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Abstract

Systems evolve rapidly and exist in many variations to address di�erent and
changing requirements. This leads to subsequent revisions (variability in
time) and concurrent product variants (variability in space). Redundancies
and dependencies between di�erent products across various revisions on the
one hand and heterogeneous types of artifacts on the other hand quickly lead
to inconsistencies during the evolution of a variable system. Handling the
complexity while managing both variability dimensions uniformly and con-
sistently is a major challenge when developing large and long-living variable
systems. Variability in space is primarily considered in software product line
engineering (SPLE), while variability in time is mainly addressed in software
con�guration management (SCM). Consistency preservation between het-
erogeneous artifact types and view-based software development are major
research topics in model-driven software development (MDSD). The isolation
of these three related engineering disciplines has led to a plethora of research,
approaches and tools from each area, which impedes a common shared un-
derstanding and causes redundant research. Therefore, tools from these areas
are usually not well integrated, leading to a heterogeneous tooling landscape
and high manual e�ort for evolving a variable system, which, in turn, harms
the system’s quality and increases maintenance costs.

Based on the current state of the art in these three disciplines, this thesis
presents three main contributions to cope with the complexity of evolving
variable systems.
The uni�ed conceptual model documents and uni�es concepts and rela-
tions for simultaneously coping with variability in space and time based on a
diverse set of analyzed tools and approaches from SPLE and SCM. Beyond
their mere combination, the uni�ed conceptual model proposes novel ways
of relating both variability dimensions.
The uni�ed operations form the basis for operational management of vari-
ability in space and time using the uni�ed conceptual model as data structure.
Based on an analysis of diverse contemporary tools that follow di�erent
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modalities and paradigms, the uni�ed operations provide functionality be-
yond the state of the art by preserving each tool’s functionality while extend-
ing it to uniformly cope with both variability dimensions.
The uni�ed approach re�nes the uni�ed conceptual model and uni�ed
operations and additionally integrates consistency preservation mechanisms.
To this end, di�erent types of variability-related inconsistency types have
been identi�ed that can occur during the evolution of variable systems com-
prised of heterogeneous artifacts. The uni�ed approach integrates automated
consistency preservation for a selected subset of the identi�ed inconsistency
types to support consistent uni�ed management of variable systems.

Every main contribution of this thesis has been empirically evaluated. The
uni�ed conceptual model and uni�ed operations have been evaluated based on
expert surveys, devised metrics to assess the appropriateness of a uni�cation,
and exemplary applications. Moreover, the functional suitability of the uni�ed
approach has been evaluated by applying it to two real-world case studies: the
well-known ArgoUML-SPL data set that has been extracted from a snapshot
of ArgoUML, a UMLmodeling tool, andMobileMedia, a mobile application for
media management. The uni�ed approach is implemented using the Eclipse
Modeling Framework (EMF) and the Vitruvius approach.

With the presented contributions, this thesis broadens the body of knowledge
on uni�ed management of variability in space and time and bridges it with
automated consistency preservation across heterogeneous artifact types.
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Zusammenfassung

Systeme entwickeln sich schnell weiter und existieren in verschiedenen Va-
riationen, um unterschiedliche und sich ändernde Anforderungen erfüllen zu
können. Das führt zu aufeinanderfolgenden Revisionen (Variabilität in Zeit)
und zeitgleich existierenden Produktvarianten (Variabilität in Raum). Red-
undanzen und Abhängigkeiten zwischen unterschiedlichen Produkten über
mehrere Revisionen hinweg sowie heterogene Typen von Artefakten führen
schnell zu Inkonsistenzen während der Evolution eines variablen Systems.
Die Bewältigung der Komplexität sowie eine einheitliche und konsistente
Verwaltung beider Variabilitätsdimensionen sind wesentliche Herausforde-
rungen, um große und langlebige Systeme erfolgreich entwickeln zu können.
Variabilität in Raumwird primär in der Softwareproduktlinienentwicklung be-
trachtet, während Variabilität in Zeit im Softwarekon�gurationsmanagement
untersucht wird. Konsistenzerhaltung zwischen heterogenen Artefakttypen
und sichtbasierte Softwareentwicklung sind zentrale Forschungsthemen in
modellgetriebener Softwareentwicklung. Die Isolation der drei angrenzenden
Disziplinen hat zu einer Vielzahl von Ansätzen und Werkzeugen aus den
unterschiedlichen Bereichen geführt, was die De�nition eines gemeinsamen
Verständnisses erschwert und die Gefahr redundanter Forschung und Ent-
wicklung birgt. Werkzeuge aus den verschiedenen Disziplinen sind oftmals
nicht ausreichend integriert und führen zu einer heterogenen Werkzeug-
landschaft sowie hohem manuellen Aufwand während der Evolution eines
variablen Systems, was wiederum der Systemqualität schadet und zu höheren
Wartungskosten führt.

Basierend auf dem aktuellen Stand der Forschung in den genannten Diszi-
plinen werden in dieser Dissertation drei Kernbeiträge vorgestellt, um den
Umgang mit der Komplexität während der Evolution variabler Systeme zu
unterstützen.
Das uni�zierte konzeptionelle Modell dokumentiert und uni�ziert Kon-
zepte und Relationen für den gleichzeitigen Umgang mit Variabilität in Raum
und Zeit basierend auf einer Vielzahl ausgewählter Ansätze und Werkzeuge
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aus der Softwareproduktlinienentwicklung und dem Softwarekon�gurati-
onsmanagement. Über die bloße Kombination vorhandener Konzepte hinaus
beschreibt das uni�zierte konzeptionelle Modell neue Möglichkeiten, beide
Variabilitätsdimensionen zueinander in Beziehung zu setzen.
Die uni�zierten Operationen verwenden das uni�zierte konzeptionelle
Modell als Datenstruktur und stellen die Basis für operative Verwaltung von
Variabilität in Raum und Zeit dar. Die uni�zierten Operationen werden ba-
sierend auf einer Analyse diverser Ansätze konzipiert, welche verschiedene
Modalitäten und Paradigmen verfolgen. Während die uni�zierten Operatio-
nen die Funktionalität von analysierten Werkzeugen abdecken, ermöglichen
sie den gleichzeitigen Umgang mit beiden Variabilitätsdimensionen.
Der uni�zierte Ansatz basiert auf den vorhergehenden Beiträgen und er-
weitert diese um Konsistenzerhaltung. Zu diesem Zweck wurden Typen
von variabilitätsspezi�schen Inkonsistenzen identi�ziert, die während der
Evolution variabler heterogener Systeme auftreten können. Der uni�zierte
Ansatz ermöglicht automatisierte Konsistenzerhaltung für eine ausgewählte
Teilmenge der identi�zierten Inkonsistenztypen.

Jeder Kernbeitrag wurde empirisch evaluiert. Zur Evaluierung des uni�zierten
konzeptionellen Modells und der uni�zierten Operationen wurden Exper-
tenbefragungen durchgeführt, Metriken zur Bewertung der Angemessenheit
einer Uni�zierung de�niert und angewendet, sowie beispielhafte Anwendun-
gen demonstriert. Die funktionale Eignung des uni�zierten Ansatzes wurde
mittels zweier Realweltfallstudien evaluiert: Die häu�g verwendete ArgoUML-
SPL, die auf ArgoUML basiert, einem UML-Modellierungswerkzeug, sowie
MobileMedia, eine mobile Applikation für Medienverwaltung. Der uni�zierte
Ansatz ist mit dem Eclipse Modeling Framework (EMF) und dem Vitruvius
Ansatz implementiert.

Die Kernbeiträge dieser Arbeit erweitern das vorhandene Wissen hinsichtlich
der uniformen Verwaltung von Variabilität in Raum und Zeit und verbinden
diese mit automatisierter Konsistenzerhaltung für variable Systeme bestehend
aus heterogenen Artefakttypen.
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1. Introduction

This chapter builds on publications at VariVolution [9], SPLC [3, 7], Empirical
Software Engineering [5], and VaMoS [10, 6].

The development and evolution of software-intensive systems is a di�cult
endeavor that faces many challenges [163]. Among others, these challenges
involve a high diversity of artifacts, great degree of variation, and frequent
evolution. In other words, engineers need to deal with variable, evolving
systems composed of heterogeneous artifacts.

Most modern software-intensive systems exist in di�erent variations to be
able to o�er tailored customization. For example, to ful�ll varying customer
requirements, regulations or hardware limitations. In the literature, concur-
rent variations (i.e., products) of a system at one point in time are commonly
referred to as variability in space and are primarily addressed in the research
area of software product line engineering (SPLE) [191, 12, 178, 53, 105, 206, 51].
A product line promotes the usage of a shared set of artifacts in all its products
– thereby enabling a higher degree of e�ciency compared to traditional soft-
ware development approaches. Features, i.e., distinguishing characteristics of
a product [191], are used to con�gure a custom-tailored product. For realizing
a product based on a con�guration, a variability mechanism must be em-
ployed, which assembles all implementation artifacts for building a particular
product. The following three categories of variability mechanisms can be
distinguished [12]: annotative (e.g., via conditional compilation with C/C++
preprocessor directives or in Java with the Antenna preprocessor [13]), com-
positional (e.g., with feature-oriented programming [28] or aspect-oriented
programming [119]) and transformational (e.g., via delta modeling [205]).
Over time, systems undergo various changes, such as changing customer
requirements, bug �xes or refactorings, known as software evolution [134]. In
the literature, sequential variations (i.e., revisions) of a system are commonly
referred to as variability in time and are primarily addressed in the research
area of software con�guration management (SCM) [63, 48, 151, 190, 201].
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1. Introduction

A sub-discipline of SCM are version control systems (VCS) that are used to
manage changes and control software evolution. Moreover, modern variable
systems comprise not only one type of artifact, like source code, but di�erent
kinds of artifacts, such as UML diagrams or SysML models. Speci�cally, arti-
facts may originate from di�erent engineering disciplines, such as electrical,
mechanical or software engineering.

1.1. Problem Statements

Variability in space and time a�ect almost every software-intensive system
nowadays. Nonetheless, the research areas of SPLE and SCM have developed
largely independently of each other, and various techniques originating from
one of the areas aim at coping with the respective other variability dimen-
sion. On the one hand, when developing a system with common VCSs (e.g.,
SVN [190] or Git [145]), variability is often managed in parallel development
branches, employing one branch per product. Since the concept of a feature
does not exist, merging between branches is required in order to maintain the
products. Although this strategy is simple, it does not scale and leads to high
manual e�ort [61, 198]. On the other hand, the missing proactive manage-
ment of variability in time in SPLE has led to numerous approaches [59, 78,
124, 179, 182, 211], such as mining information (e.g., feature changes) from
VCSs retroactively [59]. To this end, Krüger et al. [127] analyze the costs of
development strategies for variable systems, underpinning that missing ex-
plicit tracking of feature evolution incurs high additional costs. Nonetheless,
combining existing approaches that cope with variability in space and time
does not su�ce. A heterogeneous tooling landscape (e.g., a VCS for managing
the evolution of a system, a product-line management tool for managing its
products, and a mining tool for recovering feature evolution information)
requires developers to often switch context along with manual e�ort, which
is error-prone and increases maintenance costs. Moreover, cross-dimensional
variability modeling and analyses, such as modeling feature revisions and
analyzing their frequency of change, are not supported. As a consequence,
due to the lack of methodology and common understanding for e�ective uni-
�ed management, a plethora of approaches and tools has emerged that tackle
the same problems independently [26, 137, 185, 201]. This not only leads
to redundant research and development, but also hampers understanding
how contemporary tools that cope with variability in space and time di�er in

4



1.1. Problem Statements

detail as well as the design of novel e�ective techniques for uni�ed variability
management. Thus, the following �rst problem statement is derived:

P1 Lack of methodology and common understanding for uniform manage-
ment of variability in space and time leads to redundant research and
development, hampers the comparison of existing approaches as well
as the design of new ones, and increases the complexity and manual
e�ort for evolving a variable system, which is error-prone and incurs
additional costs.

Besides uniformly and e�ectively dealing with variability in space and time,
current practices in SPLE face several challenges [141, 137]. On the one hand,
the development of variable systems by means of traditional variability mech-
anisms lacks automation and is a mostly manual task, as variation points (e.g.,
preprocessor directives) need to be added and updated manually. Further-
more, some variability mechanisms, such as aspect-oriented programming,
are not commonly known and require expertise of developers to be able to
e�ectively use them. Consequently, current practices for managing variable
systems are cognitively complex [214, 212]. One the other hand, practices
lack support for handling heterogeneous artifacts: The di�erent categories
of variability mechanisms (e.g., a transformational mechanism such as delta
modeling) must be specialized for concrete types of artifacts to be applicable
in practice (e.g., DeltaJ [119] as delta language for the Java programming
language). In the worst case, this requires developers to employ as many
variability mechanisms as there are di�erent types of artifacts in their system,
which demands expert knowledge and requires high manual e�ort. Thus,
a high diversity of artifact types makes it increasingly di�cult to realize
variability. Moreover, evolving a variable system can lead to di�erent types
of variability-related inconsistencies (e.g., the consistent evolution of a vari-
ability model [176, 17, 100] or the consistent co-evolution of the variability
model and con�gurations [78, 174]) that impair the system’s quality and
increase maintenance costs. Their detection and repair is an open research
problem that has been tackled by numerous approaches with varying no-
tions of consistency, leading to an unorganized research landscape which
impedes communication and scoping of research [3]. In case of heteroge-
neous artifacts, additional manual e�ort is required to also keep variability
consistent across the di�erent types of artifacts, which is challenging and
error-prone [64, 141]. For example, changing a feature in one artifact type of
one product may impact other artifacts types of the same product as well as
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other products that must all be kept consistent. While automated consistency
preservation between heterogeneous artifact types is a major research topic
in model-driven software development (MDSD) [60, 62, 95, 116, 196, 242],
these approaches have hardly been leveraged in SPLE research yet. From
these observations, the second problem statement is derived:

P2 Current practices in variability management require high manual e�ort
and expert knowledge while lacking support for heterogeneous artifact
types when developing and evolving variable systems. This not only
increases the complexity ofmanaging such systems, but also the chance
of variability-related inconsistencies, which both harm the system’s
quality and increase maintenance costs.

To summarize, dealing with systems that vary in space and time while being
composed of heterogeneous artifacts is highly demanding and may lead to
di�erent variability-related inconsistency types. Every aspect is challenging
to deal with on its own, yet various industrial branches demand their uni�ed
management [180, 68, 38, 74].

1.2. Research Goal and Questions

Based on the described problems, the research goal of this thesis is formulated
and presented in the following.

Research Goal

De�ne a common foundation to deal with variability in space and time that
addresses gaps in state of the art. Based on this foundation, conceive an
approach that is capable of handling variability-related inconsistencies during
the evolution of a system composed of heterogeneous artifacts. Ultimately, the
goal is to enable uni�ed consistent management of variable systems.

6



1.2. Research Goal and Questions

Achieving the research goal requires to deal with the two described problems.
Referring to these problems, research questions are formulated which are
introduced in the following.

The strong demand for coping with variability in space and time has led to
various management techniques and contemporary approaches of both the
SPLE and SCM community. However, both research areas have developed
independently of each other which has resulted in various approaches that
target the management of variability in space, time, or both, while their com-
monalities and di�erences are unclear. Gaining a deep understanding of the
existing approaches and tools not only allows to reason about their compati-
bility, but also enables to detect gaps in the state of the art of managing both
variability dimensions. Therefore, the �rst research question is introduced
and further subdivided:

RQ 1 How can existing approaches that cope with variability in space, time,
and both be uni�ed to provide a common foundation that also advances
state of the art by addressing the identi�ed gaps?

RQ 1.1 Which concepts and relations exist to cope with either or both
variability dimensions in the studied approaches and how can
they be uni�ed?

RQ 1.2 Which operations are provided to cope with either or both
variability dimensions in the studied approaches and how can
they be uni�ed?

RQ 1.3 How can the appropriateness of a uni�cation with respect to
the studied approaches be quanti�ed?

Answering RQ 1 helps to uniformly manage variability in space and time
simultaneously by means of concepts, their relations, and operations based on
state of the art. Nonetheless, the consistent evolution of systems dealing with
both variability dimensions, that are additionally comprised of heterogeneous
artifacts, is still a major problem. To this end, the Vitruvius approach [116]
supports view-based consistency preservation for heterogeneous artifacts.
Leveraging the consistency preserving mechanisms of Vitruvius and under-
standing which variability-related inconsistency types (including their causes
and possible repairs) can occur during evolution allows for dealing with
variability-related inconsistencies. Therefore, the second research question
is introduced and further subdivided:
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RQ 2 How can the consistent evolution of variable systems comprised of
heterogeneous artifacts be supported?

RQ 2.1 What types of inconsistency can occur in variable systems?

RQ 2.2 How can uni�ed operations be combined with consistency
preservation of variability-related inconsistency types?

RQ 2.3 How can the Vitruvius approach be leveraged to support
variability in space and time and preserve consistency in variable
systems comprised of heterogeneous artifacts?

Answering RQ 2 �nally enables to support consistent evolution of systems
that vary in space and time comprising heterogeneous artifacts.

1.3. Envisioned Solution and Contributions

In this thesis, a uni�ed solution is proposed to address the described prob-
lems and answer the research questions. In the following, every part of the
envisioned solution along with the respective contributions is described.

