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Abstract
Digital factories and smart manufacturing systems have been increasingly researched and multiple concepts were developed 
to cope with prevailing ever-shortening life-cycles. The ubiquitous digital twin, despite many definitions, is often praised 
for accurate virtual models. One key idea to improve manufacturing through such virtual models is virtual commissioning 
(VC), aiming at early machine code validation. VC and its virtual models are still lacking behind their real counterparts. This 
gap between reality and its virtual model, commonly termed reality gap, increases the complexity of creating cyber-physical 
systems. An especially stark contrast is visible between the idealized virtual model and a real machine encountering errors. 
While error simulations exist in other fields of research, a thorough investigation in VC is missing. Thus, this paper addresses 
the task of narrowing the reality gap in VC based on two steps. First, a comprehensive body of research of possible errors 
encountered in virtual commissioning is analyzed. Secondly, the feasibility of error implementation is discussed. This paper 
lays the foundation for narrowing the reality gap and enabling test automation and digital twin-based control.

Keywords Virtual commissioning · Cyber-physical systems · Reality gap · Digital twin · Smart manufacturing systems

1 Introduction

Facing ever new challenges with the diversification of cus-
tomer needs, increasingly complex manufacturing processes, 
and the rising demand for product quality and efficiency, 

manufacturing firms must respond with shorter product 
design and manufacturing cycles, faster product iteration, 
higher production efficiency, and more flexible production 
methods. To cope with these challenges, Smart Manufactur-
ing Systems have been proposed. A Smart Factory, or Smart 
Manufacturing System, is fully connected via information 
networks [1], operating without human force [2] by generat-
ing, transferring, receiving and processing necessary data to 
conduct all required tasks for producing all kinds of goods 
[3]. Hence, effective communication between the physical 
and digital world is crucial for modern factories [4] and 
operations in general [5].

Virtual commissioning (VC) is becoming increasingly 
popular, being an established and efficient digitization 
method for Smart Manufacturing Systems to shorten manu-
facturing cycles. Commissioning is the last development 
phase before the production system ramp-up and, thus, a 
bottleneck [6] which is time-consuming and prone to many 
possible error sources [7]. VC can speed up the engineering 
process by building a twin system in advance and commis-
sioning the twin system in simulation software as opposed 
to real commissioning, which requires real machines to 
be installed [8]. In contrast to digital twins, that instan-
tiate a digital copy of the physical machining process or 
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manufacturing system [9] through digital masters enabling 
more comprehensive control and analyses [10], in VC a 
virtual representation of the future real machine, that mir-
rors the real station’s behaviors and signals, is modeled. By 
doing so, the control hardware, programmable logic control-
ler (PLC), can be programmed just like in the actual fac-
tory [11]. Moreover, by developing and testing the control 
software before the real machine is built, the robustness of 
control software can be improved notably [12]. The com-
missioning on site, hence, becomes less stressful, less time-
consuming and error prone. As corrections on site are more 
expensive, financial savings can be increased [13].

While in real machines errors are comprised of mechani-
cal faults and external perturbations, this paper focuses on 
their models. A virtual model of a machine can be assumed 
to be ”error-free”, if it behaves like a perfect machine, with-
out any disturbances, randomness or further influences. Such 
error-free models can still be imperfect, when compared to 
their real counterparts, so that error refers to the models 
imperfectness when encountering real machine errors. To 
avoid confusion regarding the term error and for the sake of 
consistency, this paper uses this nomenclature throughout.

Given the imperfection of machinery applied in manufac-
turing, machine failure behavior can be analyzed by pattern 
recognition on a production system level [14] but could be 
mitigated with error-inclusion in VC. More errors in the con-
trol system could be detected and corrected in advance with 
increasingly accurate virtual models, which would also help 
realizing truly automated test automation [15]. In order to 
verify the control software’s reactions and find any observ-
able defects in test automation [16], these errors should be 
identified and simulated in the virtual model during VC. 
While narrowing the reality gap may not always yield imme-
diate results for PLC software quality, it is of particular 
importance for enabling truly automated test automation. 
Additionally, modern control techniques where digital twins 
are equipped with foresight [10] are increasingly transferred 
to machine and system control, requiring adequate virtual 
models with minimal reality gaps [5].

