match the daily load irregularly. We also note that the LSTM SM fore-
casts the day-ahead loads slightly better than the LSTM.

Before its integration into the LSTM model, the peak load and peak time forecast-
ing performances of the XGBoost model are compared to a forecast based on historical 
values. The XGBoost model is compared with a day-ahead forecast based on the peak 
load and peak time of the same day in the week before. For the evaluation, a twelvefold 
cross validation is conducted in the same way as described in the previous chapter. For 
the peak load forecast, the averaged XGBoost MAPE over the twelvefold cross validation 

Table 7  Summary of included data and methods in evaluated scenarios

Scenario Standard Load 
Profiles

LSTM Smart meter data XGB finetuning

SLP Yes No No No

LSTM No Yes No No

LSTM SM No Yes Yes No

LSTM SM XGB No Yes Yes Yes



Page 15 of 21Semmelmann et al. Energy Informatics  2022, 5(Suppl 1):24	

(M = 7.75, SD = 1.35) compared to the averaged MAPEs of the forecast through week-
before peak loads (M = 9.65, SD = 1.45) demonstrated a significant improvement, t(20) 
= 3.2, p = .005. For the peak time forecast evaluation, the amount of correctly forecasted 
peak times is compared first. Again, comparing the averaged matches of the XGBoost 
peak time forecast (M = 2.82, SD = 1.54) with the matches of the forecast with week-
before values (M = 1.55, SD = 1.37) yields a significant improvement, t(20) = − 2.05, 
p = .05. As final metric, it is counted how often the forecasted peak time is amongst 
the five highest day-ahead load time steps. Comparing the averaged top five occur-
rences through the XGBoost model (M = 19.27, SD = 3.26) and the top five occurrences 

Fig. 4  Day-ahead forecast for 2019-10-16 with standard load profiles (SLP), the general LSTM model (LSTM) 
and the smart meter-based LSTM model (LSTM SM). We can observe that both LSTM models forecast the 
actual day-ahead load pattern more accurate

Fig. 5  Day-ahead forecast for 2019-10-16 with hybrid LSTM-XGBoost model. Peak load finetuning is 
conducted on timestep 75, marked with green dots. The overall forecasting accuracy in terms of MAPE is 
improved
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through the week-before forecast (M = 16.64, SD = 3.32), a slightly significant improve-
ment can be observed once again, t(20) = 1.87, p=.07.

After evaluating the standalone performance of the XGBoost model, the forecast of 
the hybrid LSTM-XGBoost model is depicted in Fig. 5. For this exemplary day it can be 
seen how the incorporation of the XGBoost-based peak load and peak time forecast can 
improve the overall forecast quality.

The results of the twelvefold cross validation of the four scenarios are depicted in 
Table  8 and Table  9. We can observe that, on average, the LSTM SM XGB outper-
forms all other models in terms of overall MAPE. In comparison with the LSTM SM, 
an average improvement of 0.14 percentage points is achieved. Within the test period 

Table 8  MAPE and RMSE results by periods, for overall forecasting accuracy

Best values in respective rows highlighted in bold font and underlined

Evaluated period MAPE (overall) [%] / RMSE (overall)

SLP LSTM LSTM SM LSTM SM XGB

01.01–30.01. 24.85 / 3.52 19.63 / 3.70 18.25 / 3.27 17.98 / 3.23
31.01.–01.03. 25.64 / 3.87 19.42 / 3.20 25.35 / 3.87 25.04 / 3.83

02.03.–31.03. 24.05 / 3.94 17.82 / 2.79 11.18 / 2.14 11.04 / 2.11
01.04.–30.04. 24.95 / 3.97 25.63 / 3.00 19.40 / 2.83 19.13 / 2.79
01.05.–30.05. 28.03 / 4.71 24.81 / 2.84 23.57 / 2.79 23.61 / 2.79

31.05.–29.06. 27.53 / 4.78 28.50 / 3.33 10.71 / 1.60 10.70 / 1.59
30.06.–29.07. 27.76 / 4.81 16.69 / 1.96 11.00 / 1.41 11.15 / 1.43