Unifying concepts of SPLE and SCM to explicitly and proactively manage
variability in space and time is gaining traction [34, 110, 140, 172, 126, 82, 235].
In this regard, pioneer work by Conradi and Westfechtel [48, 241] extends
version models and relates concepts of variability in space and time. How-
ever, this works prescribe either development processes or implementation
speci�cs (e.g., propositional logic or deltas). While recent work primarily
focuses on classifying and comparing approaches coping with variability
in space or variability in time [26, 77, 185], contemporary approaches from
the upcoming research area of Variation Control Systems (VarCS) [141] (e.g.,
SuperMod [215] or ECCO [73]), manage the evolution of a variable system
in a uniform manner. Thus, VarCS play a signi�cant role in the �rst part of
the solution: A classi�cation and uni�cation of concepts of approaches dealing
with variability in space or/and time, and alignment of terminology used in
the research areas of SPLE and SCM. In contrast to prior approaches, uni�ed
concepts shall be devised that appropriately cover and describe all relevant
concepts of contemporary tools for dealing with variability in space and time.
This leads to the �rst contribution of this thesis:
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C1 A uni�ed conceptual model that serves as common base for communica-
tion, scoping and comparison. The conceptual model goes beyond the
mere combination of concepts of SPLE and SCM and introduces novel
hybrid relations to uniformly cope with variability in space and time,
guiding the conception of novel approaches (RQ 1.1).

Besides a uni�ed data structure, appropriate operations are required for the
operational management of both variability dimensions. Many of the VarCS,
that deal with variability in space and time, provide such operations. How-
ever, they vary considerably in their behavior regarding how a system can
be edited (i.e., directly or via well-de�ned views) and the paradigm followed
to develop a variable system (i.e., product-oriented or platform-oriented). A
survey on the operations of VarCS [137, 141] revealed that many provide
view-based editing capabilities due to various advantages (e.g., a higher de-
gree of automation). Moreover, view-based editing is well-suited for handling
heterogeneous artifacts as well as variable systems, since it can represent
both a speci�c type of artifact [22, 72, 116] and a particular product [73, 141,
215, 229]. Consequently, developers work on a speci�c product to evolve
a variable system. This does not only reduce the complexity of applying
changes to the product line, but also liberates from the burden of employing
a suitable variability mechanism for each artifact type, as described in Sec-
tion 1.1. Therefore, operations of approaches dealing with variability in space
or/and time are classi�ed. Additionally, novel, view-based uni�ed operations
are conceived. The static structure (i.e., concepts and relations) of the uni�ed
conceptual model together with uni�ed view-based operations provide a
foundation to develop novel solutions that deal with both variability in space
and time, leading to the second contribution of this thesis:

C2 Uni�ed operations as operational management of variability in space
and time that operate on the uni�ed conceptual model as data struc-
ture (RQ 1.2).

To goal of the uni�cation of elicited approaches is to unify their concepts,
relations and operations such that they are neither too speci�c nor too generic.
Guizzardi et al. [90] propose a framework for language evaluation and intro-
duces properties to assess the design of modeling languages. Since no means
exist to quantify and evaluate the appropriateness of abstractions with respect
to concrete approaches yet, the respective framework is extended and metrics
for uni�cation are de�ned, leading to the third contribution of this thesis:
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C3 Metrics for uni�cation to evaluate the appropriateness of granularity
and coverage of a uni�cation with respect to a set of selected
tools (RQ 1.3).

Contributions C1 and C2 fully cover the uni�ed management of variability in
space and time. However, evolving a system that copes with both variability
dimensions and consists of heterogeneous artifacts easily leads to variability-
related inconsistencies. Such inconsistencies can occur on the level of abstrac-
tion of the product line, e.g., in the variability model [120, 100] (commonly
referred to as the problem space [191]), within the implementation of a product
consisting of heterogeneous artifacts and between products [39, 186] (com-
monly referred to as the solution space [191]), or involving both spaces, often
referred to as software product line co-evolution [21, 40, 65, 112]. Numerous
approaches tackle their detection and repair, but the research landscape has
not been mapped, which impedes communication and scoping of research.
Therefore, a literature survey is performed and its results are generalized and
mapped to a classi�cation schema to obtain a set of complete and disjoint
variability-related inconsistency types that can occur during the evolution
of a variable system. This leads to the fourth contribution of this thesis.

C4 A classi�cation and enumeration of variability-related inconsistency types
along with their possible causes, e�ects, and repair options (RQ 2.1).

Although a considerable amount of research has been conducted on inconsis-
tency detection and repair in variable systems [146, 149, 100, 85, 208], con-
sistency preservation in a system dealing with variability in space and time
simultaneously has been much less addressed while consistency preservation
between heterogeneous artifacts of a product is hardly considered in SPLE
research yet [64, 141]. With this research, the aim is to bridge the gap between
existing approaches for consistency preservation between heterogeneous
artifacts and variability-related inconsistencies that can occur in the solution
space. The key idea is to embed the consistency preserving mechanisms
of Vitruvius in the evolution process of a system dealing with variability
in space and time. This contribution is based on the uni�ed concepts and
operations of C1 and C2 as well as on the identi�ed variability-related incon-
sistency types and repairs of C3. Therefore, the uni�ed conceptual model is
re�ned and the uni�ed operations are augmented with consistency-preservation
capabilities. This leads to the �fth contribution.
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C5 A uni�ed approach for automated consistency preservation during view-
based evolution of variable heterogeneous systems (RQ 2.2, RQ 2.3).

This contribution leverages and extends the Vitruvius approach [116] to cope
with variability and handle variability-related inconsistencies. Speci�cally,
artifact views in Vitruvius are generalized to product views and existing con-
sistency preservation mechanisms are utilized for di�erent artifact types.

To evaluate the uni�ed approach, real-world data sets of variable systems
must meet various requirements: i) provide an evolution history, ii) consist of
multiple types of artifacts, iii) employ a variability model and, iv) be realistic
and publicly available. Since such data sets are barely available, the widely
used ArgoUML-SPL data set [49] (a snapshot of the ArgoUML modeling tool)
has been manually evolved by retroactively replaying the revision history of
ArgoUML on the ArgoUML-SPL. Thus, a data set that constitutes the �nal
contribution of this thesis is contributed:

C6 An evolved data set of the ArgoUML-SPL comprising nine revisions.

The contributions C1, C2, and C4 represent main contributions towards the
principal contribution C5. The contributions C3 and C6 represent subordinate
contributions.

1.4. Assumptions

For the principal contribution that constitutes the uni�ed approach (C5),
several assumptions are made that are introduced in this section.

The development process of variable software-intensive systems is model-
driven and view-based. Di�erent models describe the system of discourse
containing (partially overlapping) information about the system. Thus, mod-
els represent views on di�erent parts of the system, either on the abstraction
of the variable system (i.e., the problem space) or on its implementation (i.e.,
the solution space).

Variability-related inconsistencies may not always be preserved fully auto-
matically. Since SPLE enables intensional versioning (i.e., the speci�cation
of con�gurations where features can be combined before having ever been
combined in a product [48]), their implementation may con�ict. In such
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cases, consistency cannot be ensured at all time but instead is assumed to be
repaired by the developer.

Furthermore, a metamodel must be available for every type of engineering
artifact in the solution space. Moreover, for every pair of metamodels, consis-
tency preservation rules must be available that use model transformations to
preserve consistency in other models, thus allowing to consistently cope with
arbitrary artifact types. Consequently, the preservation of consistency ranges
from suggestions to developers to fully automated repairs of the system under
construction.

1.5. Research Overview

Figure 1.1 depicts the relation between the described research goal, the prob-
lem statements, research questions and contributions. Addressing the �rst
problem statement (P1) requires to classify, compare and unify existing ap-
proaches. In consequence, it allows to answer RQ 1 by providing a common
foundation of concepts, their relations and operations, and address gaps
that currently exist in state of the art. A uni�ed conceptual model is con-
tributed (C1), uni�ed operations (C2) (that operate on the uni�ed conceptual
model as data structure), and metrics to quantify the appropriateness of
granularity and coverage of a uni�cation with respect to the studied ap-
proaches (C3).

Addressing the second problem statement (P2) requires to understand which
variability-related inconsistency types may occur during evolution, how to
augment uni�ed operations with automated consistency preservation and
how to leverage the Vitruvius approach to preserve consistency among
heterogeneous artifacts. In consequence, it allows for answering RQ 2 by
enumerating variability-related inconsistency types, their causes and possible
repairs (C4) and, ultimately, a uni�ed approach to support the consistent
evolution of variable systems composed of heterogeneous artifacts (C5). The
functional suitability of the uni�ed approach is evaluated based on the two
real-world data sets MobileMedia [71] and the widely used ArgoUML-SPL,
which is extended with an evolution history from the original ArgoUML (C6).
Note that the contributions of this thesis are not independent. Instead, every
contribution serves as input to the following ones or is used for evaluation.
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Figure 1.1.:Overview of goal, problems (P), research questions (RQ) and contributions (C).

1.6. Thesis Outline

The remainder of this thesis is structured as follows.

Part I. The �rst part introduces the preliminaries of the thesis. Chapter 2 pro-
vides a running example that is used throughout this thesis, introduces basic
de�nitions and comprises a description of contemporary tools for variability
in space, time, and both as well as of relevant engineering paradigms.

Part II. The second part comprises the main contributions to support uni-
�ed consistency-aware variability management. Along with the general
uni�cation process in Chapter 4, it presents the uni�ed conceptual model
in Chapter 5 and the uni�ed operations in Chapter 6. Moreover, this part
encompasses a classi�cation and enumeration of variability-related inconsis-
tency types in Chapter 7 and, ultimately, the uni�ed approach building upon
the preceding contributions in Chapter 8.

Part III. The third part of this thesis presents an empirical evaluation of
the main contributions, structured according to the GQM method [27]. It
comprises the general evaluation process along with themetrics for uni�cation
in Chapter 10. The specialized evaluation process, questions and results are
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1. Introduction

presented for the uni�ed conceptual model in Chapter 11, for the uni�ed
operations in Chapter 12, and for the uni�ed approach Chapter 13, comprising
the evolved data set of the ArgoUML-SPL.

Part IV. The fourth and �nal part re�ects on this thesis’ contributions. It
encompasses brief answers to the research questions in Section 15.1, com-
prises a discussion of related work in Chapter 14, and concludes the thesis
with a consideration of the industrial relevance of the conducted research
in Chapter 15.
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This chapter encompasses the fundamentals of this thesis. Section 2.1 in-
troduces the running example that is used throughout the thesis. This is
followed by foundations of variability in space in Section 2.2, variability in
time in Section 2.3 and their combination in Section 2.4 comprising basic
concepts and contemporary tools. In Section 2.5 and Section 2.6, the basics
of model-driven software engineering and view-based software engineering
are brie�y described. To this end, the Vitruvius approach is introduced
which is employed in this research. Finally, in Section 2.7, variability-related
consistency notions are de�ned that are used throughout this thesis.

2.1. Running Example

Figure 2.1 shows an illustrative example of a simple Car system that exists in
nine revisions. In its �rst revision, it comprises either a Gasoline (Gas) or an
Electric (Ele) engine. In later revisions, an optional output of remaining
Distance (Dist) is added, along with a constraint that Ele requires Dist.
Ultimately, the feature Car has one revision, features Gas and Dist have
three revisions, and the feature Ele has four revisions. EngineType (ET)

is an abstract feature without implementation and thus without revisions.
Figure 2.2 shows a Java source code and a SysML block de�nition diagram
view on the implementation of the system in its �nal revision. For each line
of code, the respective comment (highlighted in green) depicts the mapping
to a revision of a feature or feature interaction.

2.2. Variability in Space

With an increasing demand for customized systems due to a variety of re-
quirements, variability has become a key characteristic of many systems.
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(b) Final feature model.

Figure 2.1.: Feature model evolution. Adapted from [3, Fig. 1].

Java










 1 class EngineController  //Car1

 2      double gasLevel;      //Gas1,2,3

 3      double battLevel;      //Ele1,2,3,4

 4      void doDriving() {      //Car1

 5        getDistanceLeft();   //Ele3,4

 6      }

 7      double getDistanceLeft() { //Dist1,2,3

 8        return f_g(gasLevel); //Gas2,3 && Dist2,3 && !Ele

 9        return f_e(battLevel); //Ele2,3,4 && Dist3 && !Gas

 10      return f_ge(gasLevel, batLevel);  //Gas3 && Ele4

 11     }

 12 }


SysML


 2  double gasLevel   //Gas1,2,3

 3  double battLevel   //Ele1,2,3,4

   

 4  void doDriving()    //Car1

 5  double getDistanceLeft()//Dist1,2,3
   


Operations



                        block

 1     <<EngineController>>  //Car1

Values

Figure 2.2.: System implementation (Car.java left and Car.sysml right). Adapted from [3, Fig. 1].

The term variability in space constitutes concurrent variations of a system in
terms of products or features. In the running example of the Car system, the
developer is able to choose between a gasoline engine (i.e., feature Gas) or an
electric engine ((i.e., feature Gas). In this thesis, De�nition 2.1 for variability
in space is used.

De�nition 2.1 (Variability in space) “Variability in space is the existence
of an artefact in di�erent shapes at the same time.” [191, p. 66]

Variability in space is extensively studied in the context of software product
line engineering that is introduced in the following.
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2.2.1. So�ware Product Line Engineering

Software Product Line Engineering (SPLE) [107, 191, 45] is an established engi-
neering paradigm to systematically engineer and manage the reusability and
extensibility of software. It promotes a reusable platform (i.e., a set of reusable
artifacts) that can be con�gured individually for each product [191]. The
commonalities and di�erences across products are commonly represented by
features, where a feature represents a “prominent or distinctive user-visible
aspect, quality, or characteristic of a software system or system” [107, p. 3]. A
product line covers a domain (e.g., cars). The domain abstraction of a product
line helps customers and developers understand the commonality and the
variability of the product line. In this thesis, the domain abstraction of a
product line is simply referred to as domain.

Variability Models. A variability model represents the con�gurable knowl-
edge of an SPLwhere constraints between features governwhich combinations
are valid or invalid [107, 29, 51]. The variability model captures the entirety
of constraints and, as a consequence, describes all con�guration rules that
must be satis�ed when deriving a product. Di�erent notions of variability
models exist, for instance, feature models [107] or decision models [164]. Fea-
ture models represent the commonalities and di�erences of an SPL in terms
of a hierarchical feature tree topology, illustrated in the running example
in Figure 2.1. Tree constraints impose dependencies between features in a
group or between a parent feature and its child feature. A mandatory feature
is always selected together with its parent feature in a con�guration (e.g.,
feature ET). Contrary, an optional feature requires its parent feature to be
selected as well, while the parent feature may be selected without the optional
child feature (e.g., feature Dist). Moreover, alternative or or groups govern the
number of features in a group that must be present in a con�guration. Feature
models might also comprise core features that itself are mandatory as well as
all of its predecessors in the feature tree. Thus, they must be present in every
con�guration and represent a commonality of an SPL. Finally, Cross-tree
Constraints represent dependencies between features and span across the
feature tree (e.g., the Ele feature implies the Dist feature so that both must
be selected in a con�guration).

Problem Space and Solution Space. Czarnecki and Eisenecker [50] intro-
duce the problem space and the solution space of an SPL. The problem space
represents the variability of a domain and comprises artifacts, such as the
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variability model. The solution space represents the implementation in the
form of a reusable platform comprising di�erent types of artifacts, such as
models or source code (e.g., Java or SysML). To manage variability holistically,
artifacts of both spaces must be linked.

Development Processes. There are three ways for engineering an SPL:
the proactive, reactive, and extractive approach [191, 125]. The proactive
approach describes a development of the product line from scratch. This
requires to initially perform domain engineering, e.g., specifying the variability
model and implementing reusable artifacts among all products. Subsequently,
application engineering is performed for every product, e.g., con�guring the
product and implementing product-speci�c artifacts. The reactive approach
starts by specifying the variability model and implementing artifacts for only a
few products. Incrementally, more products are added. Finally, the extractive
approach uses existing products (often realized by clone-and-own [200]) as
base and extracts the variability model from these products. Depending on
which engineering strategy is employed by an organization, the dominant
model varies. In case of the proactive approach, the dominant models origin
from the speci�cation and implementation of the domain engineering, such
as the variability model. Consequently, the application engineering builds
on the domain engineering, e.g., the variability model guides the derivation
of viable products. In case of the reactive approach, the dominant models
change, as domain engineering and application engineering alternate. In
case of the extractive approach, the products are the dominant models which
prescribe the features, their dependencies and reusable artifacts which are
speci�ed and implemented for domain engineering.

Variability Mechanisms. The derivation of a product from a reusable plat-
form depends on the employed variability mechanism in the solution space,
out of which three categories exist: annotative, compositional and trans-
formational [14, 232]. Annotative mechanisms [13], such as preprocessor
directives, assemble all variations of implementation artifacts of an SPL in
one monolithic artifact that is commonly referred to as the 150% model. An-
notations relate parts of the 150% model with features or feature interactions.
Based on a con�guration, only those parts are retained whose annotations
are satis�ed by a con�guration. Compositional mechanisms [41] are em-
ployed by di�erent paradigms such as feature-oriented programming [28]
or aspect-oriented programming [111]. Based on a core model, commonly
referred to as the 75% model, and a con�guration, relevant implementation
artifacts are assembled (usually by a composer) to create a product. Finally,
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transformational mechanisms employ transformation operations that add,
modify, or remove elements to transition from one product to another. Delta
modeling [205] is a prominent realization of the transformational mechanism.
It is based on a core module and a set of delta modules that apply changes (i.e.,
deltas) to the core module to obtain a valid product.

2.2.2. Contemporary Tools

Variability in space is supported by di�erent tools in research and industry,
employing di�erent variability mechanisms.

Several limitations of current variability management practices increase the
complexity of managing variable systems [141], such as the manual modi-
�cation of mappings (that represent a relation between features and imple-
mentation artifacts), the manual integration of changes into the platform,
the missing uniform management of product variants and revisions, or con-
crete variability mechanisms that are speci�c for a certain type of artifact
and further complicate the variability management of systems composed of
heterogeneous artifacts. The upcoming research area of Variation Control Sys-
tems (VarCS) aims to overcome these limitations. In this thesis, De�nition 2.2
for VarCS is used.