1.1  Research question

As an early investigation in addressing the challenges of 
error modeling in VC, this paper aims at optimizing the 
virtual model by embedding the machines’ errors that are 
ignored in existing, error-free VC. However, these errors 
exist in real production during operation. So in order for 
the dynamic performance of the virtual model to match 
the machines under real conditions, the models need to be 
improved.

As shown in Fig. 1, the real machine can be considered 
to consist of the current error-free virtual model and a real-
ity gap, i.e. unknown errors. Due to this reality gap, the 

control system validated by error-free virtual models could 
be overwhelmed when malfunctions appear in real systems. 
Hence, including an accurate error model to narrow the real-
ity gap can provide mitigation. However, these error-models 
are neither known or applied nowadays.

Through literature review and expert interviews, a thor-
ough overview of VC model errors is given. These errors 
are classified by factors such as their modeling suitability, 
leading to a VC model error directory. Subsequently, the 
error model shall be integrated into the error-free virtual 
model, narrowing this reality gap. Even with a seemingly 
benign part such as an inductive sensor, it can be shown that 
potentially significant differences between the reality and 
corresponding model can arise by ignoring errors.

2  Literature review

Commissioning is a critical part of the engineering process 
[7]. According to the VDI guideline 4499, VC encompasses 
the development-accompanying testing of individual com-
ponents and sub-functions of an automation system using 
simulation methods and models that are tailored to the 
respective task [17, 18].

2.1  Definitions and delimitation

While error modeling is established in other fields of 
research, it is not at all common in the field of VC. The focus 
of this work lies on VC, i.e. the testing of the control sys-
tems. To show how digital approaches can help, Fig. 2 illus-
trates how virtual engineering and commissioning accelerate 
the traditional approach. The term VC should furthermore 
be clearly separated from other approaches that deal with 
accelerating the engineering process, such as concurrent 
engineering. As opposed to concurrent engineering, which 
describes the general idea of simultaneous product and pro-
duction system engineering. Furthermore, it is focused on 
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Fig. 1  Illustration of the reality gap between the virtual model and 
the real machine
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production and not on the products and their effects on a 
production system [19].

Compared to traditional approaches, the engineering 
process can be accelerated significantly through VC, as 
illustrated in Fig. 2. Up to 70% of software errors are cor-
rected by connecting the PLC to virtual models via hard-
ware-in-the-loop (HiL) or software-in-the-loop (SiL) [20] 
with respect to real-time restrictions [13]. Subsequently, the 
ramp-up time is drastically reduced and a higher quality is 
guaranteed [21].

2.2  General literature review

In order to model virtual prototypes that are closer to the 
real machine, the authors of Yang et al. propose that physi-
cal attributes such as mass, acceleration, friction, and spring 
force should be added to error-free models, to decrease the 
reality gap [22]. Barth et al. mention that VC makes it pos-
sible to test major incidents such as cable breaks or sensor 
failures but do not provide specific solutions [17]. Süß et al. 
test the movement performance of a robot and check interfer-
ence among different mechanical structures with an accurate 
error-free virtual model, also without considering errors in 
VC [23]. Schneider et al. verify the system with regard to 
application scenarios as well as unexpected behavior in case 
of failure [24]. Nonetheless, they define safe states and test 
conditions only for failures over a specified risk priority 
[24]. According to Kufner’s definition of modeling depth for 
VC, error modeling is at the deepest level at modeling depth 
5—physical condition depiction—and has not yet received 
much attention [25]. This indicates that error modeling in 
VC is still a new topic to be investigated. Given the exam-
ined researches, a scientific demand for error modeling in 
VC is visible.

Errors exist not only in hardware but also in software 
[17]. During the control program configuration five software 
errors are common, mentioned in the VDI-guideline 4499 
[18]: (1) errors in logical control code, (2) process errors in 
the control code, (3) alarms, (4) communication errors and 
(5) malfunction of elements in the configuration. While the 
first types are manageable, the last error type, malfunctions 

cannot be automatically eliminated via software in the con-
trol system as simulated components in VC are error-free by 
default. Thus, the control system does not consider malfunc-
tions in the VC phase. In conclusion, no matter how accurate 
the simulation is, there is a substantial difference between 
simulation and reality, the so-called reality gap [26]. Five 
error types are summarized from the reviewed literature, as 
shown in Fig. 3. Errors can be distinguished based on the 
source of deviation between reality and virtual model: (1) 
inherent errors that depend on external effects (e.g. tem-
perature induced sensor effects), (2) code errors that stem 
from false coding, (3) installation errors (e.g. two sensors 
are connected vice versa), (4) poor compatibility (e.g. PLC, 
sensor and actuator incompatibilities) and (5) physical errors 
(e.g. of individual elements).

