

KIT Accelerators and Test Facilities

MT ARD ST3 Meeting 2022 in Berlin Bastian Härer for Akira Mochihashi, on behalf of the KIT team

www.kit.edu

Test facilities & technologies - examples

Accelerator Technology Platform @ KIT

Accelerator & Energy Systems Test Field KITTEN

- Digital twin of KARA
 - analyzing, developing and testing future energy solutions for research infrastructures

@MT Annual Meeting by G. De Carne

InnovEEA

Accelerator & Energy Systems Test Field KITTEN

KITTEN Inauguration – July 2022

With panel discussion

"Kommen große Forschungsinfrastrukturen an ihre Grenzen -Neue Energiekonzepte für die Forschung der Zukunft"

https://www.youtube.com/watch?v=-YQBtbImXA8 (in German)

FLUTE: Accelerator Test Facility at KIT ELUTE Karlsruhe Institute of Technolo

FLUTE (Ferninfrarot Linac- Und Test-Experiment)

- Test facility for accelerator physics within ARD
- Experiments with THz radiation
- R&D topics
 - Serve as a test bench for new beam diagnostic methods and tools
 - Systematic bunch compression and THz generation studies
 - Develop single shot fs diagnostics
 - Synchronization on a femtosecond level

Final electron energy	~ 41	MeV
Electron bunch charge	0.001 - 3	nC
Electron bunch length	1 - 300	fs
Pulse repetition rate	10	Hz
THz E-Field strength	up to 1.2	GV/m
WWW	.ibpt.kit.e	du/flute

FLUTE Status

- Ventilation of the complete machine in December 2021
 - \rightarrow Laser alignment of internal components
 - \rightarrow Exchange of cathode

- \rightarrow Upgrade split-ring holder and installation of pinhole aperture
- \rightarrow Commissioning is under way
- Dark current investigation with Faraday Cup
 - \rightarrow Energy and charge distribution within dark current
 - \rightarrow Study of feasibility to use dark current for experiments
- Major FLUTE upgrade coming up, planned to be finished by end of the year
 - \rightarrow New RF photoinjector and solenoid
 - → New RF system for photoinjector and LINAC

M. Nabinger et al. https://doi.org/10.18429/JACoW-IPAC2021-MOPAB280

9

Optimization studies of simulated THz radiation

 Optimized settings vs. design stage settings:
 Shortest bunch:

100pC 54.6 fs \rightarrow 11.6 fs

Highest THz pulse E-field: 1pC 350 kV/m → 600 kV/m 100pC 8.4 MV/m → 43 MV/m

STalk + Poster by C. Xu

C. Xu et al. https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS023

Institute for Beam Physics and Technology (IBPT)

100

Surrogate Modelling of FLUTE Low-energy Section

- One ASTRA space charge simulation takes \sim 3 min \rightarrow very slow
- Use a neural network as a surrogate of the ASTRA simulations of FLUTE low-energy section.
 - Input: Charge, gun RF phase, gun RF gradient, solenoid strength
 - Output: Bunch size, length, energy, energy spread
 - Application:
 - virtual diagnostic for operation (shot-to-shot beam properties prediction)
 - training environment for reinforcement learning agent (fast prediction < 1ms) Transverse beam size σ. [mm]
 - speed up optimizations

Comparison to Measurement

C. Xu el al. https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT070

Karlsruhe Research Accelerator (KARA)

(FuroCirCol

KIT synchrotron light-source & accelerator test facility

Parameters	Values
Circumference	110.4 m
Energy range	0.5 – 2.5 GeV
RF frequency / period	500 MHz / 2 ns
Revolution frequency / period	2.715 MHz / 368 ns
Beam current	Up to 200 mA
RMS bunch length	45 ps (2.5 GeV) a few ps (1.3 GeV)

www.ibpt.kit.edu/kara

Technology transfer from KARA to the world

Superconducting Undulators – The future is now **EuXFEL** 2022 SCUs for FELs USA NSLS-II@BNL **SKIT** 3 GeV SCW BILFINGER 2020 2020 Australia Synchrotron, Melbourne ANSTO - BioSAXS beamline

> Citation: "Superconducting undulators ... most powerful light source for any experiment"

KARA Operation Status

Operation modes in 2022:

0.5/2.3/2.5 GeV user optics, 0.5/1.3 GeV low-alpha, 0.5/1.3 GeV negative alpha

Power supply refurbishment program

- Kicker and septum magnets in booster and storage ring: Done in 2021
- Storage ring sextupole magnet: Commissioning September 2022
- Booster bending and quadrupole magnet: In production
- Storage ring bending magnet: In production

Improvement of booster beam instrumentation

- Bunch-by-bunch feedback system
- BPM system, beam profile monitor, beam loss monitor

D. El Khechen et al. doi: 10.18429/JACoW-IPAC2022-MPPOPT027

Negative Momentum Compaction Factor at KARA

 $\zeta_{\rm x} = -0.82$

٠

Transverse stability

Measured beam position after kick

• $\zeta_{\rm x} = 0.62$

- Future low emittance rings could benefit from negative momentum compaction operation
- Reduced sextupole strengths result in higher dynamic aperture
- Understanding of involved effects is necessary

