KIT | KIT-Bibliothek | Impressum | Datenschutz

Synthesis and Characterization of High‐Entropy CrMoNbTaVW Thin Films Using High‐Throughput Methods

Schweidler, Simon ORCID iD icon 1; Schopmans, Henrik 2; Reiser, Patrick 1; Boltynjuk, Evgeniy 1; Olaya, Jhon Jairo; Singaraju, Surya Abhishek 1; Fischer, Franz 1; Hahn, Horst 1; Friederich, Pascal ORCID iD icon 1,2; Velasco, Leonardo 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

High-entropy alloys (HEAs) or complex concentrated alloys (CCAs) offer a huge research area for new material compositions and potential applications. Since the combination of several elements sometimes leads to unexpected and unpredictable material properties. In addition to the element combinations, the optimization of the element proportions in CCAs and HEAs is also a decisive factor in tailoring desired material properties. However, it is almost impossible to achieve the composition and characterization of CCAs and HEAs with a sufficient number of compositions by conventional experiments. Therefore, an optimized high-throughput magnetron sputtering synthesis to fabricate a new HEA gradient layer of six elements is presented. With this approach, the compositional space of the HEA system CrMoNbTaVW can be studied in different subsections to determine the influence of the individual elements and their combinations on the structure, morphology, and physical properties (hardness and resistivity). It is found that the Cr-, Ta-, and W-rich phases, which have a grain size of 10–11 nm, exhibit the hardest mechanical properties, whereas V-, Ta-, and Cr-rich compounds exhibit the highest electrical resistivity. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000151272
Veröffentlicht am 21.10.2022
Originalveröffentlichung
DOI: 10.1002/adem.202200870
Scopus
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1438-1656, 1527-2648
KITopen-ID: 1000151272
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Advanced Engineering Materials
Verlag Deutsche Gesellschaft für Materialkunde e.V. (DGM)
Band 25
Heft 2
Seiten Art.Nr. 2200870
Vorab online veröffentlicht am 03.09.2022
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page