KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing

Silini, Riccardo ; Lerch, Sebastian ORCID iD icon 1; Mastrantonas, Nikolaos; Kantz, Holger; Barreiro, Marcelo; Masoller, Cristina
1 Institut für Volkswirtschaftslehre (ECON), Karlsruher Institut für Technologie (KIT)

Abstract:

The Madden–Julian Oscillation (MJO) is a major source of predictability on the sub-seasonal (10 to 90 d) timescale. An improved forecast of the MJO may have important socioeconomic impacts due to the influence of MJO on both tropical and extratropical weather extremes. Although in the last decades state-of-the-art climate models have proved their capability for forecasting the MJO exceeding the 5-week prediction skill, there is still room for improving the prediction. In this study we use multiple linear regression (MLR) and a machine learning (ML) algorithm as post-processing methods to improve the forecast of the model that currently holds the best MJO forecasting performance, the European Centre for Medium-Range Weather Forecasts (ECMWF) model. We find that both MLR and ML improve the MJO prediction and that ML outperforms MLR. The largest improvement is in the prediction of the MJO geographical location and intensity.


Verlagsausgabe §
DOI: 10.5445/IR/1000151265
Veröffentlicht am 21.10.2022
Originalveröffentlichung
DOI: 10.5194/esd-13-1157-2022
Scopus
Zitationen: 4
Web of Science
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Volkswirtschaftslehre (ECON)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2190-4979, 2190-4987
KITopen-ID: 1000151265
Erschienen in Earth System Dynamics
Verlag Copernicus Publications
Band 13
Heft 3
Seiten 1157–1165
Vorab online veröffentlicht am 23.08.2022
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page