Horiz. Beam Pos. offset in mm Longitudinal instability at short bunch length 0.01200 $\alpha_{\rm c} > 0$ Negative α_c STalk + Poster -0.5Measured Intensity in ADC counts 800 000 400 500 500 250005000075000125000Positive α_c **CSR** Intensity Turn by P. Schreiber Horiz. Beam Pos. offset in mm 0.5600 $\alpha_{\rm c} >$ Talk @MT 0.0**Annual Meeting** $\zeta_{v} = -3$ 250005000075001250000 Turn 0.000.050.100.150.200.250.300.35Positive alpha, negative chroma ... unstable Current in mA Negative alpha, negative chroma ... stable

At neg. mom. compaction: higher mean- and max intensity

P. Schreiber et al. DOI: 10.5445/IR/1000148354

P. Schreiber et al. https://doi.org/10.18429/JACoW-IPAC2022-THPOPT006

0.5

Impedance manipulation at KARA

- Corrugated plates will be installed into KARA
- Affecting threshold current and/or bursting frequency with additional impedance

S. Maier et al. https://doi.org/10.18429/JACoW-IPAC2021-TUPAB251

S. Maier et al. https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS006

STalk + Poster by G. Niehues EO diagnostics at IBPT EO crystal field line camera far & DAQ beam line fs laser stretcher optics optics field beam pipe EO crystal ar e-bunch Talk by M. Patil Near-field: modulator Far-field:

- Resolving electron bunch profile in every turn @ 2.7 MHz
- Capable of uninterrupted data acquisition for up to several millions of turns

M. M. Patil et al. https//:doi.org/10.18429/JACoW-IPAC2021-FRXC03 M. M. Patil et al. https//:doi.org/10.18429/JACoW-IPAC2021-WEPAB33 M. M. Patil et al. https//:doi.org/10.18429/JACoW-IBIC2021-MOOB01

- Experiment under commission, status: successful EOS demonstration with off-line demonstrator using balanced detection
- Aiming to measure the complete THz pulse in single-shot

C. Widmann et al. https://:doi.org/10.18429/JACoW-IPAC2022-MOPOPT024

EO Diagnostics at IBPT

Near-field:

Development of an EO Bunch Profile Monitor for FCC-ee

cSTART Project

- Motivation: Storage of ultra-short (fs) electron bunches with high repetition rate
- Compact storage ring with very large momentum acceptance and dynamic aperture
- FLUTE with new transfer line as injector

Status:

- Conceptual design and specification: finished
- Transfer line magnets: first magnets in production

Test diagnostics at KARA booster: ongoing

STalk + Poster by M. Noll

M. Schwarz et al. https://doi.org/10.18429/JACoW-IPAC2021-TUPAB255

D. El Khechen et al. <u>https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT026</u> J. Schäfer et al. https://doi.org/10.18429/JACoW-IPAC2022-MOPOST041

Goal: injection & storage of a laser plasma accelerator beam in a storage ring

- Clean room for laser system built
- Installation of commercial laser system in progress
- Conceptual design of transfer lines including diagnostics finished
 F Pai

STalk + Poster by B. Härer

- B. Haerer et al. <u>https://doi.org/10.18429/JACoW-IPAC2022-THPOPT059</u>
 B. Haerer et al. <u>https://doi.org/10.18429/JACoW-IPAC2019-TUPGW020</u>
 J. Schäfer et al. <u>https://doi.org/10.18429/JACoW-IPAC2022-MOPOST041</u>
- E. Panofski, B. Härer et al. https://doi.org/10.18429/JACoW-IPAC2021-TUPAB163
- Fine-tuning of optics and tracking calculations in progress

Acknowledgements

Thank you for your attention!

The accelerator team

Daria Astapovych, Alex Bernhard, Edmund Blomley, Simon Braner, Erik Bründermann, Hyuk Jin Cha, Kantaphon Damminsek, Dima El Khechen, Samira Fatehi, Stefan Funkner, Julian Gethmann, Andreas Grau, Steffen Grohmann, Bastian Härer, Michael Hagelstein, Erhard Huttel, Igor Kriznar, Stephan-Robert Kötter, Anton Malygin, Katharina Mayer, Sebastian Maier, Sebastian Marsching, Yves-Laurent Mathis, Wolfgang Mexner, Matthias Nabinger, Michael Nasse, Gudrun Niehues, Marvin Noll, Alexander Papash, Meghana Patil, Micha Reißig, Robert Ruprecht, Andrea Santamaria Garcia, Patrick Schreiber, David Seaz de Jauregui, Jens Schäfer, Thiemo Schmelzer, Marcel Schuh, Markus Schwarz, Nigel John Smale, Johannes Steinmann, Pawel Wesolowski, Christina Widmann, Chenran Xu and Anke-Susanne Müller

KIT Partner Institutes (ETP, IHM, IMS, IPE, IPS, LAS, IAR, IPQ)

Collaboration partners:

