KIT | KIT-Bibliothek | Impressum | Datenschutz

A Large-scale Virtual Patient Cohort to Study ECG Features of Interatrial Conduction Block

Bender, Jule 1; Nagel, Claudia 1; Fröhlich, Jonathan 2; Wieners, Christian 2; Dössel, Olaf 1; Loewe, Axel ORCID iD icon 1
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

Interatrial conduction block refers to a disturbance in the propagation of electrical impulses in the conduction pathways between the right and the left atrium. It is a risk factor for atrial fibrillation, stroke, and premature death. Clinical diagnostic criteria comprise an increased P wave duration and biphasic P waves in lead II, III and aVF due to retrograde activation of the left atrium. Machine learning algorithms could improve the diagnosis but require a large-scale, well-controlled and balanced dataset. In silico electrocardiogram (ECG) signals, optimally obtained from a statistical shape model to cover anatomical variability, carry the potential to produce an extensive database meeting the requirements for successful machine learning application. We generated the first in silico dataset including interatrial conduction block of 9,800 simulated ECG signals based on a bi-atrial statistical shape model. Automated feature analysis was performed to evaluate P wave morphology, duration and P wave terminal force in lead V1. Increased P wave duration and P wave terminal force in lead V1 were found for models with interatrial conduction block compared to healthy models. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000151268
Veröffentlicht am 11.10.2022
Originalveröffentlichung
DOI: 10.1515/cdbme-2022-1026
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 02.09.2022
Sprache Englisch
Identifikator ISSN: 2364-5504
KITopen-ID: 1000151268
Erschienen in Current Directions in Biomedical Engineering
Verlag De Gruyter
Band 8
Heft 2
Seiten 97–100
Nachgewiesen in Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page