30.07.–28.08. 27.01 / 4.87 23.68 / 2.60 20.41 / 2.35 20.39 / 2.35
29.08.–27.09. 28.64 / 4.90 21.61 / 2.68 17.36 / 2.06 17.40 / 2.06

28.09.–27.10. 27.19 / 4.46 16.89 / 2.19 11.29 / 1.73 11.20 / 1.71
28.10.–26.11. 21.50 / 3.21 17.38 / 2.52 15.39 / 2.74 14.99 / 2.67
27.11.–26.12. 26.20 / 3.71 27.63 / 4.13 19.52 / 3.36 19.16 / 3.30
Average 26.11 / 4.23 21.64 / 2.91 16.95 / 2.51 16.81 / 2.49

Table 9  MAPE results by periods, for accuracy of forecasted peaks

Best values in respective rows highlighted in bold font and underlined

Evaluated MAPE (forecasted peak) [%]

Period SLP LSTM LSTM SM LSTM SM XGB

01.01–30.01. 33.71 22.86 14.64 9.22
31.01.–01.03. 33.91 20.04 10.36 10.2
02.03.–31.03. 38.99 14.75 17.02 12.27
01.04.–30.04. 43.61 13.19 13.62 11.45
01.05.–30.05. 68.92 25.7 26.99 23.24
31.05.–29.06. 69.35 37.44 9.61 10.11

30.06.–29.07. 71.47 19.48 13.80 19.04

30.07.–28.08. 82.33 36.48 31.64 27.42
29.08.–27.09. 72.80 36.32 22.98 18.99
28.09.–27.10. 60.94 18.05 12.61 9.72
28.10.–26.11. 33.02 12.97 20.54 10.09
27.11.–26.12. 30.87 11.44 22.03 11.52

Average 53.33 22.39 17.99 14.44
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between the 28.10.-26.11., the LSTM SM XGB model manages to improve the accu-
racy by 0.4 percentage points compared to the LSTM SM model. Another remarkable 
observation is that adding individual smart meter data as additional input data signif-
icantly improves the model. Compared to the simple LSTM model, LSTM SM reaches 
a MAPE of 16.95 compared to 21.64 without smart meter data, an improvement of 
4.69 percentage points. Only in the second evaluated period, the LSTM model per-
forms better than the LSTM SM. All models consistently outperform the SLP. The 
outperformance of the LSTM SM XGB model is confirmed by the RMSE metric.

Furthermore, we evaluate the MAPE of forecasted peaks. Again, the LSTM SM XGB 
outperforms all other models. In comparison with the LSTM SM, an improvement of 
3.55 percentage points is reached on average. In 9 out of 12 months, the LSTM SM XGB 
outperforms the other models in terms of overall MAPE. In 8 out of 12 periods, the 
LSTM SM XGB forecasted peak MAPE outperforms the other models. Once again, we 
can observe that adding smart meter data (LSTM SM) improves the forecast accuracy 
from a MAPE of 22.39 to a MAPE of 17.99, which reflects an improvement of 4.4 per-
centage points. Most notably is the improvement in peak forecast accuracy compared to 
the SLP, with an improvement of 38.89 percentage points between SLP and LSTM SM 
XGB.

As the addition of individual smart meter data significantly improved the overall com-
munity forecast performance, we are interested in finding out which features, and espe-
cially which households’ smart meter data, is important to improve forecast quality. This 
information could be used to identify characteristics of households in which it is par-
ticularly helpful for forecasting tasks to install smart meters.

The Permutation importance (PIMP) for the LSTM SM are depicted in Fig.  6. We can 
observe that the aggregated energy community load (sum) is by far the most important 

Fig. 6  Average feature importances for smart meter-based LSTM (LSTM SM). We can see that the 
aggregated energy community load, the sin and cos transform of the hour and day, weekend binary as well 
as selected households serve as most important input features to forecast day-ahead energy community 
loads. Interestingly, most important households are also amongst the households with the highest annual 
electricity consumption
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feature. Further important features are the sin and cos transformed hour and day, as well as 
the binary variable for weekends. Also, the loads of selected customers are important input 
features for the LSTM. While the feature importances of the households seem relatively 
low in comparison to the sum and the cyclical features, we know from the results in Table 8 
and 9 that the addition of smart meter data leads to significant improvements and there-
fore even though seemingly small, these feature importances should not be neglected. Most 
of the households with a high feature importance are also households with relatively high 
annual electricity consumption. For instance, household 147 is the fourth largest household 
amongst the 130 smart metered households with an annual electricity consumption of 1,700 
kWh. Household 177 is the 8th largest household with an annual consumption of 1,448kWh, 
household 181 is 11th with 1,352kWh annual consumption. However, there are also several 
households with high feature importances that do not belong to the largest households.