This paper aims to enhance the dynamic characteristics 
of virtual elements with error models and, thus, narrow the 
reality gap by focusing on the first error type. If malfunc-
tions are not simulated in a virtual model, control systems 
can not react correctly.

3  Solution concept

Based on the aim to derive error-incorporating models for 
VC, the following solution concept is derived: Firstly, the 
challenges and idea in resolving the underlying problem, i.e. 
the different types of reality gaps, are outlined. Secondly, a 
process model is presented as a solution concept in order to 
bridge the reality gap between a virtual model and the cor-
responding real machine.

3.1  Bridging the reality gap

Errors have to be identified thoroughly before integration 
into virtual models. The idea is illustrated schematically in 
Fig. 4. The upper part of Fig. 4 shows the process of current 
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Fig. 2  Smart manufacturing systems engineering process with virtual 
commissioning (VC) and virtual engineering (VE)
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Fig. 3  The five error types leading to the reality gap
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VC, where the validated control system obtained after VC 
includes corrected errors and unknown errors (upper part 
and yellow). The lower part is a schematic diagram of error 
modeling in VC. After the error model is embedded into 
the error-free virtual model, more control system errors 
(depicted in dark green) are discovered and corrected in the 
validated control system. Thereby, the performance of VC 
is improved with an error-embedded virtual model, and the 
engineering process can be further shortened. Figure 4 indi-
cates the implementation of error modeling as a step-wise 
process. At first, the object of interest is to be determined 
and then the related errors have to be identified. Next, errors 
must be expressed as a corresponding model in software. 
Finally, the error model is integrated with the error-free vir-
tual model. Therefore, this paper uses a process model that 
satisfies the following four requirements.

First, physical elements presentable in virtual models 
have to be gathered. In this paper, the investigated physical 
objects shall be elements that may produce target errors, 
inherent errors of elements and environmental effects on 
elements, c.f. [22], as outlined in Fig. 3.

Afterwards, a knowledge base of errors can improve mod-
eling efficiency and accuracy. Thus, the potential errors of 
elements applied to the production line have to be identi-
fied from different sources, including theoretical literature, 
practical experience and data analysis. As a result, a list of 
all possible and relevant errors is obtained. By analyzing 
and clustering the errors, they are presented in this work to 
be used in any given digital twin. The method to narrow the 
reality gap in this paper is implemented in a virtual environ-
ment. Thus, these physical faults need to be transferred from 
reality to software.

This has to be done pragmatically, meaning that the errors 
have to be implemented in a digital twin in a way that they 
distort the simulation behavior similar to the real errors 
would with the actual production system. The error models 
have to be included into existing behavior libraries, so that 

they can be used seamlessly. Hence, a requirement for errors 
is for them to be programmable.

The last step aims at creating error models that narrow 
the gap between real and virtual machines. A model library 
based on a universal error description could ensure informa-
tion consistency and, thus, improve the quality and efficiency 
of VC.

3.2  Process model

Based on the derived requirements, a process model to 
bridge the reality gap is proposed, including three steps, as 
outlined in Fig. 5.

• Step 1 The primary task is to determine the scope of 
physical elements. Exploring potential errors through a 
literature review, structured interviews with experienced 
engineers as well as real data analysis in the above pro-
cesses is crucial.

• Step 2 Before errors from the knowledge base are 
imported into a virtual model, a feasibility analysis is 
required because not all identifiable errors are related 
to VC. The following steps focus on VC-related errors, 
which are subdivided further, including irregular and 
mathematically representable errors, including different 
forms of modeling.

• Step 3 The next step is to simulate errors and malfunc-
tions embedded into the error-free virtual model to obtain 
a new virtual model in line with the actual system behav-
ior.

4  Methodology

Based on the proposed three step process model, this section 
introduces the implementation to ultimately narrow the real-
ity gap. The comprehensive error directory is acquired by 
analyzing existing literature, real data and conducting expert 
interviews. This knowledge base can then be used to imple-
ment errors and, thus, narrow the reality gap step by step.