De�nition 2.2 (Variation Control System) “A Variation Control System
(VarCS) supports managing variant-rich systems in terms of features. It supports
editing variant subsets, which are represented by a selection of features, and it
automatically integrates the edited variant subsets back into the variant-rich
system in a transactional way.” [141, p. 2].

In the following, four SPLE tools including one VarCS are presented.

FeatureIDE [130, 157] is a popular open-source framework for modeling, an-
alyzing and developing SPLs. It builds on the Eclipse platform and is used
both in academia and industry. FeatureIDE supports development phases of
SPLs such as domain analysis (that, for example, comprises extensive fea-
ture modeling and analyses), domain implementation and semi-automated
generation of con�gurations, compilation and testing (i.e., product-based
analysis). FeatureIDE is extensible via composers that enable the use of di�er-
ent variability mechanisms and thus support variability mechanisms of all
three categories.
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VTS (Variation Tracking System) [228] is a VarCS that manages variability
in space. It allows for editing products and partial views on the SPL, and
integrating changes automatically based on a manually provided ambition
that speci�es the edited features. To conform to basic consistency principles
given by the lens laws [76], its get and put operations are used to derive views
from the platform and integrate changes back into the SPL, while any change
performed in the view shall not a�ect features that are not part of it. VTS
employs an annotative variability mechanism with proprocessor annotations
in text �les to represent the SPL as well as the derived views.

SiPL [187, 188] is a delta-based modeling framework for SPLE that employs
a transformational variability mechanism. Variability in space is captured
by delta modules. A delta is re�ned by a consistency-preserving edit script
generated by comparing two models. Thus, deltas are not speci�ed manually
but computed fully automatically. Based on edit scrips, SiPL provides analyses
of deltas such as dependencies between deltas (i.e., deltas can only be applied
in a certain order) or con�icts (i.e., deltas cannot be applied together). While
delta modeling constitutes the solution space of SiPL, the tool integrates
FeatureIDE to describe the problem space.

pure::variants [35] is a commercial SPL tool used in industry. It provides
support for developing, testing andmaintaining SPLs while employing several
variability mechanisms. In particular, it focuses on the annotative variability
mechanism by means of preprocessor directives. Note that in this thesis,
the pure::variants evaluation edition is considered. Further proprietary tools
similar to pure::variants exist, such as Gears from BigLever [37].

2.3. Variability in Time

Over the course of time, a system evolves due to refactorings, bug �xes
or changed requirements [134]. The term variability in time constitutes
sequential variations of a system in terms of revisions. Thus, it represents a
further dimension of variability. In the running example of the Car system,
the developer is able to choose from the nine (system) revisions of the feature
model. The �rst revision enables the Car feature, its mandatory child Engine

Type, and its alternative feature children Gasoline and Electric. In this
thesis, De�nition 2.3 for variability in time is used.
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De�nition 2.3 (Variability in time) “Variability in time is the existence of
di�erent versions of an artifact that are valid at di�erent times.” [191, p. 65]

Variability in time is extensively studied in the context of software con�gura-
tion management that is introduced in the following.

2.3.1. So�ware Configuration Management

Software Con�guration Management (SCM) [48] is an engineering paradigm
that supports identi�cation, controlling, and traceability of the software
system during its evolution. For example, some of the fundamental aspects
of SCM constitute the unambiguous identi�cation of any software artifact,
their storage and access, the concurrent modi�cation of artifacts, and the
alignment with a speci�c development process.

Version Models. Analogously to variability models, SCM promotes version
models that manage changes within directories or �les and provide operations
to retrieve old versions and construct new ones [48]. In SCM, a version
describes an abstract concept that is specialized by either a revision (i.e., a
version that is intended to supersede its predecessor) or a variant (i.e., versions
that are intended to coexist). Although the management of variants has been
recognized in SCM [241], it has been largely sidestepped [151, 141].

Extensional and Intensional Versioning. The SCM community di�erenti-
ates between two kinds of version space organization: extensional versioning
and intensional versioning [48]. While extensional versioning describes the
sole retrieval of versions that have been previously constructed, intensional
versioning allows for retrieving versions in a �exible manner such that new
combinations of software artifacts are constructed on demand.

Version Control. Version Control (VC) [201] represents a sub-discipline of
SCM. It supports several functionalities such as persisting and identifying
di�erent revisions of software artifacts in a repository, or providing working
copies to developers that can be modi�ed and integrated back into the reposi-
tory leading to a new version. Revisions graphs are employed that vary from
an ordered sequence of revisions to an acyclic graph.
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2.3.2. Contemporary Tools

SVN and Git are two well-established Version Control Systems (VCS) that both
rely on extensional versioning.

Subversion (SVN) [190] is an open-source centralized VCS. Typically for
version control, developers are able to checkout a central repository at a
certain point in time (i.e., a speci�c revision identi�ed by a revision number)
in a local workspace. Performed modi�cations can be commited back to the
central repository, leading to a new revision. SVN supports branches (that are
created as directories) and their merging.

Git [145] is an open-source decentralized VCS. In contrast to SVN, Git supports
multiple distributed repositories. Upon the distributed operation clone, an
exact copy of a repository is provided to a user, leading to a distributed
network of repositories. Modi�cations are �rst to be integrated into a local
copy of the repository via commit and then distributed to other copies of the
repository via push to synchronize clones.

2.4. Variability in Space and Time

Variability in space and variability in time are highly intertwined. The evolu-
tion of a system may a�ect available con�guration options which, vice versa,
may guide the evolution of the system [231, 216]. In the following, state of the
art is brie�y recapped and contemporary tools dealing with both variability
dimensions are introduced.

2.4.1. State of the Art

A missing common foundation and techniques for proactively managing
variability in space and time have led to a plethora of approaches [59, 124,
182, 179, 160]. For instance, VCSs do not support the concept of a feature. In-
stead, the products or features are managed in branches, which requires high
maintenance e�ort [186, 200, 243, 131]. Thus, retroactively mining feature
evolution information is the focus of several research [160, 59, 128, 199], lead-
ing to high additional costs [127]. As a consequence, new approaches have
emerged in the last years that promote the explicit and proactive management
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of variability in space and time. For example, by extending feature models
to additionally document revisions of individual features (i.e., hyper feature
models [218]), or the upcoming research area of VarCS that encourages an
integrated and uniform view on research from SPLE and SCM.

2.4.2. Contemporary Tools

The following �ve tools cope with both variability in space and time:

ECCO [75, 73, 139, 138] is a VarCS that supports a feature-oriented and dis-
tributed development of variable systems. Originally, ECCO was an approach
used for feature location and has evolved to a VarCS following the checkout-
modify-commit work�ow of products while still employing feature location
for computing mappings. ECCO promotes feature revisions in the problem
space but no variability model (and, consequently, no constraints). Moreover,
the tool can be extended via adapters to support di�erent types of artifacts.

SuperMod [215, 214, 212] represents a model-driven VarCS that is based on
an annotative variability mechanism. It builds upon and extends the uni-
form version model [241]. Analogously to ECCO or VTS, SuperMod follows the
same transactional work�ow of evolving an SPL product-wise. In contrast,
it supports system revisions and provides a feature model representing one
particular revision to the user that can be used for con�guring a product. For
integrating the changes performed on a product and similar to VTS, Super-
Mod requires an ambition (i.e., a logical expression) upon any commit. The
ambition is used to annotate the elements of the product line with visibility
information including the system revision.

DeltaEcore [219, 220, 216] is a model-driven tool-suite that employs a trans-
formational variability mechanism based on delta-modeling. It introduces
the hyper feature model [218] which constitutes an extended feature model
with feature revisions that represent further con�gurable units for product
de�nition. Moreover, it is possible to specify constraints in the problem space
between features and ranges of feature revisions. DeltaEcore automatically
derives delta languages that comprise delta operations based on metamodels.
Developers can use the delta languages to specify concrete delta modules
that they can map to features and feature revisions.

DarwinSPL [170, 169] is a model-driven tool suite that integrates DeltaEcore
for product derivation. In contrast to DeltaEcore, DarwinSPL introduces the
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temporal feature model in the problem space that captures the evolution of
the whole system (in contrast to feature revisions, that are not explicitly
supported). In addition, it supports the planning of future evolution of the
SPL as well as its re-planning. To consider changing functionality based
on a di�erent environment (i.e., context), DarwinSPL integrates contextual
information that restricts the con�gurable space.

VaVe [10] is a model-driven tool that realizes a uniform management of
variability in space and time via features and feature revisions (referred to
as VAriants (space) and VErsions (time)). Similar to ECCO and SuperMod, the
tool supports the product-wise development of an SPL while automatically
integrating the changes into the platform, constituting to a VarCS. Moreover,
it provides import and export functionalities with FeatureIDE to make use of
its advanced feature modeling capabilities.

Some of the tools dealing with variability in space, time, or both could be
used in combination to support both variability dimensions simultaneously,
such as FeatureIDE and Git. However, such combinations are not considered
in this research because they do not contribute new concepts or relations for
uniform variability management.

2.5. Model-Driven So�ware Development

According to Stachowiak’s general model theory [223], amodel exposes three
main characteristics: representation, abstraction, and pragmatism.

Representation. A model is a mapping from or a representation of the
original it re�ects. An original might be natural or arti�cial, such as an
existing entity or a concept.

Abstraction. A model comprises only a seemingly relevant subset of the
properties of the original it represents. Thus, models are abstract representa-
tions of originals.

Pragmatism. A model is designed for a speci�c purpose and be capable of
replacing the original regarding that purpose.

Moreover, a model can have one or more roles that re�ect its purpose [46]:
descriptive (re�ecting a system and its current or past properties), predictive
(re�ecting the future system behavior to allow, for instance, decision-making
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and simulations) and, prescriptive (re�ecting the system’s design to be even-
tually taking into account for realization).

Model-Driven Software Development (MDSD) [86, 224] systematically employs
the idea of models and raises them as �rst-class artifacts for software devel-
opment. As a consequence, models are not solely used for documentation
and communication, but also to generate executable code from. In this thesis,
any artifact (regardless of whether in the problem space in the solution space)
is considered a model. This comprises, for instance, employing a metamodel
for Java code in the solution space of a variable system. In the following,
foundations of modeling languages and metamodels are introduced.

2.5.1. Metamodels, Modeling Formalisms and Languages

InMDSD, eachmodel conforms to a certainmetamodel. Ametamodel speci�es
all types of model elements and relations between them. As a consequence,
each model can be considered an instance of a metamodel. The Meta-Object
Facility (MOF) is a standard from the Object Management Group (OMG). It
describes the relation between models and their metamodels as a four-layer
hierarchy that comprises models at Layer M1, metamodels at Layer M2 and a
self-describing meta-metamodel at Layer M3 representing the highest level
of abstraction. Layer M0 comprises real world objects.

According to Völter et al. [239, p. 26], a modeling language speci�es the
concrete syntax, the abstract syntax, the static semantics, and the execution
semantics:

Concrete Syntax. A user-facing representation of a model (e.g., textual or
graphical) that developers can interact with directly.

Abstract Syntax. An internal representation of a model (e.g., tree or graph)
that is not visible to developers.

Static Semantics. Additional constraints of a model (e.g., speci�ed with
the Object Constraint Language [181]) that must hold beyond the model’s
structural well-formedness.

Execution Semantics. The behavior of a model during its execution.

To be able to treat source code as models, the grammar of the respective
textual language (e.g., the Java programming language) can be represented
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as a metamodel. The concrete syntax (e.g., concrete Java source code) must
be parsed and transformed into the abstract syntax representation (i.e., the
Abstract Syntax Tree (AST)), which is a model that is an instance of the
respective metamodel.

2.5.2. Modeling Frameworks

The Essential MOF (EMOF) standard is a subset of the comprehensive MOF
standard and is implemented by the meta-metamodel Ecore. The Eclipse
Modeling Framework (EMF) [225] is a framework that contains Ecore and
that o�ers a wide range of tools to leverage MDSD. The EObject of the Ecore
meta-metamodel is the super class of all Ecore model elements (analogously
to all Java classes extending Object). Ecore de�nes model elements such as
EClasses (a class with zero or more attributes and references), EAttributes
(an attribute with a name and a type) and EReferences (one end of an asso-
ciation between two classes, with an explicit containment attribute). Every
Ecore model has an EPackage as root element. EPackages can contain further
EPackages as well as EClassi�ers (i.e., EClass or EDataTypes). To this end,
the implementation of the devised concepts in this thesis is based on EMF.

2.6. View-Based So�ware Development

The complexity of systems is ever increasing, challenging their development,
evolution, and maintenance [163]. Many approaches have been proposed to
cope with large and complex systems, such as automotive systems, that are
comprised of heterogeneous artifact types (e.g., CAD diagrams from mechan-
ical engineering, circuit diagrams from electrical engineering, or source code
from software engineering). View-based development has the potential to
keep cognitive complexity at bay via the usage of tailored views, each show-
ing a particular part of a system [72, 43]. As a consequence, models can be
changed only throughwell-de�ned views. This, in particular, provides distinct
advantages for coping with variability [141]. Views may only show a part (e.g.,
a speci�c product) of the entire variable system, and, as a consequence, reduce
the complexity of developing and maintaining it. Moreover, view-based devel-
opment allows for higher automation, such as the automated computation of
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mappings (i.e., relations between features and their implementation-speci�c
artifacts), which otherwise is tedious and error-prone [214].

The ISO 42010 standard for architecture description distinguishes the syn-
thetic and the projective approach for the construction of views [102]. In a
synthetic approach, information about the system is distributed over several
distinct views and their relations. In a projective approach, information is cen-
tralized in a so-called Single Underlying Model (SUM) [22]. The SUM conforms
to the Single Underlying Metamodel (SUM metamodel) [116]. In the context
of view-based software development and variability modeling, projectional
editing [240, 228] corresponds to the projective view construction approach
and represents a product of the variable system derived from the reusable
platform. For both the synthetic and projective approach and view-based
software development in general, the preservation of consistency between
views is a major challenge and extensively researched [197, 226, 150].

2.6.1. Orthographic So�ware Modeling

Orthographic Software Modeling (OSM) constitutes an approach for view-
based development [23, 22]. It employs a SUM that is assumed to be neither
exposed to redundancies nor dependencies and thus be free of any incon-
sistency thereof. The OSM realizes a projective approach for the creation
and management of views that are created on demand. A view conforms
to a metamodel, which is also referred to as view type [84]. The dimension-
based view navigation introduces a scheme for navigating along di�erent
perspectives of the system. A dimension represents a property of a system’s
description, such as its composition (e.g., the (de)composition of components
into sub-components) or its abstraction level (e.g. the platform independent
model (PIM) or implementation (e.g., Java)). Moreover, a dimension may
enumerate the product variants of the system. The number of dimensions is
not limited and induces a multi-dimensional cube, each view representing a
cell in it. The direction of a dimension-based view navigation is de�ned based
on a dominance hierarchy between the dimensions, while choices made of
a higher level dimension may a�ect the remaining choices of a lower level
dimension. For instance, selecting the abstraction level (which, in the MDSD
context, could adhere to the most dominant dimension) a�ects the possible
notations. For instance, selecting Java as level of abstraction only allows for
a syntax tree (instead of a graphical notation). Consistency is achieved by
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transformations that create well-formed views from the SUM and integrate
modi�cations on the view back into the SUM that, in turn, can be checked
against well-formedness rules. Thus, views do not need to be pair-wise kept
consistent as long as the view creation and change integration adheres to
consistency constraints that constitute well-formedness rules.

2.6.2. The Vitruvius Approach

The model-driven and delta-based Vitruvius approach supports consistent
view-based development of systems comprised of heterogeneous artifact mod-
els [116]. It bases on OSM and thus promotes the usage of a SUM. However,
maintaining and developing a monolithic SUM that describes di�erent types
of engineering artifacts of the system while keeping it free from redundancies
and dependencies is overly complex [156]. As a consequence, Vitruvius intro-
duces the Virtual Single Underlying Model (V-SUM) conforming to the Virtual
Single Underlying Metamodel (V-SUM metamodel). While the V-SUM meta-
model appears again as a monolithic SUM, internally, the V-SUM metamodel
consists of several coupled metamodels. Moreover, the V-SUMmetamodel can
contain redundancies and dependencies in contrast to the SUM metamodel.

To ensure consistency, metamodels are pair-wise coupled bymanually de�ned
incremental model transformations, i.e., Consistency Preservation Rules (CPRs).
Performed changes by a developer (referred to as original changes throughout
this thesis) are recorded by a change monitor and processed by CPRs to
check and enforce consistency of instances of a V-SUM metamodel (referred
to as consequential changes throughout this thesis). Changes comprise all
modi�cations that transition one valid instance of a metamodel to another.
Vitruvius uses a metamodel that represents all possible types of changes that
can be applied to Ecore-based models, e.g., the insertion or removal of model
elements. Moreover, it is possible to compose atomic changes to compound
changes, such as moving a model element which is the composition of the
two atomic changes remove and insert.
Moreover, Vitruvius inductively guarantees consistency. In particular, mod-
els are assumed to be in a consistent state before changes are processed that
trigger consistency preserving mechanisms. Consistency preservation in
Vitruvius can be de�ned by several languages: the declarative Mappings
language [121], which is the foundation for the Commonalities language [114],
and the imperative Reactions language [115], which can be used to realize
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CPRs. Whenever a CPR modi�es a model in response to changes in another
model, correspondences between elements whose consistency shall be pre-
served are created, as speci�ed in the CPRs, in a traceability model called
correspondence model.

