KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving Language Model Predictions via Prompts Enriched with Knowledge Graphs

Brate, Ryan; Dang, Minh-Hoang; Hoppe, Fabian ORCID iD icon 1; He, Yuan; Meroño-Peñuela, Albert; Sadashivaiah, Vijay
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Despite advances in deep learning and knowledge graphs (KGs), using language models for natural language understanding and question answering remains a challenging task.
Pre-trained language models (PLMs) have shown to be able to leverage contextual information, to complete cloze prompts, next sentence completion and question answering tasks in various domains. Unlike structured data querying in e.g. KGs, mapping an input question to data that may or may not be stored by the language model is not a simple task. Recent studies have highlighted the improvements that can be made to the quality of information retrieved from PLMs by adding auxiliary data to otherwise naive prompts. In this paper, we explore the effects of enriching prompts with additional contextual information leveraged from the Wikidata KG on language model performance. Specifically, we compare the performance of naive vs. KG-engineered cloze prompts for entity genre classification in the movie domain. Selecting a broad range of commonly available Wikidata properties, we show that enrichment of cloze-style prompts with Wikidata information can result in a significantly higher recall for the investigated BERT and RoBERTa large PLMs. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000151291
Veröffentlicht am 11.10.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 10.2022
Sprache Englisch
Identifikator KITopen-ID: 1000151291
Erschienen in Workshop at the 21st International Semantic Web Conference (ISWC 2022) on "Deep Learning for Knowledge Graphs"
Veranstaltung 21st International Semantic Web Conference (ISWC 2022), Online, 23.10.2022 – 27.10.2022
Verlag CEUR-WS.org
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page