Due to inherent errors of elements and
environmental effects on elements
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4.1  Step 1: Discovering the reality gap

In order to provide a thorough overview, inherent errors of 
elements and environmental effects on elements are ana-
lyzed from three perspectives: literature, semi-structured 
interviews with production engineers and real production 
data. Doing so, a knowledge base can be established, which 
serves as an indispensable basis for subsequent work. Note 
that the reviewed sources for the knowledge base form the 
core of the regarded knowledge, which in real-world applica-
tions should be updated regularly.

4.1.1  Error analysis from literature

By analyzing the technical characteristics of the elements 
described in literature, potential errors are identified. In 
spite of modern approaches to facilitate the extraction of 
such information from literature, such as Natural Language 
Processing (NLP) [27], this paper focuses on presenting 
errors and their suitability to be modeled in VC, which is 
not discussed in the analyzed literature and, thus, cannot 
be extracted.

The elements themselves are mutually exclusive, based 
on the interaction within the production system. However, 
many errors can occur in multiple of the element classes. 
These are: Detective elements are used for the sake of 
measuring parameters and monitoring the material flow 
in a production line. Measurement is a trade-off process 
as elements are always disturbed by internal or external 
factors. In general, some factors are taken into account in 

the measurement results, but others are ignored. A holis-
tic overview of different factors to detective elements is 
shown in Table 1.

Dynamic elements convert other forms of energy into 
mechanical energy. Mechanical energy is put into the pro-
duction system continuously. A stable dynamic element 
ensures ideal workpiece motion characteristics. Conse-
quently, the errors of elements (see Table 2) cannot be 
ignored while simulating.

Transmission elements, on the other hand, transport 
the workpiece in a production line, e.g. conveyor belts 
or robots. They do not solely focus on mechanical energy 
transformation, but also signals. Errors on transmission 
elements are depicted in Table 3.

While many errors are verbally described in the lit-
erature, as outlined in Tables 1, 2 and 3, the scope of the 
existing work is limited to the description of individual 
errors. Furthermore, a comprehensive knowledge base of 
errors is not envisioned and a clear connection to error 
modeling in VC and the mathematical representation is 
not presented, as the description of individual elements 
is favored.

Table 1  Error sources of detective elements

Detective elements Error types References

Generic sensor Non-linearity [28]
Hysteresis [29]
Object dimensions [30]

Photoelectric sensor Temperature sensitivity [31]
Light responsiveness [32]

Inductive sensor Drift [28]
Dynamic specification [28]

Pressure sensor dielectric property [33]
Medium temperature [34]

RFID reader Electromagnetic distur-
bance

[35]

Orientation [36]
Metallic susceptibility [37]

Camera system Light source [38]
Environmental factors [39]

Automatic identification 
device

Light intensity [40]
Angular alignment [35]
Distance [41]

Table 2  Error sources of dynamic elements

Dynamic elements Error types References

Electric motor Bearing faults [42]
Stator faults [43]
Rotor faults [42]

Pneumatic cylinder Tube resistance [44]
Air temperature [45]

Hydraulic system Dead band [46]
Medium temperature [47]
Compressibility of liquids [48]

Table 3  Error sources of transmission elements

Transmission elements Error types References

Industrial robot Faults on the sensor [49]
Faults on the mechanical 

structure
[50]

Faults on the actuation system [50]
Conveyor belt Faults of pulley [51]

Rolling friction [52]
Belt slip [53]
Vibration [54]

Fieldbus Faults on subsystem [55]
Overload [56]
Drift & Electromagnetic com-

patibility
[57]
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4.1.2  Error analysis from interviews

This subsection deals with errors gathered by experience 
from practical aspects. The failures that often occur on the 
production line are summarized in detail. The previously 
defined requirement— a knowledge base for error mod-
eling—is met through a combination of theoretical and 
practical analyses. To this end, five industry experts, each 
having at least five years of experience and a background in 
the fields of industrial automation, control engineering, and 
VC, were questioned in semi-structured interviews. Their 
summary of actual errors of real production lines is of con-
siderable significance to the study of the reality gap between 
virtual models and real machines. It should be noted that 
experts can be biased in their answers. The reader is referred 
to [58] for an investigation of said bias. Furthermore, despite 
their rich experience, they most likely can not have expe-
rienced each and every error that can arise. Despite those 
potential drawbacks, the answers from the expert interviews 
are still valuable and can not be replaced by other means 
of data acquisition. The identified most common errors are 
listed in Table 4.