Figure 2.3 shows the V-SUM metamodel and V-SUM with derived views for
the running example of the Car system. The V-SUM metamodel consists of
a Java metamodel and a SysML metamodel. A transformation T speci�es
how instances of one or more metamodels can be transformed to a view of a
certain type. The respective views View1 and View2 can be instantiated from
ViewType1 and ViewType2 by executing the corresponding transformations
𝑇1 and 𝑇2. View1 and View2 correspond to a source code representation of
Java and a SysML block de�nition diagram. A CPR is speci�ed for a pair of
metamodels and ensures that, for example, every time a class is added to the
Java model (e.g., EngineController), a block with the same name is added to
the SysML model and vice versa. In this thesis, CPRs are speci�ed in the
Reactions language and used to consistently propagate changes from a Java
model to a UML model.

Vitruvius does not consider variability but provides consistency preservation
mechanisms between heterogeneous artifact typeswhile promoting projective
views, which are well-suited for managing variable systems via views on
particular products [141].

2.7. Consistency Notions

Numerous works focus on variability-related consistency management that
ranges from inconsistency detection to their fully automated repair. However,
there is no standardized or explicit de�nition of consistency in SPLE [132,
12]. Rather, consistency notions di�er depending on whether the system
evolves in the problem space, in the solution space, or in both spaces [182, 3].
Henceforth, three consistency notions of SPLE are distinguished throughout
this thesis that are introduce in the following.

Increasing complexity of a variability model impairs its maintainability, mak-
ing it prone to anomalies or defects [33]. Two types of anomalies are consid-
ered that can occur in a variability model. First, structural anomalies violate
well-formedness rules of a variability model [100]. For instance, such rules
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Figure 2.3.:A V-SUM metamodel and V-SUM of the Car system with derived views. Adapted
from [114, Fig. 2.3].

could specify that every feature must have a unique name and that a feature
group must consist of at least two features. Second, variability models can
also be prone to semantic anomalies [120, 33, 94]. Void feature models (i.e., no
products can be derived from the product line), dead features (i.e., features can
never be selected in any product of the product line), or redundant constraints
(i.e., the removal of a constraint does not change the con�gurable space) are
examples of such inconsistencies. Another form of problem space inconsis-
tencies represent con�gurations that violate any constraint of the variability
model [174, 78, 244]. Thus, a con�guration must satisfy all constraints of the
variability model. In this thesis, De�nition 2.4 for problem space consistency
is used.
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De�nition 2.4 (Problem space consistency) Anecessary criterion for prob-
lem space consistency is the absence of structural or semantic anomalies in the
variability model. Moreover, a con�guration 𝑐 must be valid with respect to
the variability model, i.e., for no constraints of the variability model 𝑐𝑡𝑣𝑚 , the
formula 𝑐∧𝑐𝑡𝑣𝑚 is unsatis�able.

Changes in the implementation of a variable system can harm the solution
space consistency. While di�erent artifact types within one product of the
variable system describe partially overlapping information that must be kept
consistent [116, 62, 56, 242], products also share partially overlapping infor-
mation in the form of features. Thus, if a feature changes in one product, all
other products with the same feature must be changed accordingly [39, 186].
Consistency rules specify conditions that must hold in any consistent system.
Such consistency rules can refer to artifacts of one particular type, or to
artifacts of di�erent types. Such rules can, for example, concern the syntactic
correctness of Java source code with respect to its grammar, the conformance
of a model to its metamodel and OCL rules [181] (i.e., within an artifact type),
or a correspondence of a Java class structure to the class structure in a UML
class diagram [116, 121] (i.e., between artifact types). Similarly, the products
and the reusable artifacts must co-evolve consistently [81], e.g., if a feature
is added or changed in a product, the artifacts from which the product was
derived must be changed accordingly. In this thesis, De�nition 2.5 for solution
space consistency is used.

De�nition 2.5 (Solution space consistency) Anecessary criterion for solu-
tion space consistency is the absence of violations of any of the given consistency
rules. A consistency rule speci�es a condition that must hold in any consistent
system.

Considering the variable system entirely, the problem space and the solu-
tion space may evolve independently from each other. In particular, after a
product has been derived from the variable system, it evolves independently
from the reusable platform and the variability model, which is subject to
evolution as well. This is also commonly referred to as product and product-
line co-evolution [198, 81, 112, 144, 21, 65, 211, 40]. Speci�cally, each valid
con�guration in the problem space must lead to a consistent product. This
also entails that (non-abstract) features in the variability model must have
an implementation. In this thesis, De�nition 2.6 for problem space–solution
space consistency is used.
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De�nition 2.6 (Problem space–Solution space consistency) Anecessary
criterion for problem space–solution space consistency is that all valid con�gu-
rations must lead to a consistent product.
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3. Overview

Part II presents the main contributions of this thesis. Chapter 4 explains the
general uni�cation process. Chapter 5 introduces concepts and relations that
were identi�ed from elicited tools in the SPLE and SCM research �eld, con-
tributing a uni�ed conceptual model (C1). Chapter 6 extends the uni�cation
work by identifying and devising uni�ed operations that build on the uni�ed
conceptual model as data structure and constitute the operational manage-
ment of variability in space and time (C2). Chapter 7 presents an enumeration
and classi�cation of identi�ed variability-related inconsistency types that may
occur during the evolution of a variable system including causes, e�ects and
repair options (C4). Finally, the uni�ed view-based approach is introduced
in Chapter 8. It builds on the prior contributions by concretizing the uni�ed
conceptual model as well as the uni�ed operations. Beyond that, the uni�ed
approach integrates variability-aware consistency preservation during the
evolution of a variable system comprised of heterogeneous artifacts (C5).
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This chapter builds on a publication at SPLC [3] and Empirical Software Engi-
neering [5].

This chapter presents a general uni�cation process to convey how the results
were obtained with the purpose of reproducability and transparency and with
the aim of improving validity. For the uni�ed conceptual model (C1) and the
uni�ed operations (C2), the same general uni�cation process was applied
while being tailored to the speci�c contribution.

The construction of the uni�ed conceptual model and speci�cation of the
uni�ed operations was inspired by the construction process for a conceptual
reference model proposed by Ahlemann and Riempp [1]. Speci�cally, the
authors propose a four-phase research process. The �rst phase comprises
the problem de�nition. The second phase aims at exploring and generating
hypotheses, i.e., the construction of an initial model and an analysis of related
approaches and standards, followed by a re�nement of the initial model. The
third phase targets the evaluation of the constructed model. Speci�cally,
this is performed by conducting interviews with selected domain experts
upon which the model is re�ned until the experts reach consensus. The
evaluation also involves an application of the constructed model and a follow-
up re�nement of the model based on the insights. Finally, the fourth phase
involves documentation which contains the model itself, a description of the
construction process and a documentation of the interview results.

Based on the described phases, a general process tailored to the purpose of
uni�cation is presented in Section 4.1. An overview of selection criteria of
contemporary tools that cope with variability in space, time, or both follows
in Section 4.2. A summary in Section 4.3 closes this chapter.
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Figure 4.1.:General uni�cation process [3, Fig. 2].

4.1. General Unification Process

Figure 4.1 shows the general uni�cation process. The goal of the uni�cation
comprises two main aspects: First, a classi�cation of individual tool elements,
i.e., tool constructs and tool operations, to support an understanding of their
commonalities and di�erences. Second, their uni�cation in a redundancy-
free and unambiguous manner, in order to i) provide a common base for
researchers and practitioners to compare, communicate and scope work and
research and, ii) support the development of novel techniques that cope with
both variability dimensions simultaneously.

Step 1 encompasses a selection of relevant tools based on speci�ed selec-
tion criteria. Then, expert surveys using interviews or questionnaires are
conducted in Step 2 . Based on the gathered results from the expert survey, a
construction mapping is obtained. It maps tool elements (such as constructs,
their relations, well-formedness rules or operations) of the individual tools
to initial elements that serve as initial hypothesis and starting point for the
identi�cation phase of uni�ed elements. In the follow-up Step 3 , semanti-
cally equivalent elements across the contemporary tools are identi�ed and
a classi�cation is created. The �nal Step 4 encompasses a uni�cation of the
individual tool elements that result in uni�ed elements.

Note that the general uni�cation process is specialized for the uni�ed con-
ceptual model (C1) and uni�ed operations (C2).
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4.2. Selection Criteria for Contemporary Tools

To conduct the uni�cation processes for the uni�ed conceptual model and
uni�ed operations, a de�nition of selection criteria for contemporary tools
to be used in the uni�cation is presented in the following.

1. Support for variability in space, time, or both

2. Open source or expert availability

3. Consideration of the problem space and the solution space

The set of selected tools should be representative by means of involving tools
for each variability dimension and combination as well as for each category of
variability mechanism (i.e., annotative, transformational, and compositional)
to collect a diverse set of tools. Consequently, tools are excluded that support
only the solution space (e.g., FeatureHouse [16, 15]) or the problem space
(e.g., tools that only address variability modeling or analyses [19, 30, 83, 207]).
These requirements constrain the set of suitable tools from the SPLE commu-
nity. Additionally, a study byHorcas et al. [101] reports that out of 97 tools sup-
porting software product line engineering, only 19% are available online. Out
of these, most systems only deal with the problem space and do not consider
the solution space, which signi�cantly limits the number of suitable tools.

4.3. Summary

This chapter presented the conducted uni�cation process to foster reproduca-
bility. The process was inspired by the construction process for a conceptual
reference model proposed by Ahlemann and Riempp [1]. Figure 4.1 shows the
general uni�cation process of the uni�ed elements (i.e., the uni�ed concep-
tual model (C1) and the uni�ed operations (C2)). This chapter also provided
selection criteria of contemporary tools for uni�cation, such as support for
either or both variability dimensions, and the consideration of the problem
space as well as the solution space.
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This chapter builds on publications at VariVolution [9], SPLC [7] and Empirical
Software Engineering [5]. An open-access repository comprises artifacts related
to the construction and evaluation of the uni�ed conceptual model.1

This chapter presents a conceptual model that uni�es and relates concepts
established in SPLE and SCM, and aligns their terminology. The goal is to
provide a foundation for researchers and practitioners to compare, commu-
nicate and scope their work, obtain understanding of existing approaches
coping with variability in space and time, and design novel techniques for
managing both variability dimensions.

Referring to problem statement P1, the following research question is asked:

RQ 1.1 Which concepts and relations exist to cope with either or both vari-
ability dimensions and how can they be uni�ed?

First, Section 5.1 presents the specialized uni�cation process. Section 5.2
introduces the uni�ed conceptual model along with main design decisions
and well-formedness rules. Expected bene�ts of the uni�ed conceptual model
are described in Section 5.3. A summary in Section 5.4 closes this chapter.

This chapter thus constitutes the contribution C1.

5.1. Specialized Unification Process

Figure 5.1 presents a specialization of the general uni�cation process shown
in Figure 4.1 for the uni�ed conceptual model. In the following, each step is
described in detail.

1 https://doi.org/10.5281/zenodo.5751916
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Figure 5.1.:Uni�cation process of the uni�ed conceptual model. Adapted from [5, Fig. 3].

Initial Conceptual Model

In the conceptual modeling group of the Dagstuhl seminar 19191 (Software
Evolution in Time and Space: Unifying Version and Variability Manage-
ment [34]) (Step 0 ), we conceived the initial conceptual model shown
in Figure 5.2 [9]. It models concepts that were found common to systems
supporting variability in space, time, or both (white) as well as concepts for
variability in time (orange) and space (green). The System Space describes
any software-intensive system. It is composed of Fragments that describe
a system and represent di�erent levels of granularity (e.g., a �le or line of
code). Due to a generalization of the composite design pattern, Fragments can
be composed in di�erent combinations. The Revision Space conceptually
corresponds to the System Space and is a set of all systems under revision
control. A Versioned System is described by its Revisions, each representing
the system at a particular point in time. Subsequent and preceding revisions
form a revision graph, while multiple direct successors and predecessors
enable branching and merging. The Variant Space consists of all possible
Product Lines. A Variation Point describes an option of a Product Line

and associates its realizing Fragment. A Product results from a con�gura-
tion that requires every Variation Point to be realized by its corresponding
Fragments. The con�guration is modeled with a ternary association of the
Product Line, the Variation Point, and the Fragment. A Versioned Item

represents the versioning of concepts of all three spaces. It is realized by the
concepts Product Line, Variation Point, and Fragment.

Although the initial conceptual model documents concepts and their relations
for variability in space and time, concepts are combined but not uni�ed yet,
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Figure 5.2.:UML class diagram of the initial conceptual model for variability in space and time [5,
Fig. 2].

and have not been systematically selected and conceived. Therefore, the initial
conceptual model serves as foundation for the uni�ed conceptual model.

Tool Selection

To systematically re�ne the initial conceptual model, relevant contemporary
tools were elicited based on the criteria described in Section 4.2 (Step 1 ).
Table 5.1 shows the selected tools, and how they di�er regarding their support
of variability in space and/or time, and regarding the employed variability
mechanism. FeatureIDE [130, 157], pure::variants [35] and SiPL [187, 188]
represent tools that support variability in space. FeatureIDE supports di�erent
categories of variability mechanisms by means of integrated composers, e.g.,
the preprocessor Antenna as annotative mechanism or AspectJ as a composi-
tional variability mechanism. The tool pure::variants employs an annotative
mechanism by means of tagging model elements. Finally, the tool SiPL uses a
transformational variability mechanism via deltas. SVN [190] and Git [145]
are widely used VCSs that cope with variability in time. Since both tools do
not explicitly cope with variability in space (e.g., features and constraints),
they do not employ any variability mechanism. Finally, contemporary tools
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Table 5.1.:Distinguishing characteristics of the selected tools.

Tool

Property

Space Time

Annota-

tive

Transfor-

mational

Composi-

tional

Open

Source

FeatureIDE  —     

pure::variants  —  — — —
SiPL  — —  —  

SVN —  — — — —
Git —  — — — —
SuperMod    — — —
DarwinSPL   —  —  

DeltaEcore   —  —  

ECCO   — —   

VaVe   — —  —

that deal with variability in space and time are SuperMod [215, 214], Darwin-
SPL [170], DeltaEcore [219, 220], ECCO [75, 73, 139], and VaVe [10]. As these
tools employ di�erent concepts, modalities, and development paradigms,
diverse perspectives for unifying variability in space and time could be incor-
porated. A more detailed description of the tools for variability in space is
provided in Section 2.2.2, of the tools for variability in time in Section 2.3.2,
and of tools coping with both dimensions in Section 2.4.2. Although some
tools could be used in combination to support variability in space and time,
such as FeatureIDE and Git, they do not provide novel concepts or relations for
dealing with both dimensions. Therefore, such combinations are considered
to be covered by analyzing each tool individually.

Expert Interviews

To re�ne the initial conceptualmodel accordingly, I conducted semi-structured
interviews, once per tool with one expert of the respective tool (Step 2 ).
Experts were invited based on their involvement in the conceptual design
or implementation of an elicited tool and thus are highly knowledgeable of
it. The tool experts are mostly researchers from academia with one expert
being from industry. Experts for SVN or Git were not invited as both tools are
widely used with profound documentation available. The eight interviews
lasted 83 minutes on average and were based on a blank interview guide
that was jointly completed to ensure consistency, eliminate misunderstand-
ings and clarify questions. The interview guide consisted of four successive
parts. The �rst part presented the initial conceptual model. The second part
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comprised a mapping between the concepts of the initial conceptual model
and constructs of the respective tool to be jointly completed, resulting in a
construction mapping. Moreover, the mapping asked for any tool constructs
that are not covered by concepts of the initial conceptual model. To obtain
a holistic understanding of each tool and distinguish it from other tools, the
third part of the guide additionally asked for the tools’ main use cases, and
the supported operations in the fourth part.

Construction Mapping

The construction mappings (one per tool) provided insights regarding each
tool, its employed concepts, their relations and used terminology. Mappings
between model concepts and tool constructs were obtained based on semantic
equivalence and not merely on names, because some tools use the identical
name for constructs that map to di�erent model concepts. For example, the
term Variant represents a Configuration in FeatureIDE, and a Product in
pure::variants and ECCO. Based on insights from the mappings, we improved
the initial conceptual model by removing, adding, merging and splitting up
concepts. Speci�cally, in tools dealing with variability in space, the constructs
Feature and Constraint did not correspond to any concept of the initial con-
ceptual model. Moreover, tools that cope with variability in space and time
simultaneously do not di�erentiate between concepts of a Versioned System

and Product Line. Instead, a single construct is used (e.g., Repository in
ECCO or Product Line in DeltaEcore). Finally, many tools use the concept
of a Mapping (i.e., a relation between Features or Revisions and Fragments)
and a Configuration. The initial model represents both constructs only
implicitly via relations (i.e., the Mapping is represented with a directed as-
sociation relationship between the Variation Point and the Fragment, and
the Configuration is represented with a ternary association of the Product
Line, the Variation point, and the Fragment).