Discussion
In this section we discuss the presented results and their implications for day-ahead load 
forecasting in energy communities. The study has been conducted with load data of a 
limited number of German households. Hence, it has to be investigated if the results of 
this study still prove valid in communities with a higher number of smart metered house-
holds, as well as data from other countries and differing community configurations. 
Also, we were not able to include weather data as input feature due to the geographic 
distribution of the households from the underlying dataset. This leaves opportunities for 
further research. In the following, we discuss two aspects of our work in particular.

First, we observe that the addition of smart meter data in energy communities can 
improve the day-ahead forecasting accuracy of energy communities significantly in 
our case study. This confirms the results of Zufferey et al. (2016), where also a higher 
accuracy in aggregated load prediction was reached by increasing the number of smart 
meters. Hence, we suggest to consider the installation and implementation of smart 
meters in the planning process for energy communities. Our results indicate that 
selected households contribute more to the improvement of forecasting quality than 
others. For instance, households with a larger annual consumption seem to have a 
larger impact on the forecast than smaller households. Still, this does not hold true for 
all households with a high feature importance. Thus, further research has to focus on 
identifying characteristics of households that improve the forecasting quality. With this 
information, grid operators and energy community managers could selectively install 
smart meters to optimize their day-ahead forecasting model.

Our feature importance analysis showed that the most important factor for forecasting 
day-ahead loads of energy communities is the past aggregated energy community load 
Pagg itself. It has to be noted that engineered type-of-day features, such as the sin and cos 
transformation of the hour, are by far the second most important input features. Hence, 
we strongly propose that coming works in the field of load forecasting also include sin 
and cos transformed type-of-day features.

Second, we introduce a novel hybrid LSTM-XGBoost model that enables improved peak 
load forecasts by separately forecasting the general load pattern and peak loads. To our 
knowledge, we are the first ones to propose peak load time and quantity forecasting through 
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a dedicated XGBoost model and to combine an LSTM and XGB forecast into a holis-
tic model. By using the hybrid LSTM-XGBoost model, we can improve the overall model 
performance and peak forecasting performance in our study. In addition, we propose that 
further research also evaluates the performance of a hybrid peak load forecasting XGBoost 
model in combination with other recent proposed algorithms like temporal attention based 
convolutional networks (Tang et al. 2022) or federated learning (Fekri et al. 2022).

Conclusion
In this paper, we propose a framework for smart meter-based day-ahead forecasting in 
energy communities with bi-directional LSTM neural networks and a combined LSTM-
XGBoost model. Furthermore, we contribute to the general understanding of important 
input features in smart meter-based energy community load forecasting. We can draw 
three main conclusions.

First, our results confirm that the LSTM-based models achieve a significantly higher 
accuracy than forecasting based on standard load profiles. In addition, using smart meter 
data as additional input data further improves the forecasting accuracy in our case study.

Second, the novel hybrid LSTM-XGBoost manages to further increase the forecasting 
accuracy of smart meter-based models, especially in terms of peak load forecasting.

Third, the most important features for the forecast of the aggregated energy community 
load are, in our case study, the past aggregated load itself, transformed hour and day data, 
a binary weekend variable as well as past loads of selected households. We see a tendency 
that the past loads of households with a higher annual consumption may be more impor-
tant features, but this needs to be confirmed and further investigated in future research.

This paper gives scope for further research in the field of energy community load fore-
casting. Future work should further confirm and deepen the assessment of the hybrid 
LSTM-XGBoost model and its viability in cases without smart meter data or in combi-
nation with alternative forecasting algorithms. Furthermore, adding weather data to the 
forecasting process could be an interesting addition to this study.
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