4.1.3  Error analysis based on real data

The real data reflects a running production line for battery 
cells. The sampling period of the research objects is 22 min 
and 7 s totaling 13,270 samples (binary values) for a sin-
gle variable. The following two types of errors in the real 
machine were found, although they do not harm the machine. 
If they were simulated in VC, the virtual model could more 
realistically reflect the real machine and its behavior.

Signal delay Signal delay is found as a typical error in real 
data. As shown in Fig. 6, the control signal of a pneumati-
cally actuated lifteris taken as an example to be discussed. 
Due to its very common nature, pneumatic cylinders are 
suited perfectly as a basic example of error modeling with 
transferable results. The signals of said lifter are recorded 
and plotted to investigate how the actuator behaves and how 
the PLC receives the signals.

There are 50 sample points, equaling 5 s. During this 
period, the lifter control signal changes and an error 
occurs. The lifter is controlled by a pneumatic system, 
moving in the positive and negative direction of the z-axis. 
In the first experiment, the lift is initially at the bottom, 
as shown by the blue line. A command “lift up” is given 
by the PLC to the pneumatic system at n = 3 . However, 
until 1.2 s later, at n = 15 , the lifter doesn’t leave the bot-
tom position. In the second experiment, a command “lift 
down” is sent to the top lifter by the PLC at n = 7 , as 
shown by the red line. Likewise, it takes about 1.3 s until 
leaving the top position is detected. Signal delay is present 
in both of the above presented experiments. Many factors 
may be responsible for this type of error such as a control 
signal delays: Starting at the PLC the signal needs to pass 
through different control elements and the fieldbus, such as 
a switch, I/O ports, etc., to reach the actuator. This delays 
the signal transmission. Furthermore, sensor delays can 
occur as sensors need a reaction time to be activated. At 
the third sampling point, the lifter might leave the bottom, 
but the sensor does not detect the lifter due to the sensor’s 
delay. Additionally, a sensor’s detective range can influ-
ence the behavior. When the object is located within the 
detective range, the sensor output does not change. In this 
case, the lifter is still in the sensing range after ascending, 
so the output of the bottom sensor does not change. Last 
but not least, actuator delay can play a role: A pneumatic 
system drives the lifter. Like sensors, the actuator can add 
delay as a result of less than perfect air flow and inertia.

In addition, another type of delay can be found in the 
real data. The time required for the machine to finish each 
step is 4.1 s more than the required time in the virtual 
model. This type of delay increases to 41 s after a process 
cycle (all 10 steps are finished). However, it should be 
pointed out that this “delay” is not an error and does not 
lead to the reality gap since it is caused by an unequal exe-
cution time between the virtual model and real machine. 
This could be eliminated by slowing down the execution 
speed of each step in the virtual model and incorporating 
the above mentioned errors.

Table 4  Errors reported by industrial experts

Elements Error types

Cable tray, brush motor and conveyor belt Wear and tear
Machine and surroundings Collision
Engine and sensor Dust and oil pollution
Pneumatic and hydraulic system Leakage
Machine tool and industrial robot Vibration
Industrial robot Operation faults
Camera system Relative position
Code reader Contamination
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Contradictory state In some cases, element states are con-
tradictory. As shown in Fig. 7, the curve shows the state of 
stopper 1, an actuator in the production line.

The sample consists of 15 sampling points with a total 
duration of 1.5 s. The light blue curve indicates that stop-
per 1 is open, and the dark blue curve signifies that stopper 
1 is closed. Between the 7th and 10th point, the value of 
both curves is 0. This means the state of the stopper 1 is 
neither open nor closed. However, this is inconsistent and in 
reality impossible. Such contradictory states exist not only 
in stoppers but also in photoelectric sensors. Although this 
phenomenon exists in many elements, the production line 
is still working, and the control system has no noticeable 
problem. One possible reason is that the control system can 
not respond to the change of an element state in such a short 
time. However, the sample data does not contain a lot of 
errors, which illustrates another important issue. Even if 
errors are examined from the real data, they are not guaran-
teed to show up in any given set of data. Nevertheless, when 
they appear in reality they can easily lead to disruptions or 
even breakdowns. Hence, it is worth to identify, store and 
model such errors in order to optimize VC’s quality.

4.2  Step 2: Analyze feasibility

A clearer understanding of potential errors is obtained after 
the classification. Before these errors are simulated in soft-
ware and integrated into error-free virtual models, prereq-
uisites should be met, including correlation with VC and 
programmability. Thus, the feasibility of errors and malfunc-
tions for simulation are discussed. While this work found a 
number of irrelevant errors, they are not presented here and 
the focus remains on those that are relevant to simulation 
and VC.

Irregular errors are accidental and passive errors, usually 
caused by complex environmental factors, such as vibration, 
contamination, electromagnetism, etc. Irregular errors are 
impossible to be expressed through mathematical models. 
However, their appearance is likely to cause a malfunction 
in practice with validated control software after VC, so 
the corresponding warning messages should be set during 

simulation. For example, if a camera cannot recognize the 
target due to contamination, it might output a false signal. 
In this scenario, a warning message should appear on the 
control system, prompting the operator to eliminate the fault. 
Keeping in mind that the focus of VC is the PLC software, 
those irregular errors cannot be handled by software and 
as such are not deemed relevant for error modeling in VC..

Mathematically representable errors are errors whose 
changes and consequences are predictable using mathemati-
cal models. These can be summarized from published lit-
erature, such as the effect of temperature on sensor output 
accuracy. Thus, these errors can be mathematically mod-
eled to determine patterns of change which can be used to 
describe them in software.

Feasibility analysis shows that not all errors are relevant 
for VC and thus could and should not be modeled. The errors 
found in Sect. 4.1 can be divided into two broad catego-
ries, but this paper focuses only on those that are relevant to 
VC models. This enables the reader to subsequently imple-
ment those errors in their models.. This leaves two main 
categories: irregular errors and those that can be modeled 
mathematically. The first category includes contamination, 
pollution and belt slip as well as vibrations from neighboring 
stations or even factory traffic.

4.3  Step 3: Error simulation

Errors from the knowledge base are summarized and catego-
rized based on their characteristics. This section introduces 
how to simulate feasible errors in VC, corresponding to the 
third step of the process model in Fig. 5.

As previously mentioned, irregular errors cannot be accu-
rately described by mathematical models. Because of irregu-
lar errors, abnormal outputs of certain elements can prevent 
the control system from functioning correctly. Current VC 
does not take these errors into account, so the control system 
assumes that the output of elements is as predetermined and 
may be overwhelmed by problems such as camera failures 
due to contamination. Thus, for irregular errors, although 
the pattern of change itself cannot be described precisely, 
the influence of the error is possible to be simulated in VC. 
So, by observing the influence, approximated models can be 
generated. This would allow the programmer to evaluate the 
PLC’s behavior in such a scenario. The modeling process of 
irregular errors is shown in the top half of Fig. 8.

Another type of errors are mathematically representable 
errors. These often occur in the form of changes that can be 
predicted by mathematical models or logical control loops. 
Taking an inductive sensor as an example, the output value 
in operation may differ from the output value of the error-
free virtual model due to fluctuating room temperature. In 
this case, the fluctuating temperature can be seen as an error. 
The virtual sensor is not precise enough so that it does not 
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Fig. 7  The contradictory state of stopper 1
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exactly match the dynamic performance of the inductive sen-
sor in operation. The most effective way to resolve this error 
is to establish an extra mathematical model for room tem-
perature in software. In the next step, this model is integrated 
into the error-free virtual model, narrowing the reality gap. 
The bottom half of Fig. 8 illustrates the simulation process 
of mathematically representable errors.

5  Results

This work presents a comprehensive overview of the cur-
rent state of error simulation, the current deficits and poten-
tial benefits. As a result, it allows the reader to enrich their 
models by understanding what can and should be simulated 
in what manner. This knowledge base provides a first step 
towards narrowing the reality gap. The proposed solu-
tion concept is investigated for feasibility according to the 
presented process model. Extending the error free model 
requires a knowledge base to map relevant errors and their 
mathematical representation to be included into the PLC for 
VC, which is regularly extended whenever a novel error is 
introduced. The main contribution, however, lies in a con-
sequent approach to error modeling in VC. The resulting 
knowledge base enables digital twins to be enhanced, which 
in turn can elevate the VC improvements. Especially in the 
context of automated testing, the systematic simulation of 
relevant errors enables simulation experts to improve the 
PLC software’s robustness towards a plethora of possible 
behavioral deviations, which would then speed up the real 
commissioning..

6  Conclusion and outlook

This paper presents a process model as a solution concept 
to bridge the reality gap in VC. This section discusses the 
entire approach, including the innovation of this approach 
over current VC techniques, and its limitations that can be 
further optimized.

6.1  Innovation

Firstly, compared to current VC techniques using error-free 
virtual models, the proposed solution can avoid loss of prof-
its and delay of a project, thereby speeding up the produc-
tion cycle. Thus, the urgency of including error modeling in 
virtual models is exemplified. Secondly, the process model 
proposed in this paper is highly versatile and scalable. Indus-
trial applications are plentiful: the testing can become more 
realistic, thus yielding a higher software quality on the con-
struction site. Automated testing can be established, where 
the errors are automatically simulated and evaluated. At the 
very least, a better understanding of what is possible, what 
can and should be simulated is provided.

The knowledge base established in the first step is change-
able and extendable according to the VC application domain. 
Common types of errors are distinct in different industries 
[17]. Therefore, the database’s sources should be matched 
with its application domain. For the remanufacturing indus-
try, suffering under different product states, and high poten-
tials for failure [59] a small reduction in errors can yield 
great potential for increasing process robustness. In addi-
tion, depending on the project’s accuracy requirements, the 
number and types of errors considered in the process model 
can be extended easily. In other words, the process model 
can be applied to projects with different specifications and 
sizes. This paper, thus, provides the first step towards error 
modeling in VC, to get from an idealized model to one that 
incorporates errors from the real world surroundings of 
production environments. This could also open the door to 
projects, such as the one discussed in [5], to include the vast 
field of digital twins for deep and reinforcement learning 
into production systems [60] and knowledge aware, knowl-
edge graph based virtual models [61].

6.2  Limitations

The dynamic performance of error-free virtual models is 
optimized through error modeling. However, the error-
embedded virtual model’s stability is not fully verified yet. 
In order to achieve a full evaluation of the inclusion of error 
modeling in VC, a real machine with a PLC and an experi-
enced programmer is required. Based on this research, which 
provides the first step towards error modeling in VC, the 
main focus lies on presenting basic innovations for error 
modeling in VC. Consequently, a robust control system after 
VC cannot yet be guaranteed in real operation. Thus, the 
control system’s robustness validated by error-embedded 
virtual models should be focused in future research. Against 
the background of the shown results, this approach of error 
modeling in VC is feasible. However, in comparison with 
state-of-the-art techniques that control systems are validated 
by an error-free virtual model, it is not fully understood how 
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much benefit a control system, verified by an error-embed-
ded virtual model, could bring to VC. While achieving a 
high level of realism per se is not conceivable, the required 
granularity of error inclusion is not investigated in detail 
and, hence, is worth discussing.

6.3  Outlook

This work constitutes the first step from investigating the 
reality gap to deriving a knowledge base. This can then be 
used to implement errors in previously error-free VC mod-
els. The next step then has to be to model the errors in the 
respective VC tool. These models must then be saved and 
organized into a database, from where they can then be 
applied to real life production models. Future research on 
error modeling in VC should focus on incorporating actual 
errors from actual production system, i.e. dig into up-to-the-
minute virtual models. In these cases, real data on the opera-
tion of relevant equipment must be collected and analyzed, 
and the error database consequently updated. All the pro-
grammable errors have to be implemented in existing librar-
ies for them to be available in production systems. Mean-
while, further prototypical implementation is necessary and 
consequently the established error-embedded virtual models 
should be tested by the PLC to verify whether the control 
system validated by this model can remain stable. Last but 
not least, the versatility and compatibility of error-embedded 
virtual models are priorities for future developments. The 
error models should be as compatible as possible to differ-
ent software to reduce the effort of VC. In future research, 
the control system validated by VC could be more adaptable 
to real production conditions, and test automation could be 
implemented in a more genuine manner. Against the back-
ground of narrowing the reality gap, error-modeling in VC, 
as introduced in this paper, can serve as a game-changing 
enabler for digitization and Industry 4.0.
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