Workshops

I organized a series of closed and specialized workshops to construct the uni-
�ed conceptual model based on the insights from the construction mappings.
All tool experts as well as further researchers and practitioners that voiced
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their interest to participate were invited. Speci�cally, two subsequent work-
shops took place (Steps 3 and 4 ). The format of the �rst workshop was
a one-day open discussion with 15 participants. I prepared interview results
and impulse questions upon which we gradually re�ned the initial conceptual
model. The format of the second workshop was an online meeting with 12
participants for 1.5 hours. Important cornerstones of the meeting involved
a retrospective of the performed changes to the initial conceptual model
based on the �rst workshop, and discussion of remaining open issues. Major
agreed changes involved the uni�cation of concepts. Particularly, while tools
that cope with either variability in space and time employ a Product Line or
Versioned System, tools that cope with variability in space and time simul-
taneously use one uni�ed concept to represent both. Moreover, the initial
conceptual model speci�es the concept of Configuration only for variability
in space, which is however also present in tools dealing with variability in
time [48] (e.g., a commit hash in Git). Thus, we extended the Configuration
to also be able to refer to concepts of variability in time as well, thereby repre-
senting a uni�ed concept. Further concepts were added or made explicit based
on the construction mappings. Speci�cally, the concept of a Constraint was
added to constrain the validity of con�gurations. The concept of a Feature
was added to represent design options, since we found the concept Variation
Point relevant in the implementation only (and, thus, lowering the degree
of abstraction). Also, the Mapping was modeled explicitly, since this concept
carries signi�cance in most of the tools. Finally, hybrid concepts were intro-
duced that were found in tools focusing on both variability dimensions as
well as new relations that do not exist in any of the studied tools.

5.2. Unified Conceptual Model

This section presents the uni�ed conceptual model (C1). It starts by describing
the main design decisions that impacted the uni�ed model. Then, its concepts
and relations, a formal notation and static semantics in the form of well-
formedness rules are introduced.
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5.2.1. Design Decisions

The design process of the uni�ed conceptual model involved several design
decisions during the uni�cation process. In the following, the main design
decisions regarding terminology and modeling are presented.

Terminology

The construction mappings revealed that terminology used for concepts of
variability in space and time in SPLE and SCM su�ers from ambiguity and
homonyms. Therefore, we aimed for generic and unambiguous terms not
commonly used in either research area. This particularly concerned the
term Variant. For instance, it corresponds to the Configuration construct
in FeatureIDE, and to the Product construct in ECCO, according to the tool
experts. Thus, even within the SPLE community, terms are used inconsis-
tently. Furthermore, the term Variant is also used in literature to represent
an option of a Variation Point. Therefore, this term is avoided and Product

is used instead. Moreover, the term Variation Point is generally associated
in the SPLE area with implementation. Therefore, Option is used as generic
term to describe any variation. Another decision on terminology concerns
the system representing variability in space, time, or both. In the initial
conceptual model, Product Line and Versioned System contain most other
concepts. While both terms are associated with SPLE and SCM, respectively,
tools that cope with both variability dimensions represent the system with
a single construct. As the term Repository is close to implementation (i.e.,
persistence), the term Unified System is used.

Modeling Pragmatics

The �rst design decision relates to the structure of Fragments. The initial
conceptual model allows to form a complex structure with a generalized com-
posite design pattern. Based on the selected tools, some organize Fragments
as a tree structure (e.g., Git), and some as a graph structure (e.g., DeltaEcore).
To cover all tool constructs and relations, the Fragment structure is modeled
as a graph, which generalizes the tree structure. The second design decision
concerns the modeling of di�erent types of revisions. Speci�cally, some tools
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employ Revisions of the Unified System (e.g., Git and SuperMod) while oth-
ers use revision control of each Feature (e.g., DeltaEcore and ECCO). To clearly
di�erentiate between Revisions of both concepts and separate the concerns,
the concept of System Revision and its counterpart Feature Revision is
introduced. The third design decision relates to Constraints. While this
concept is common in most tools coping with variability in space to re-
strain combinations of Features, Constraints can be formulated on Feature

Revisions (e.g., DeltaEcore). Therefore, the concept Feature Option is intro-
duced as a generalization of the Feature and Feature Revision concept, and
Constraints to be de�ned over Feature Options. The fourth design deci-
sion concerns the relationship between a Feature and its Feature Revisions.
Since the existence of a Feature Revision strongly depends on its Feature,
the relation is modeled as a composition. The �nal design decision relates
to the versioning of Configurations and Mappings. However, since both can
refer to the same Options that would be used for versioning them (e.g., a
System Revision could enable a Mapping and, at the same time, be referred
to by this Mapping), this would have introduced cycles. Note that abstract
classes are used to indicate that they should not be specialized. Instead, the
respective sub-classes should be used for further instantiation.

5.2.2. Concepts and Relations

Figure 5.3 shows a UML class diagram of the resulting uni�ed conceptual
model. Concepts for variability in space are highlighted in green, concepts for
variability in time in orange, concepts of both variability dimensions in purple,
and uni�ed concepts are white. Lighter colors and an italic font is used to
represent abstract classes. The left part of the model comprises the concepts
located in the problem space in SPLE or version space in SCM (i.e., the abstrac-
tion of the domain). The right side comprises the concepts located in the solu-
tion space in SPLE or product space in SCM (i.e., the implementation artifacts
of the system). Notably, mostly all of the uni�ed concepts are located in the
solution space or on the border to the problem space, which, in turn, contains
the remaining concepts for variability in space, time, or both. In the following,
the concepts and relations of each variability dimension and their combina-
tion are introduced, gradually describing the model from left to right and
referring to the running example of the Car system presented in Section 2.1.
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Figure 5.3.:UML class diagram of the uni�ed conceptual model [5, Fig. 4].
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Concepts and Relations for Variability in Space

Variability in space is supported by all studied tools except for Git and SVN
(note that in this research, branches are considered a temporal divergence
for concurrent development only). It is represented by the concepts Feature,
Constraint, and Feature Option.

A Feature is considered a “prominent or distinctive user-visible aspect, qual-
ity, or characteristic of a software system or system” [107, p. 3] that represents
a concrete specialization of the abstract concept Feature Option. Example:
In the �nal feature model of the Car system in Figure 2.1b, four concrete
features exist: the Car feature, the Gas feature, the Ele feature, and the Dist
feature.

A Constraint is formulated over Feature Options. It governs which Feature

Options can, should, or should not be combined together. Example: The Ele
feature implies the Dist feature so that both must be selected in a valid
Configuration.

Concepts and Relations for Variability in Time

Variability in time is supported by Git, SVN, SuperMod and DarwinSPL. It is
represented by the concepts Revision and System Revision.

The abstract concept Revision describes the evolution history and is used
by the uni�ed conceptual model as an abstract representation of time. The
Revision refers to its preceding and successive revisions, forming a revision
graph. Multiple directly predecessors and successors represent branches and
merges.

A System Revision specializes a Revision and describes a particular state of
the system at one point in time. Example: Nine subsequent System Revisions

describe the evolution history of the Car system.

Concepts and Relations for Variability in Space and Time

Concepts for variability in space and time relate to concepts from both vari-
ability dimensions. The concept Feature Revision was identi�ed as such,
which is employed by the tools ECCO, DeltaEcore, and VaVe.
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5.2. Uni�ed Conceptual Model

A Feature Revision specializes the Feature Option and the Revision. In
contrast to a System Revision that represents the state of an entire system,
a Feature Revision is speci�c to a single Feature. Thus, every feature has
its own revision graph. Example: In the �nal Car system, the Gas feature has
three subsequent revisions: Gas1, Gas2, Gas3.

Interestingly, no tool employs both Feature Revisions and System

Revisions simultaneously. Instead, Feature Revisions are retrospectively
mined from System Revisions or the other way round, leading to high ad-
ditional costs [59, 127]. This missing relation between System Revisions

and Feature Revisions is a gap in state of the art. The combination of both
revision types is challenging, since they cannot be managed independently
and new structure as well as behavior must be de�ned with respect to their
interaction. To address this problem, System Revisions are used in the uni-
�ed conceptual model to support the management of Feature Revisions.
Speci�cally, this research proposes to let a System Revision enable Feature
Revisions. Consequently, it is explicitly modeled which Feature Revisions

relate to a System Revision. This enables cross-dimensional analyses, for
instance, drawing conclusions about compatibility of Feature Revisions or
tracking the frequency of feature changes whereby a high frequency might
indicate a poor design. Example: The �rst System Revision of the Car system
enables Car1, Gas1 and Ele1.

Unified Concepts

Uni�ed concepts are relevant for either variability dimension and are sup-
ported by all studied tools. The Unified System (highlighted with a black
border) represents the entire variable system that describes variability space,
time, or both, such as the Car system. It is located on the border of both the
problem space and the solution space since it contains concepts located in
either space.

The abstract concept Option represents any variation of either variability
dimension. Thus, it can be specialized as a Feature, a System Revision, or
as a Feature Revision.

Analogously to the initial model, a Fragment represents an implementation
artifact of any level of granularity, e.g., models, delta modules, or entire �les.
Using a self-reference, the uni�ed conceptual model employs a graph structure
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5. Uni�ed Conceptual Model

of Fragments. Example: In the Car system, Fragments are represented by the
Java and SysML �le as well as by lines of code.

Analogously to the Unified System, the Mapping is also located on the border
of both spaces. It relates concepts from the problem space (i.e., Options)
with concepts from the solution space (i.e., Fragments). Note that Options
can exist that are not present in any Mapping. For instance, such Options

could represent abstract features. Example: The Fragment which represents
Line 10 in the Car system in Figure 2.2 maps to the feature interaction
Gasoline3&&Electric4. The abstract feature ET is not referred to by any
Mapping.

The concept of a Configuration exists in both SPLE and SCM. While a
Configuration is rather complex in SPLE (i.e., the selection of particular
Features), in SCM, it is simply represented by a System Revision (e.g., a
commit hash in Git). Therefore, a Configuration is uni�ed such that it is a
selection of Options. Example: {Car1, ET, Gas1}.

A Product is derived by tool-speci�c variability mechanisms, such as delta
modeling, that specify which Fragments are composed according to a
Configuration. Since the Unified System is not e�ected by the Product,
it is detached from the system after its derivation.

5.2.3. Notation

The following notation is used to refer to concepts and relations of the uni-
�ed conceptual model and to provide an example based on the running Car

system.

De�nition 5.1 A Uni�ed System 𝑈𝑆 is comprised of a set of System Revisions
𝑆𝑅, a set of Features 𝐹 , a set of Constraints 𝐶𝑇 , a set of Con�gurations 𝐶 , a set
of Fragments 𝐹𝑇 , and a set of Mappings𝑀 .

The Car system in its �nal state has the set of System Revisions 𝑆𝑅 =

{1, 2, 3, 4, 5, 6, 7, 8, 9}, the set of Features 𝐹 = {Car, ET, Dist, Gas, Ele}, of
Constraints 𝐶𝑇 = {Car, Car ⇔ ET, Dist ⇒ Car, Gas ⇒ ET, Ele ⇒ ET, Gas ∨
Ele, Ele3,4 ⇒ Dist3}, the set of Configurations𝐶 = {}, the set of Fragments
𝐹 = {class EngineController, double gasLevel, ...}, and the set of Mappings
𝑀 = {(class EngineController, Car1), (double gasLevel, Gas1,2,3), ...}.
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5.2. Uni�ed Conceptual Model

De�nition 5.2 𝐹𝑅𝑓 denotes the set of Feature Revisions of Feature 𝑓 ∈ 𝐹 .

For example, the feature Gas has the set of feature revisions 𝐹𝑅Gas =

{Gas1, Gas2, Gas3}.

De�nition 5.3 A System Revision 𝑠𝑟 ∈ 𝑆𝑅 enables a set of Features 𝐹𝑠𝑟 ⊆ 𝐹 ,
a set of Feature Revisions 𝐹𝑅𝑠𝑟,𝑓 ⊆ 𝐹𝑅𝑓 for every feature 𝑓𝑠𝑟 ∈ 𝐹𝑠𝑟 , and a
set of Constraints 𝐶𝑇𝑠𝑟 ⊆ 𝐶𝑇 . The set of all Feature Options enabled by 𝑠𝑟 is
𝐹𝑂𝑠𝑟 = 𝐹𝑠𝑟 ∪

⋃
𝑓 ∈𝐹𝑠𝑟 𝐹𝑅𝑠𝑟,𝑓 .

The System Revision 9 enables features 𝐹9 = 𝐹 = {Car, ET, Dist, Gas, Ele},
Feature Revisions of Gas 𝐹𝑅9,Gas = {Gas3}, and Constraints 𝐶𝑇9 = 𝐶𝑇 .

De�nition 5.4 𝑚𝑠𝑟,𝑓 𝑡 ∈ 𝑀 is used to denote the mapping of Fragment 𝑓 𝑡 ∈ 𝐹𝑇
at System Revision 𝑠𝑟 ∈ 𝑆𝑅. A Mapping can be treated as a Boolean expression
over Options. 𝐹𝑇𝑚 ⊆ 𝐹𝑇 denotes the set of Fragments of a Mapping𝑚 ∈ 𝑀 ,
and 𝐹𝑇𝑠𝑟,𝑚 ⊆ 𝐹𝑇 the set of Fragments of a Mapping𝑚 ∈ 𝑀 at System Revision
𝑠𝑟 ∈ 𝑆𝑅.

For example, the Mapping of Fragment class EngineController ∈ 𝐹𝑇 at
System Revision 9 ∈ 𝑆𝑅 is denoted as 𝑚9,class EngineController = Car1, and
the set of Fragments that map to Car1 at System Revision 9 as 𝐹𝑇9,Car1 =

{class EngineController, void doDriving()}.

De�nition 5.5 A Con�guration 𝑐 is a set of positive or negative features. It
can be treated as a conjunction of its positive and negative feature literals

∧
𝑙 ∈𝑐

𝑙 .

An example of a valid Configuration at the �nal System Revision is 𝑐1 =

{Car1, ET, Dist3, Gas3,¬Ele} which is equivalent to the expression Car1∧ET∧
Dist3 ∧ Gas3 ∧ ¬Ele.

5.2.4. Static Semantics

During interviews and discussions with the tool experts, several constraints
de�ned on tool constructs became obvious. For example, the tool ECCO em-
ploys an acyclic revision graph. Since the UML notation does not provide
the required level of conciseness and expressiveness, the Object Constraint
Language (OCL) is used to specify the static semantics of the uni�ed concep-
tual model in a formal way [181]. In the following, auxiliary de�nitions are
introduced that specify well-formedness rules.
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1 context UnifiedSystem

2 def:

3 getAllOptions : Set(Option) =

4 self.feats -> union(self.revs) -> union(self.feats -> collect(f:Feature |

f.revs) -> flatten())

5

6 context Configuration

7 def:

8 getAllSystemRevisions : Set(SystemRevision) =

9 self.opts -> select(o:Option | o.oclIsTypeOf(SystemRevision))

10 def:

11 getAllFeatureOptions : Set(FeatureOption) =

12 self.opts -> select(o:Option | o.oclIsKindOf(FeatureOption))

Listing 5.1:Auxiliary de�nitions for well-formedness rules [5, Listing 4].

Auxiliary Definitions

Listing 5.1 comprises the de�nitions of three auxiliary operations. The �rst
de�nition speci�es the operation getAllOptions that returns a set of all
Options in a Unified System (i.e., System Revisions, Features, and Feature
Revisions). The second de�nition speci�es the operation getAllSystemRevi-

sions for collecting all System Revisions in a Configuration. The third
de�nition speci�es the operation getAllFeatureOptions for collecting all
Feature Options (i.e., Features and Feature Revisions) in a Configuration.

Well-Formedness

In the following, ten well-formedness rules are introduced that specify the
static semantics of the uni�ed conceptual model. Listing 5.2 provides three
rules that de�ne the well-formedness of the revision graph.

Rule 1 states that every direct predecessor of a Revision 𝑟 must have 𝑟 as
successor, and that every direct successor of 𝑟 must have 𝑟 as a predecessor.
This rule essentially enforces a bidirectional relationship between predecessor
and successor revisions.
Rule 2 de�nes revision graphs to be directed and acyclic by stating that the
transitive closure over the successor revisions of a Revision 𝑟 must exclude
the Revision 𝑟 itself. It ensures that no revision can be visited multiple times
while traversing a revision graph.
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1 context Revision

2 -- Rule 1: Every predecessor of a Revision must have the Revision as

successor and vice versa.

3 inv:

4 self.preds -> forAll(r : Revision | r.succs -> includes(self))

5 inv:

6 self.succs -> forAll(r : Revision | r.preds -> includes(self))

7

8 -- Rule 2: The revision graph must be a directed acylic graph.

9 inv:

10 self.succs -> closure(r : Revision | r.succs) -> excludes(self)

11

12 -- Rule 3: All Revisions of a revision graph must be of the same type and

have the same container.

13 inv:

14 self.preds -> forAll(r : Revision | self.oclType() = r.oclType() and

15 self.container = r.container)

16 inv:

17 self.succs -> forAll(r : Revision | self.oclType() = r.oclType() and

18 self.container = r.container)

Listing 5.2:Well-formedness of the revision graph [5, Listing 5].

Rule 3 speci�es that all Revisions in a revision graph must have matching
types (i.e., either only System Revisions or only Feature Revisions) and
have the same container (i.e., the Unified System, in the case of System

Revisions, or the same Feature, in the case of Feature Revisions). A re-
vision graph can thus either only contain System Revisions of the same
Unified System or only Feature Revisions of the same Feature.

In Listing 5.3, three rules are de�ned that specify the use of concepts that are
contained in the same Unified System.

Rule 4 states that all Options that a Configuration refers to must be part of
the same Unified System as the Configuration itself. A Configuration can
thus not refer to Options that are contained in another Unified Systems or
in no Unified System at all.
Rule 5 de�nes that all Options and Fragments to which a Mapping refers must
be part of the same Unified System as the Mapping itself. A Mapping can thus
neither refer to Options nor to Fragments that are contained in another or in
no Unified System.
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1 -- Rule 4: All Options of a Configuration must be contained in the Unified

System.

2 context Configuration

3 inv:

4 self.opts -> forAll(o:Option | self.us.getAllOptions -> includes(o))

5

6 -- Rule 5: All Fragments and Options of a Mapping must be contained in the

Unified System.

7 context Mapping

8 inv:

9 self.opts -> forAll(o:Option | self.us.getAllOptions -> includes(o))

10 inv:

11 self.fragments -> forAll(f:Fragment | self.us.fragments -> includes(f))

12

13 -- Rule 6: All Feature Options of a Constraint must be contained in the

Unified System.

14 context Constraint

15 inv:

16 self.opts -> forAll(o:FeatureOption | self.us.getAllOptions -> includes(o))

Listing 5.3:Well-formedness of containments in a Unified System [5, Listing 6].

Rule 6 speci�es that all Feature Options, that a Constraint refers to, must
be part of the same Unified System as the Constraint itself. A Constraint

can thus not refer to Feature Options contained in another or in no Unified

System.

Listing 5.4 shows three well-formedness rules of the enables relations from
System Revision to Feature Option and to Constraint.

Rule 7 states that all Feature Options and Constraints that a System Revi-

sion enables must be part of the same Unified System as the System

Revision itself. A System Revision cannot enable Feature Options or
Constraints of another Unified System.
Rule 8 de�nes that Constraints can only refer to Feature Options that
are enabled by the same System Revision as the Constraints itself. This
rule is only relevant for tools that support multiple System Revisions. It
ensures that, at no point in time, a Constraint is visible that refers to Feature
Options that are not visible.
Rule 9 speci�es that, for every Feature 𝑓 that has at least one Feature

Revision and that is enabled by a System Revision 𝑟 , the same System

Revision 𝑟 must also enable at least one Feature Revision of Feature 𝑓 . This
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5.2. Uni�ed Conceptual Model

1 -- Rule 7: All Feature Options and Constraints enabled by a System Revision

must be contained in the same Unified System as the System Revision.

2 context SystemRevision

3 inv:

4 self.opts -> forAll(c:Constraint | self.us.constrs -> includes(c))

5 inv:

6 self.opts -> forAll(f:FeatureOption| self.us.getAllOptions -> includes(f))

7

8 -- Rule 8: Constraints may only refer to Feature Options enabled by the same

System Revision.

9 inv:

10 self.constrs -> forAll(c:Constraint | self.opts -> includesAll(c.opts))

11

12 -- Rule 9: For every Feature that is enabled by a System Revision, the same

System Revision must also enable at least one Feature Revision of that

Feature.

13 inv:

14 self.opts -> select(o:Option | o.oclIsTypeOf(Feature)) ->

15 forAll(f:Feature |

16 f.revs -> isEmpty() or f.revs -> exists(fr:FeatureRevision |

17 self.opts -> includes(fr)

18 )

19 )

Listing 5.4:Well-formedness of the enables relations of System Revision [5, Listing 7].

rule is only relevant for tools that support System Revisions and Feature

Revisions simultaneously. It ensures that, at any point in time where a
Feature is visible, also at least one of its Feature Revisions is visible. Yet,
it permits Features to be visible that do not have any Feature Revision,
which is the case either for abstract or newly created Features that have not
been implemented yet.

Finally, Rule 10 de�nes the well-formendess of a Configuration in List-
ing 5.5. In case a Configuration refers to at least one System Revision, all
Feature Options that it refers to must be enabled by at least one of the System
Revisions that it refers to. In case a Configuration does not refer to any
System Revision, it may refer to any Feature Options. This rule ensures
that only Feature Options are selected in a Configuration that are visible
at one or more points in time. This rule speci�es the minimal requirements
for the well-formedness of a Configuration, without making any statement
about completeness or validity of a Configuration with respect to a set of
Constraints.
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1 -- Rule 10: A Configuration may only refer to Feature Options that are

enabled by at least one of the System Revisions it refers to.

2 context Configuration

3 inv:

4 self.opts -> exists(o:Option | o.oclIsTypeOf(SystemRevision)) implies (

5 self.getAllFeatureOptions -> forAll(f:FeatureOption |

6 self.getAllSystemRevisions -> exists(s:SystemRevision |

7 s.opts.includes(f)

8 )

9 )

10 )

Listing 5.5:Well-formedness of Configuration [5, Listing 8].

5.3. Expected Benefits

So far, the uni�ed conceptual model, its uni�cation process, design decision
and well-formedness rules have been introduced and described. This section
comprises a discussion of the expected bene�ts of the uni�ed conceptual
model.

A model can have one or more roles (i.e., a descriptive, prescriptive, or pre-
dictive role) that re�ect its purpose [46]. To this end, the uni�ed conceptual
model can play a descriptive as well as a prescriptive role.

On the one hand, it systematically builds on and describes concepts and
relations for dealing with variability in space, time, and both of contemporary
approaches and tools. Based on this common foundation, researchers and
practitioners gain understanding of the state of the art, and can communicate
and compare their work based on common and distinguishing concepts and
relations of the uni�ed conceptual model.

On the other hand, the uni�ed conceptual model can play a prescriptive role
since it does not only cover identi�ed concepts and relations, but also provides
meaningful novel relations between concepts that do not appear in combi-
nation in any of the studied approaches (i.e., System Revisions and Feature

Revisions). Thus, it prescribes the concepts and relations of a system aiming
to deal with variability in space and time simultaneously. Based on that,
cross-dimensional variability modeling and analyses become possible, for
instance, tracking revisions per features to analyze their frequency of change
(for which expensive and approximate mining techniques are currently used).
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Figure 5.4.:Contribution of Chapter 5 of the thesis.

In conclusion, the uni�ed conceptual model can be employed to drive the
construction of a system by providing a systematically devised foundation
for dealing with both variability dimensions.

5.4. Summary

This chapter presented the uni�ed conceptual model for uniformly describ-
ing and relating concepts of variability in space and time (C1). it comprises
concepts of variability in space, variability in time, uni�ed concepts (that can
be used to deal with either variability dimension) and hybrid concepts for
dealing with both variability dimensions simultaneously.
Major design decisions that impacted terminology and modeling have been
explained. In addition, a formal notation of the uni�ed conceptual model
and OCL rules to ensure the well-formedness of the uni�ed model have been
provided. To support reproducability of this uni�cation e�ort, the uni�cation
process of the uni�ed conceptual model has been documented and related
artifacts were made available.
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The uni�ed conceptual model provides means for researchers and practition-
ers to clarify, communicate and compare their work based on the model’s
concepts and relations. Beyond that, the uni�ed conceptual model can guide
the design of novel approaches for managing variability in space and time.
To this end, none of the studied tools support the explicit combination of
Feature Revisions and System Revisions. This a gap in tool support for
managing both variability dimensions that is currently mitigated by retrospec-
tive mining of feature evolution, which leads to additional costs. This research
proposes to use System Revisions to govern which Feature Revisions are
available. In conclusion, the uni�ed conceptual model extends the body of
knowledge on uni�ed variability management.

Thus, this contribution addresses RQ 1.1. Figure 5.4 shows an overview of
all contributions and highlights the contribution of this chapter in grey.

60



6. Unified Operations

This chapter builds on a publication at VaMoS [6]. An open-access repository
comprises all artifacts related to the uni�cation process and evaluation of the
uni�ed operations.1

This chapter presents the uni�ed operations to manage variability in space
and time simultaneously. So far, ten existing tools from the SPLE and SCM
communities have been analyzed and a conceptual model for unifying con-
cepts of variability in space and time has been conceived (C1). However, tools
operate not only on di�erent data structures, but follow di�erent edit modali-
ties and development paradigms when it comes to managing variability, even
if they consider the same variability dimensions [141]. For instance, some
tools enforce (partially) contradicting pre-conditions for the same operations.
Thus, understanding the di�erent ways of handling both dimensions allows
for establishing a common foundation for the operational management of
variability in space and time.

Referring to problem statement P1, the following research question is asked:

RQ 1.2 Which operations are provided to cope with either or both variability
dimensions in the studied tools and how can they be uni�ed?

First, Section 6.1 presents the specialized uni�cation process. The identi�ca-
tion of the commonalities and di�erences of the individual tool’s operations
is described in Section 6.2. Then, the uni�ed operations are introduced in Sec-
tion 6.3, along with their pre and post-conditions, for coping with variability
in space and time. Expected bene�ts of the uni�ed operations are described
in Section 6.4. A summary in Section 6.5 closes this chapter.

This chapter thus constitutes the contribution C2.

1 https://doi.org/10.5281/zenodo.5825135
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Figure 6.1.:Uni�cation process of the uni�ed operations [6, Fig. 2].

6.1. Specialized Unification Process

Figure 6.1 presents the specialization of the general uni�cation process shown
in Figure 4.1 for the uni�ed operations. In the following, each step is described
in detail.

Tool Selection

We elicited tools based on the selection criteria described in Section 4.2
(Step 1 ). Table 6.1 shows the selected tools, and how they di�er regarding
their supported concepts for variability in space (i.e., Feature, Constraint)
variability in time (i.e., System Revision), and both dimensions (i.e., Feature
Revision). Note that these tools are mostly the same as the ones selected for
the uni�ed conceptual model (see Section 5.1). Tools for variability in space,
i.e., FeatureIDE [130, 157], VTS [228] and SiPL [187, 188], support Features
and, except for VTS, Constraints. Tools for variability in time, i.e, SVN [190]
and Git [145], support System Revisions. Tools that support variability in
space and time via Features, Constraints and System Revisions are Super-
Mod [215, 214] and DarwinSPL [170]. Tools that support variability in space and
time via Feature Revisions instead of System Revisions are DeltaEcore [219,
220], ECCO [75, 73, 139] and VaVe [10]. Again, combinations of tools (e.g.,
FeatureIDE and Git) are not considered as they do not provide dedicated func-
tionality for dealing with both variability dimensions simultaneously. A more
detailed description of the tools for variability in space is provided in Sec-
tion 2.2.2, of the tools for variability in time in Section 2.3.2, and of tools
coping with both dimensions in Section 2.4.2.
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Table 6.1.:Distinguishing concepts of the selected tools [6, Tab. 1].

Tool

Concept

Feature Constraint

System

Revision

Feature

Revision

FeatureIDE   — —
VTS  — — —
SiPL   — —
SVN — —  —
Git — —  —
SuperMod    —
DarwinSPL    —
DeltaEcore   —  

ECCO  — —  

VaVe   —  

Expert Survey

In Step 2 , I conducted an expert survey based on questionnaires com-
prising an initial set of use cases. Experts were invited that are among the
most knowledgeable people of an elicited tool, all being researchers from
academia. Analogously to the uni�cation process of the uni�ed conceptual
model (see Figure 5.1), experts for SVN or Git were not invited as both tools
are widely used with profound documentation available. Per tool, one ques-
tionnaire was completed by an expert. The goal was to obtain a mapping
between a set of use cases presented in the questionnaire and the function-
ality (i.e., operations) provided by a respective tool. For each use case, the
questionnaire therefore asked for its input and output, pre and post-condition
and a description of its semantics. Furthermore, the questionnaire asked for
further functionality related to the management of variability in space, time,
or both that was not covered by the initial set of use cases.

Use cases were formulated on the abstraction level of the uni�ed conceptual
model, which excludes tool-speci�c operations related to, for example, delta
modules or feature models. Moreover, use cases were considered that modify
a uni�ed system and produce non-trivial, mutable output from a Unified

System. This excludes operations for variability analysis that compute a
Boolean or integer value as well as run-time variability which operates on a
running product.

Figure 6.2 depicts the set of selected use cases. User-facing user-goal use cases
(white) and sub-function use cases (grey) are di�erentiated. In the following,
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non-trivial use cases are brie�y described. Every use case is always executed
in the context of a Unified System.

• Add Uni�ed System: Adds another Unified System to this Unified

System. This entails adding new Features, Revisions, Mappings,
Fragments and/or Constraints. For the sake of clarity, all include-
relationships between this use case and included add/update/delete
use cases are omitted.

• Add Product: Adds a Product to this Unified System. This entails
adding new Features of the Product and/or new Revisions of changed
Features of the Product and/or new Fragments in the Product to this
Unified System, including the corresponding addition or update of
Mappings. For the sake of clarity, include-relationships between this
use case and included add/update/delete use cases are omitted.

• Derive Product: Derives a Product from this Unified System based on
a valid and complete Configuration.

• Derive Uni�ed System: Derives a Unified System from this Unified
System. Features, Fragments, Mappings, and Constraints of the de-
rived Unified System are a subset of the ones of this Unified System.

• Check Well-formedness: Checks the well-formedness of the given
Fragments. The precise realization of this use case depends on what
the Fragment represent. For example, in the case of Java source code,
this use case checks for syntactical validity.

• Check Expression Validity: Checks the validity of a given expression
with respect to the Constraints in the Unified System. If the expres-
sion represents a Configuration, this is a special case of this use case
and equivalent to the use case Check Con�guration Validity

• Check Con�guration Completeness: Checks the completeness of a given
Configuration considering its selected or deselected Options.

• Select Mappings: Selects a subset of the Mappings in the Unified

System given an expression against which the expression in each
Mapping is evaluated.
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Unified
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Figure 6.2.:Use cases for expert survey [6].

Use Case Mappings

The use case mappings (one per tool) provided insights regarding each tool, its
operations, their semantics and used terminology. The mapping was created
by the tool experts based on semantic equivalence of the described use cases
and the individual tool operations. The completed use case mappings showed
that every use case is covered by at least one tool. Furthermore, depending
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on the tool, use cases could be user-facing (e.g., Add Mapping is user-facing
in DeltaEcore, but not in ECCO), or may include other use cases as depicted
in Figure 6.2 (e.g., in VTS, the use case Add Fragment to Mapping includes the
use case Add Fragment, since Mappings contain the Fragments. Moreover, no
use cases were missing that would have met the scope criteria. Finally, the
used terminology in the use cases introduced ambiguities. For instance, Add
Product could either be interpreted in a product-oriented way in the sense
of clone-and-own (as it is in case of ECCO) or in a platform-oriented way (as
it is in case of SuperMod, where the user provides an ambition to explicitly
map changes to a Feature expression).

Operation Identification

The completed use case mappings were input to the identi�cation of opera-
tions that deal with variability in space, time, or both (Step 3 ). Speci�cally, I
evaluated the mappings and mapped the inputs and outputs of the individual
tool operations to the concepts of the uni�ed conceptual model (C1). Then, I
classi�ed each operation according to common and distinguishing properties
and categorized the tool’s operations based on a clear and self-contained
concern to avoid redundancies and ambiguities and discussed the results with
the tool experts. For instance, one category was de�ned for the integration
of changes performed on a product while another category was de�ned for
the integration of changes performed on an instance of a uni�ed system (i.e.,
a partial product line). Predicates, that are used in pre and post-conditions
of tool operations, were identi�ed by the same means.

Operation Unification

The identi�cation of each individual tool’s operations along with the speci�ed
categories were input to the uni�cation (Step 4 ). For each category, we
speci�ed its operation signature based on the name, inputs and outputs. Fur-
thermore, the behavior of operations was uni�ed such that the functionality
of studied tools was preserved. Moreover, each operation was extended to
cope with both variability dimensions if only one dimension was supported.
The same uni�cation procedure was applied for predicates. Afterwards, I
presented the resulting uni�ed operations to the tool experts to avoid misun-
derstandings and make sure the individual tools are covered correctly.
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6.2. Identification of Operations

This section presents the identi�ed predicates and operations (Step 3 in Fig-
ure 6.1). It starts with a classi�cation to distinguish commonalities and
di�erences of operations.

6.2.1. Classification

When examining the individual tool operations based on the completed use
case mappings, commonalities and di�erences among the tool’s functionality
became obvious. While, for instance, the derivation of a Product is supported
by all tools in a user-facing way, some tools employ functionality that is non
user-facing but triggered through user-facing actions. For example, the addi-
tion of a Feature and its Fragments in ECCO would require a user to perform
changes on a Product and commit them, while the Mapping is generated fully
automatically without the user being able to modify it directly. Contrary,
in DeltaEcore, the user would need to manually provide the Mapping of the
new Feature (i.e., by directly modifying the Mapping Model of DeltaEcore).
Based on insights and discussions with the tool experts, the identi�ed op-
erations could be classi�ed by means of two aspects: the edit modality and
the development paradigm. The edit modality is realized by either direct or
view-based editing and describes the way in which a Unified System can be
modi�ed. Direct editing allows the user to directly modify any part of the
system, while view-based editing only allows modi�cations to the system
through views [22]. The development paradigm is realized by either product-
oriented or platform-oriented development and describes the way in which
a Unified System is developed. In platform-oriented development, the user
needs to be aware of the entire platform when evolving the system. Contrary,
in product-oriented development, the user evolves the system based on a
single Product without considering the entire platform. While the former
represents traditional SPLE, the latter is closer to clone-and-own [73, 198].

6.2.2. Predicates

Predicates are used in pre and post-conditions that evaluate to true or to
false. Table 6.2 presents a categorization of the four identi�ed predicates.
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Table 6.2.:Categorization of predicates [6, Tab. 2].
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Well-formed Product — — — — —    — —
Valid Expression

1 — — — — — — — — — —
Predicate is either evaluated  or not —. 1Required for uni�ed operations.

The predicate Complete Con�guration is supported by all tools except for VTS
and ECCO. It checks whether all Options employed by a tool (e.g., Features
in FeatureIDE or Features and Feature Revisions in DeltaEcore) are bound
in a Configuration. The predicate Valid Con�guration is supported by the
same tools and checks whether a Configuration violates any Constraints.
The predicate Well-formed Product is supported by SuperMod, DarwinSPL and
DeltaEcore. It checks whether a set of Fragments satis�es a given set of rules
that specify the well-formedness of certain types of Fragments. For instance,
the syntactical validity of Java source code or the conformance between a
model andmetamodel. The predicateValid Expression checks if a propositional
expression over Feature Options contradicts any Constraints. Note that
this predicate is not employed by any tool, but was de�ned retroactively as it
is required for the uni�ed operations, as explained later.

6.2.3. Direct Editing Operations

Table 6.3 presents a categorization of the 21 identi�ed direct editing operations.
For every concept contained in a Unified System, there is an add, an update,
and a delete operation. Since these operations could be found only in tools that
employ platform-oriented development (i.e., FeatureIDE, VTS, SiPL, DarwinSPL
and DeltaEcore), all direct editing operations are classi�ed as platform-oriented.
Tools that only deal with variability in space (i.e., FeatureIDE, VTS, SiPL) allow
the user to add, update, and delete instances of their concepts for variability
in space. Tools that only deal with variability in time (i.e., SVN, Git) do not
support direct editing at all. Tools that deal with both variability dimensions
support direct editing in varying degrees: SuperMod, ECCO, and VaVe do not al-
low direct editing at all. DarwinSPL allows to directly modify only concepts for
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Table 6.3.:Categorization of direct editing operations [6, Tab. 3].
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Mapping A, U, D
Fragment A, U, D

A — —
Feature U, D — —

Feature Revision A, U, D — — — — — — —
System Revision A, U, D — — — — — —

A — — — —
Constraint U, D — — — —

Con�guration A, U, D — — — —
Direct editing supported , not supported , or concept does not exist —.

1Mapping is part of fragment. 2Fragment is part of mapping.

variability in space and only permits to directly add a Feature and Constraint
but not to update or delete it in order to guarantee a reproducible past. Finally,
DeltaEcore, as the only tool, permits the direct editing of concepts of both
dimensions. Note that direct editing operations can be considered atomic
operations without complex behavior and thus do not need uni�cation.

6.2.4. View-Based Operations

Table 6.4 presents a categorization of seven view-based operations (one op-
eration per category) that are classi�ed according to the supported develop-
ment paradigms. While Externalize operations create an editable view of the
Unified System, Internalize operations are performed on a view and modify
the Unified System. Note that names common for operations in SPLE and
SCM (e.g., derivation or checkout) were intentionally not used, but instead the
terminology proposed in a recent survey of VarCS [141] (see De�nition 2.2).
In contrast to direct editing operations, view-based operations o�er a higher
degree of automation by essentially executing prede�ned sequences of direct-
editing operations to ensure the system’s integrity. For instance, adding
a Feature leads to the automated creation of a new Mapping and System

Revision. View-based operations are used in tools that employ platform-
oriented development, product-oriented development, or both. The operation
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Externalize Domain derives a set of Feature Options and Constraints from
the Unified System. It is supported by SuperMod and DarwinSPL for retriev-
ing a feature model. A changed domain can be integrated into the system
via Internalize Domain, which is only supported via commit in SuperMod.
Both operations are part of platform-oriented development. The operation
Externalize Product retrieves a Product from the Unified System and is the
only operation supported across all tools. A modi�ed Product can be in-
tegrated either via the product-oriented operation Internalize Product (e.g.,
commit in Git or ECCO), or the platform-oriented operation Internalize Changes
(e.g., commit in SuperMod, that additionally requires an ambition which maps
Features and changed Fragments). The operations Externalize Uni�ed System
and Internalize Uni�ed System are employed by Git and ECCO and support
distributed development. While the �rst operation creates a new instance of
a Unified System (e.g., clone in Git or ECCO), the second operation integrates
another instance of a Unified System (e.g, pull/push in Git or ECCO). Both
operations are part of both development paradigms.
Note that the branch and merge operations of the tool Git are not in scope, as
they do not satisfy the scope criteria. The merge operation only modi�es the
Product (i.e., working copy in Git) and not the Unified System (i.e., reposi-
tory in Git), as it does not create a merge point in a revision graph. Instead, the
commit operation, that follows a merge operation, creates the actual merge
point in a revision graph. The branch operation neither modi�es the Product
nor the Unified System, as it only assigns a label to a commit and does not
create a branch point in a revision graph. Instead, again the following commit
operation creates the actual branch point.

For each of the seven view-based operations, there is at least one tool that
supports it. One view-based operation (Externalize Product) is supported by all
tools. None of the tools support all view-based operations or implements any
view-based operation for both System Revisions and Feature Revisions.
Furthermore, some tools provide a single operation to address multiple con-
cerns. For instance, in VTS, the operation get can be used to derive a Product
or a product line depending on whether the provided Configuration is com-
plete or partial. Following the design principle of separation of concerns (i.e.,
one operation per concern), the individual tool operations were factorized
based on their concerns.
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Table 6.4.:Categorization of view-based operations [6, Tab. 4].
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6.3. Unification of Operations

This section presents the uni�ed predicates and operations for managing vari-
ability in space and time. The main commonalities and di�erences among the
tools are discussed and main insights and design decisions of the uni�cation
explained (Step 4 in Figure 6.1).

6.3.1. Predicates

Predicates are Boolean properties of concepts. They can be used on their own
or in pre and post-conditions of operations. Figure 6.3 provides de�nitions
of the uni�ed predicates.

Predicate: Complete Con�guration. Evaluates for a given Configuration,
whether all Options (i.e., Features, Feature Revisions, System Revisions)
of a Unified System are bound. The de�nition of a Complete (or full) Con-
�guration di�ers based on whether the tool supports variability in space,
variability in time, or both. While the semantics of a complete con�guration
are well understood for variability in space and uniformly used in SPLE, the
semantics of completeness of a con�guration over time (including System

Revisions or Feature Revisions) is not obvious. A con�guration that is not
complete is also referred to as a partial con�guration.

Comparison: All tools evaluate the completeness of a Configuration except
for VTS and ECCO, which simply assume any not explicitly selected Feature or
Feature Revision as deselected. In tools coping with variability in space (i.e.,
FeatureIDE, SiPL), a con�guration is complete if it either selects or deselects ev-
ery Feature in a Unified System. In tools coping with variability in time (i.e,
SVN, Git), a Configuration (a revision number or a commit hash) is complete
if it selects exactly one System Revision. In tools coping with both variability
dimensions via Feature Revisions (i.e., DeltaEcore, ECCO, VaVe), a con�gura-
tion is complete if it either selects or deselects every Feature and, for every
selected Feature, it selects exactly one Feature Revision. ECCO is an excep-
tion in this regard, as it allows a complete con�guration to select multiple
Feature Revisions for every selected Feature for merging. In tools coping
with both variability dimensions via System Revisions and Features (i.e., Su-
perMod, DarwinSPL), a con�guration is complete if it selects exactly one System
Revision and all of its enabled Features are either selected or deselected.
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Predicate: Complete Con�guration

Input: Unified System 𝑈𝑆 , Configuration 𝑐

Con�guration 𝑐 is complete, if and only if it selects one system revision 𝑠𝑟 ,
either selects or deselects every feature 𝑓𝑠𝑟 enabled by 𝑠𝑟 , and selects at least
one feature revision 𝑓 𝑟 𝑓𝑠𝑟 enabled by 𝑠𝑟 for each selected feature 𝑓𝑠𝑟 .

complete

Predicate: Valid Con�guration

Input: Unified System 𝑈𝑆 , Configuration 𝑐

Con�guration 𝑐 is valid, if and only if all features in 𝑐 exist in 𝑈𝑆 and are
either selected 𝑓 ∈ 𝑐 or deselected ¬𝑓 ∈ 𝑐 and never both, for any deselected
feature ¬𝑓 ∈ 𝑐 no feature revision 𝑓 𝑟 𝑓 is selected in 𝑐 , if 𝑐 selects a system
revision 𝑠𝑟 in 𝑈𝑆 , then
• all selected features 𝑓 ∈ 𝑐 and feature revisions 𝑓 𝑟 𝑓 ∈ 𝑐 are enabled by 𝑠𝑟 ,
and

• for no constraint 𝑐𝑡𝑠𝑟 enabled by 𝑠𝑟 , expression 𝑐∧𝑐𝑡𝑠𝑟 is unsatis�able.

valid

Predicate: Valid Expression

Input: Unified System 𝑈𝑆 , System Revision 𝑠𝑟 , Expression 𝑒

An arbitrary propositional expression 𝑒 over feature options is valid for a
given system revision 𝑠𝑟 , if and only if there is no constraint 𝑐𝑡𝑠𝑟 enabled by
𝑠𝑟 where 𝑒 ∧ 𝑐𝑡𝑠𝑟 is unsatis�able.

validExpr

Predicate: Well-Formed Product

Input: Product 𝑝

Product 𝑝 is well-formed, if and only if no fragment 𝑓 𝑡 ∈ 𝐹𝑇𝑝 references a
fragment 𝑓 𝑡 ′ ∉ 𝐹𝑇𝑝 , where 𝐹𝑇𝑝 denotes the fragments from which 𝑝 was con-
structed.

wellformed

Figure 6.3.:Overview of the predicates [6, Fig. 3].

Uni�cation: The semantics of a complete Configuration in either space, time,
or both do not contradict each other and can be uni�ed straightforward as
presented in Figure 6.3. Note that the condition of selecting exactly one
Revision per Feature to at least one Revision is relaxed to allow merging of
Feature Revisions.
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Predicate: Valid Con�guration. Evaluates whether a Configuration con-
tradicts any Constraints in a Unified System. A Valid Con�guration neither
contradicts any explicitly speci�ed Constraints (e.g., via a variability model)
nor any implicit Constraints (e.g., di�erent System Revision exclude each
other). Analogously to a Complete Con�guration, the semantics of a Valid
Con�guration are well-understood for variability in space in the area of SPLE,
but not so obvious with variability in time.

Comparison: Except for VTS and ECCO, which do not employ Constraints, all
considered tools evaluate the validity of a Configuration. In the analyzed
tools coping with variability in time, a Configuration is valid if the Unified
System contains the selected System Revision. In tools coping with variabil-
ity in space or with both variability dimensions via Feature Revisions, a
Configuration is valid if it does not contradict any of the Constraints in
the Unified System. In tools coping with both variability dimensions via
Features and System Revisions, a Configuration is valid with respect to a
selected System Revision, if all selected Features are enabled, and none of
the enabled Constraints are contradicted.

Uni�cation: The above de�nitions of a Valid Con�guration align well and
can be combined in a uni�ed de�nition considering variability in space and
time via Features, Feature Revisions, and System Revisions, as presented
in Figure 6.3. Note that the uni�ed de�nition of a Valid Con�guration can be
applied to complete or to partial Configurations.

Predicate: Valid Expression. Evaluateswhether an expression over Feature
Options in a Unified System contradicts any Constraints. A Valid Expres-
sion generalizes the Valid Con�guration predicate from a Configuration (i.e.,
conjunction of Options) to arbitrary expressions over Feature Options.

Comparison and Uni�cation: This predicate is not used by any of the analyzed
tools, but is required for the uni�ed operation iC. Figure 6.3 presents the
de�nition of the Valid Expression predicate.

Predicate: Well-Formed Product. Evaluates whether the implementation
of a Product (i.e., a set of Fragments) is well-formed based on a set of rules
that are speci�c to the Fragments. For instance, this involves the validation
of OCL constraints, the conformance of a UML model with the corresponding
metamodel or the syntactic validity of Java code.
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Comparison: SuperMod, DarwinSPL, and DeltaEcore perform well-formedness
checks of Products, such as checking the conformance of a model to its
corresponding metamodel.

Uni�cation: For the uni�cation, well-formedness is de�ned generically (i.e.,
without considering speci�cs of certain types of Fragments) and on the level
of abstraction of the uni�ed conceptual model, where the only available
information in this regard is the set of Fragments and how they reference
each other. Figure 6.3 shows the uni�ed de�nition of theWell-Formed Product
predicate.

6.3.2. Operations

Figure 6.4 depicts possible execution sequences of the uni�ed view-based op-
erations in the form of a UML state chart diagram. States represent currently
available concept instances. Transitions represent operation executions on the
instances. Operations are highlighted based on the supported development
paradigm: Operations for product-oriented development are highlighted in
orange, while operations for platform-oriented development are highlighted
in yellow. Finally, operations are highlighted that are used in both paradigms
in blue. A remote Unified System can be used to externalize a local instance
of a Unified System via 𝑒𝑈𝑆 . To modify the domain of the variable system,
Feature Options (i.e., Features and Feature Revisions) and Constraints

must �rst be obtained via 𝑒𝐷 , which provides a clean (i.e., unmodi�ed) view
on the domain. While the view remains clean, the 𝑒𝐷 operation can be used
to switch to a view on the domain at another point in time. Once the view
has been modi�ed (e.g., by adding a new optional Feature) it is marked as
dirty (i.e., modi�ed). Changes to the domain view are integrated back into
the local Unified System via 𝑖𝐷 . Analogously, to modify the implementation
of the local Unified System, a Product is �rst externalized via 𝑒𝑃 . Again, 𝑒𝑃
can be repeatedly performed to switch between di�erent Products as long as
it remains unmodi�ed (i.e., clean). Editing a Product marks it as dirty. There
are two options for integrating a changed Product into the local Unified
System. In product-oriented development, 𝑖𝑃 can be used to internalize an
entire Product, and in platform-oriented development, 𝑖𝐶 can be used to
internalize the changes performed in a Product. In contrast to 𝑖𝑃 , 𝑖𝐶 requires
an expression provided by the user to integrate changes in a �ne-grained
manner, leading again to a clean product. Note that an 𝑖𝐶 operation must
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Figure 6.4.: Execution sequences of uni�ed operations [6, Fig. 4].

Operation: Externalize Domain

Input: Unified System 𝑈𝑆 , System Revisions 𝑆𝑅
Output: Feature Options 𝐹𝑂 , Constraints 𝐶𝑇

Returns the sets of feature options 𝐹𝑂 =
⋃

𝑠𝑟∈𝑆𝑅 𝐹𝑂𝑠𝑟 and constraints
𝐶𝑇 =

⋃
𝑠𝑟∈𝑆𝑅 𝐶𝑇𝑠𝑟 , where 𝐹𝑂𝑠𝑟 and 𝐶𝑇𝑠𝑟 are the feature options and con-

straints enabled by the system revision 𝑠𝑟 ∈ 𝑆𝑅 in the uni�ed system 𝑈𝑆 .

eD

Figure 6.5.:De�nition of Externalize Domain operation [6, Fig. 5].

be performed once per feature or feature interaction. Consequently, the edit
and 𝑖𝐶 cycle can be performed repeatably as long as changes a�ect the same
Product. Finally, either the entire local Unified System or parts of it (e.g., a
new Feature) can be integrated into the remote Unified System via 𝑖𝑈𝑆 .

In the following, each operation is discussed.

Operation: Externalize Domain (𝑒𝐷). This platform-oriented operation
creates a view on the domain of a Unified System, for instance, in the
form of a variability model. The view comprises the Feature Options and
Constraints of the Unified System that are visible at one or more speci�ed
points in time, i.e., that are enabled by at least one of potentially multiple
given System Revisions. The operation can be used to edit the domain,
merge domains at di�erent points in time or to create con�gurations.

Comparison: This operation is supported by SuperMod, where it is part of the
checkout operation, and by DarwinSPL via its operation getCopyOfValidModel.
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Operation: Internalize Domain

Input: Unified System 𝑈𝑆 , System Revisions 𝑆𝑅,
Feature Options 𝐹𝑂 , Constraints 𝐶𝑇

Integrates the sets of feature options 𝐹𝑂 and constraints 𝐶𝑇 into the uni�ed
system 𝑈𝑆 . Creates a new system revision 𝑠𝑟 ′ that is added as successor
of each system revision 𝑠𝑟 ∈ 𝑆𝑅, creating a merge point at 𝑠𝑟 ′ if |𝑆𝑅 | > 1,
and a branch point at 𝑠𝑟 if 𝑠𝑟 has a successor. All feature options 𝐹𝑂 and
constraints 𝐶𝑇 are enabled by 𝑠𝑟 ′. Creates new mappings 𝑚𝑠𝑟 ′ = 𝑚𝑠𝑟 for all
mappings 𝑚𝑠𝑟 in 𝑈𝑆 with 𝑠𝑟 ∈𝑆𝑅.

iD

Figure 6.6.:De�nition of Internalize Domain operation [6, Fig. 5].

Both tools equally consider both variability dimensions via Features and
System Revisions and behave coinciding.

Uni�cation: Consequently, the uni�cation of 𝑒𝐷 is the behavior of the tools
as de�ned in Figure 6.5. Note that in the uni�cation, the produced domain
view also comprises Feature Revisions in addition to Features. Moreover,
multiple System Revisions can be speci�ed as input in order to be able
to merge domain views and create merge points in the System Revision

graph.

Operation: Internalize Domain (𝑖𝐷). This platform-oriented operation
integrates edits on a domain view (created via 𝑒𝐷) into the Unified System.

Comparison: This operation is supported by SuperMod via its commit opera-
tion. Although DarwinSPL supports the generation of domain views, it does
not o�er this view-based operation for internalizing a changed domain view.
Instead, DarwinSPL o�ers direct editing operations for the domain where
the user must specify the enabling System Revision for every Feature and
Constraint manually.

Uni�cation: For the uni�cation, the behavior is extended to consider Feature
Revisions by generalizing from Features to Feature Options (that also in-
clude Feature Revisions), as de�ned in Figure 6.6. However, the user is in-
tentionally not allowed to add new Feature Revisions to a domain view, only
new Features. Thus, Constraintsmay only be formulated using Features or
the Feature Revisions that are visible in the externalized domain view. Fur-
thermore, the behavior is extended to support distributed development: The
𝑖𝐷 operation creates a new System Revision 𝑠𝑟 ′ that becomes the successor

77
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Operation: Externalize Product

Input: Unified System 𝑈𝑆 , Configuration 𝑐
Pre-condition: valid(𝑈𝑆, 𝑐) ∧ complete(US,c)
Output: Product 𝑝
Post-condition: wellformed(𝑝)

Creates a well-formed product 𝑝 from a complete and valid con�guration
𝑐 . Selects all mappings 𝑀 ′ = {𝑚′ ∈ 𝑀 | 𝑐 ⇒ 𝑚′} from the mappings 𝑀 in
the uni�ed system 𝑈𝑆 implied by 𝑐 and collects their fragments 𝐹𝑇𝑚′ into
𝐹𝑇𝑝 =

⋃
𝑚′∈𝑀′ 𝐹𝑇𝑚′ to create the product 𝑝 .

eP

Figure 6.7.:De�nition of Externalize Product operation [6, Fig. 5].

of all System Revisions speci�ed for 𝑒𝐷 . If a System Revision 𝑠𝑟 was spec-
i�ed for 𝑒𝐷 that already has a successor, adding the new System Revision

𝑠𝑟 ′ as another successor makes 𝑠𝑟 a branch point in the revision graph. If
multiple System Revisions were speci�ed for 𝑒𝐷 , 𝑠𝑟 ′ becomes successor to
all of them and thus a merge point in the revision graph.

Operation: Externalize Product (𝑒𝑃). This operation creates a Product

that consists of Fragments contained in the Unified System. A Product is
externalized based on a complete and valid Configuration. The operation
𝑒𝑃 is part of both development paradigms.

Comparison: This operation is supported by all of the studied tools. Fur-
thermore, its behavior is essentially the same across all tools. All Mappings
of the Unified System are evaluated and, in case their expression is satis-
�ed by the Configuration, selected. Based on the selected Mappings, the
respective Fragments are used to generate the Product. The individual tool
operations di�er with respect to the Options that are used in Configurations

and Mappings, as the available Options depend on the supported variabil-
ity dimensions. Except for SVN, Git, ECCO and VTS, which do not include
Constraints, all considered tools evaluate the completeness and validity of a
Configuration as a pre-condition. Tools coping with variability in space often
refer to this operation as product derivation. In tools coping with variability
in time, it is referred to as checkout. In SVN or Git, that support product-
oriented development and solely the time dimension, only previously inter-
nalized Products can be externalized, as Options are realized only by System

Revisions, of which only one (or multiple for merging) can be speci�ed in a
valid con�guration. This is referred to as extensional versioning [48]). Tools
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Operation: Internalize Product

Input: Unified System 𝑈𝑆 , Product 𝑝
Pre-condition: wellformed(𝑝) ∧ valid(𝑈𝑆, 𝑐𝑝 )

Updates the uni�ed system 𝑈𝑆 to additionally cover product 𝑝 . Creates a new
system revision 𝑠𝑟 ′ and adds it as successor of the system revision in 𝑐𝑝 . Cre-
ates a new feature revision 𝑓 𝑟 ′

𝑓
for every feature 𝑓 in con�guration 𝑐𝑝 that

is either new (and added to 𝑈𝑆) or was changed in product 𝑝 . Adds 𝑓 𝑟 ′
𝑓
as

successor to every feature revision 𝑓 𝑟 𝑓 of 𝑓 selected in 𝑐𝑝 , creating a merge
point if multiple were selected, and a branch point if 𝑓 𝑟 𝑓 has a successor.
Enables all new and all unchanged features and feature revisions appearing
in the con�guration 𝑐𝑝 . Adds all fragments 𝐹𝑇𝑝 of product 𝑝 to 𝑈𝑆 and adds
new mappings from 𝑠𝑟 ′ to each fragment 𝑓 𝑡 ∈𝐹𝑇𝑝 .

iP

Figure 6.8.:De�nition of Internalize Product operation [6, Fig. 5].

that support platform-oriented development and variability in space (e.g., via
direct editing in FeatureIDE or the iC operation such as the commit operation
in SuperMod), can also externalize Products with Configurations that have
not previously been internalized, as Options are at least realized by Features,
of which multiple can be combined in valid and complete Configurations.
This is referred to as intensional versioning [48]). An exception is ECCO, which
neither supports direct editing nor the iC operation, but still supports inten-
sional versioning. ECCO performs feature location [160] to compute Mappings
and locate relevant Fragments from previously internalized Products when
externalizing a Product.

Uni�cation: Figure 6.7 shows the de�nition of the uni�ed operation 𝑒𝑃 . The
feature location technique of ECCO does not con�ict with the behavior of the
other tools, and can therefore be optionally included in the eP operation. This
would enable intensional versioning for product-oriented development.

Operation: Internalize Product (𝑖𝑃). This product-oriented operation
supports a development process similar to clone-and-own for integrating
a Product into the Unified System. Speci�cally, edits are performed on an
externalized Product.

Comparison: This operation is realized by all tools that support product-
oriented development, i.e., SVN, Git, and ECCO. As common behavior among
the tools, a new System Revision 𝑠𝑟 ′ is created and mapped to the Fragments
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of the internalized Product. Among the three tools, ECCO supports both
variability dimensions via Features and Feature Revisions, which extends
its behavior compared to Git and SVN. To indicate the modi�ed Features

for which a new Feature Revision must be created, they must be manually
marked in a Product’s Configuration.

Uni�cation: The uni�ed operation combines the tool behaviors in a fairly
straightforward manner, as de�ned in Figure 6.8. In all cases, a new System

Revision is created and mapped to all Fragments of the Product. The expres-
sion in the Mapping is automatically set to 𝑡𝑟𝑢𝑒 . Additionally, the new System

Revision enables all Feature Options that were selected in the Configuration
of the internalized Product. Consequently, 𝑖𝑃 explicitly tracks the Feature
Revisions. This is not the case in SVN and Git, where Feature Options are
not tracked. Therefore, in practice, other methods are often used in con-
junction, such as the use of a preprocessor to mark Features, the manual
documentation of modi�ed Features in the commit message, or approaches
for retroactively mining variability information. Furthermore, 𝑖𝑃 can cre-
ate branch and merge points in revision graphs. If the Configuration of an
externalized Product contains multiple Revision of a Feature for which a
new Feature Revision was created, the new Feature Revision becomes a
successor to all of them and thus a merge point in its revision graph. In case
the System Revision or a Feature Revision of a modi�ed Feature in the
Product’s Configuration already have a successor, these Revisions receive
yet another successor and thus become branch points in their respective
revision graphs.

Operation: Internalize Changes (𝑖𝐶). This platform-oriented operation
integrates changes applied to an externalized Product back into the Unified
System based on an expression over Feature Options that a user provides
manually to indicate what Feature Options should be a�ected by the changes.
In practice, this operation is performed in place, i.e., the current instance of the
Unified System is updated instead of creating a new instance. Its behavior
is closer to SPLE (i.e., support for modifying the product-line platform based
on individual features) than it is to clone-and-own (see 𝑖𝑃 ).

Comparison: This operation is supported by the tools SuperMod, VTS, and
VaVe that each require the user to provide an expression over Features that
is referred to as ambition by SuperMod and VTS. The expression can be a par-
tial Configuration (i.e., a conjunction of selected and deselected Features)
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Operation: Internalize Changes

Input: Unified System 𝑈𝑆 , Product 𝑝
Expression 𝑒 over Feature Options 𝐹𝑂

Pre-condition: validExpr(𝑈𝑆, 𝑠𝑟𝑐𝑝 , 𝑒) ∧ (𝑐𝑝 ⇒ 𝑒) ∧wellformed(𝑝)

Integrates changes made to a product 𝑝 (with a complete and valid con�gu-
ration 𝑐𝑝 ) into the uni�ed system 𝑈𝑆 . Determines the set of fragments that
were added 𝐹𝑇 +, remained unchanged 𝐹𝑇𝑜 and were removed 𝐹𝑇− from
product 𝑝 . Creates a new system revision 𝑠𝑟 ′. Creates new feature revision
𝑓 𝑟 ′

𝑓
enabled by 𝑠𝑟 ′ for each positive feature 𝑓 appearing in expression 𝑒 .

Adds 𝑠𝑟 ′ as successor to the system revision 𝑠𝑟 in 𝑐𝑝 , such that it enables the
same features and feature revisions as 𝑠𝑟 (except those succeeded by any of
the new feature revisions). Adds each new feature revision 𝑓 𝑟 ′

𝑓
as successor

to every feature revision 𝑓 𝑟 𝑓 of 𝑓 selected in 𝑐𝑝 , creating a merge point if
multiple were selected, and a branch point if 𝑓 𝑟 𝑓 has a successor. Creates
new mappings 𝑚′

𝑠𝑟 ′,𝑓 𝑡
for every fragment 𝑓 𝑡 based on its mapping 𝑚𝑠𝑟,𝑓 𝑡

in the previous system revision 𝑠𝑟 , such that 𝑚′
𝑠𝑟 ′,𝑓 𝑡+

= 𝑚𝑠𝑟,𝑓 𝑡+ ∨ 𝑒 , for each
𝑓 𝑡+ ∈𝐹𝑇 +; 𝑚′

𝑠𝑟 ′,𝑓 𝑡𝑜
=𝑚𝑠𝑟,𝑓 𝑡𝑜 , for each 𝑓 𝑡𝑜 ∈𝐹𝑇𝑜 ; and 𝑚′

𝑠𝑟 ′,𝑓 𝑡−
=𝑚𝑠𝑟,𝑓 𝑡−∧¬𝑒 , for

each 𝑓 𝑡− ∈𝐹𝑇−.

iC

Figure 6.9.:De�nition of Internalize Changes operation [6, Fig. 5].

like in SuperMod, an arbitrary expression over Features like in VTS, or con-
sist of a single Feature like in VaVe. SuperMod and VaVe employ the Valid
Con�guration predicate to ensure that the expression does not violate any
Constraints. In VTS, the validity of the expression is not evaluated as it does
not support Constraints. Another interesting case related to pre-conditions
is the relation between the con�guration of the provided product 𝑝 and the
provided expression 𝑒 . While in VTS, the expression 𝑒 given to 𝑖𝐶 must imply
the Configuration 𝑐𝑝 of Product 𝑝 (𝑒 ⇒ 𝑐𝑝 ), this is exactly the opposite in
SuperMod (𝑐𝑝 ⇒ 𝑒). The rationale for the latter is that changes applied to
a Product must be visible at least in the Configuration of the Product on
which they were performed. This ensures that, for example, users cannot
specify an expression such that changes performed in a Product would a�ect
a Feature that is not even part of that Product. In VTS, the rationale of the
pre-condition is that changes must not a�ect Configurations other than the
one of the Product on which the changes were performed, thus following
consistency principles derived from the lens laws [76]. This condition is only
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sensible if the view is not a Product based on a complete Configuration (as
is the case for this operation), but a view on a partial Configuration.

Uni�cation: Figure 6.9 shows the de�nition of the uni�ed operation 𝑖𝐶 . Since
𝑒𝑃 is de�ned such that a view is a Product based on a complete Configuration
(and not a subset Unified System), the pre-condition of VTS can be reduced
to 𝑒 ⇔ 𝑐 . This strongly limits the e�ect of an edit, as it could only a�ect
the exact view (i.e., Product) in which it was performed. Therefore, this
pre-condition is excluded from the uni�cation of this operation. The pre-
condition of SuperMod (𝑐𝑝 ⇒ 𝑒) is used in the uni�cation as is. Finally, to be
able to combine the pre-condition of SuperMod and VaVe (where the expres-
sion is a partial Configuration that must not violate any Constraints) with
the behavior of VTS (where the expression can be of arbitrary form), the new
Valid Expression predicate is used. Note that the expression is extended from
being formulated only on Features to Feature Options to let the user decide
whether or not new Feature Revisions shall be created when performing 𝑖𝐶 .
In case no Feature Revision of a Feature appearing in the expression is pro-
vided, a new Feature Revision is created for that Feature. In case the user
provides the same Feature Revision as is selected in the con�guration of the
externalized Product, no new Feature Revision is created for the respective
Feature. Other feature revisions cannot be speci�ed in the expression. This
addresses interesting corner cases, such as the creation of a new Feature

Revision only for one of the Features of a feature interaction. Beyond that,
the intention and behavior is essentially the same across the three tools. Each
tool �rst computes the Fragments 𝐹𝑇 + that were added, the Fragments 𝐹𝑇𝑜

that remained unchanged, and the Fragments 𝐹𝑇 − that were removed from
the Product. Then, the Mappings for the added, unmodi�ed and removed
Fragments 𝐹𝑇 +, 𝐹𝑇𝑜 and 𝐹𝑇 − are computed by SuperMod, VTS and VaVe. Anal-
ogously to 𝑖𝑃 , a new Feature Revision becomes a merge point in its revision
graph if more than one Feature Revision of the same Feature were selected
in the Configuration of the externalized Product, as it becomes the successor
to all of them. A Feature Revision in the Product’s Configuration becomes
a branch point if it already has a successor when receiving a new Feature

Revision as successor. A System Revision in the Product’s Configuration
becomes a branch point if it already has a successor.

Operation: Externalize Uni�ed System (𝑒𝑈𝑆). This operation derives a
Unified System𝑈𝑆 ′ that is a subset of the original Unified System𝑈𝑆 . The
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Operation: Externalize Uni�ed System

Input: Unified System 𝑈𝑆 , Configuration 𝑐
Pre-condition: valid(𝑈𝑆, 𝑐)
Output: Unified System 𝑈𝑆 ′

Creates a new uni�ed system 𝑈𝑆 ′ from the existing uni�ed system 𝑈𝑆 and
the (partial) valid con�guration 𝑐 by selecting only those features, mappings,
fragments, and revisions (including their predecessors) that are not contra-
dicted by 𝑐 .

eUS

Figure 6.10.:De�nition of Externalize Uni�ed System operation [6, Fig. 5].

derived Unified System 𝑈𝑆 ′ is a full clone of the Unified System 𝑈𝑆 if the
given Configuration 𝑐 is empty, and a partial clone otherwise.

Comparison: This operation is supported by FeatureIDE, VTS, Git, and ECCO.
The behavior of tools dealing with variability in space (FeatureIDE, VTS, ECCO)
coincides: Feature Options that are neither selected nor deselected in the
partial con�guration (and, thus, have no value assigned) remain variable and
are essentially copied to the new Unified System. Selected Feature Options

are retained and set to true, so all Mappings and corresponding Fragments

where the Feature Option appears negated are not retained, and the pos-
itive Features and Feature Revisions are substituted by true in Mapping

expressions and Constraints. Deselected Feature Options are removed and
replaced by false in expressions of Mappings and Constraints, together with
all elements (Fragments or Mappings) that require the Feature to be selected.
Mappings (including the corresponding Fragments) whose expression cannot
be satis�ed anymore (i.e., contradicts con�guration 𝑐) are removed. As the
only tool for variability in time that supports 𝑒𝑈𝑆 , Git applies additional
behavior regarding ancestors of Revisions selected in the Configuration. It
creates a full clone of a Unified System if no System Revision is selected,
and a partial clone otherwise, by only keeping selected System Revisions

along with their ancestors.

Uni�cation: Figure 6.10 shows the de�nition of the uni�ed operation 𝑒𝑈𝑆 .
All tools exhibit essentially the same behavior when it comes to Features,
Mappings and Fragments. While only FeatureIDE supports Constraints, its be-
havior is consistent with the desired semantics of this operation (i.e., to obtain
a subset of a Unified System by �ltering unneeded Options based on a partial
Configuration) and can thus also be transferred directly to the uni�cation.
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Operation: Internalize Uni�ed System

Input: Unified System 𝑈𝑆 , Unified System 𝑈𝑆 ′

Integrates another uni�ed system 𝑈𝑆 ′ into an existing uni�ed system 𝑈𝑆

by merging their fragments, mappings, features, constraints, and revisions
(including their relations) creating their union.

iUS

Figure 6.11.:De�nition of Internalize Uni�ed System operation [6, Fig. 5].

Unifying the tools’ behavior of dealing with Feature Revisions (ECCO) and
System Revisions (Git) is less straightforward, as it is not yet supported by
any of the existing tools. Speci�cally, when it comes to variability in time, Git
exhibits behavior regarding the ancestors of selected System Revisions that
is not present in how ECCO copes with Feature Revisions. However, there is
also no contradicting behavior. Consequently, the behavior of Git is applied to
Feature Revisions and System Revisions of the uni�ed de�nition, i.e., only
the selected System Revisions and Feature Revisions and their ancestors
are retained during this operation. Consequently, this uni�cation provides
additional semantics for uniformly dealing with variability in space and time
beyond the behavior of the analyzed tools.

Operation: Internalize Uni�ed System (𝑖𝑈𝑆). This operation combines
two Unified Systems by essentially merging their contents and creating their
union. In practice, this operation is performed in place. It updates a Unified
System𝑈𝑆 by integrating the contents of another Unified System𝑈𝑆 ′.

Comparison: This operation is supported by Git and ECCO (i.e., pull/push), and
VTS (i.e., put given a partial Configuration). While Git merges the System

Revisions, ECCO behaves analogously by merging the Features and Feature

Revisions. In both cases, each respective revision graph ismerged bymerging
the predecessors and successors of each individual Revision. Additionally,
both tools merge Fragments and Mappings. VTS supports this operation via its
put operation given an empty (or true) expression as parameter if it follows
a get operation with a partial Configuration. Since VTS does not support
variability in time and thus has no Revisions, its put operation essentially
replaces the contents of the Unified System 𝑈𝑆 with the contents of the
Unified System𝑈𝑆 ′.

Uni�cation: The uni�cation of this operation is described in Figure 6.11 and
considers an aspect from each of the three tools: System Revisions from Git,
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Features from VTS and ECCO, and Feature Revisions from ECCO; and applies
the underlying intention to each dimension, namely to combine two Unified

Systems in a single Unified System. Speci�cally, the Fragments, Features,
Revisions (including predecessors, successors, and enables relations), and
Mappings are combined into a single Unified System.

6.4. Expected Benefits

So far, the uni�ed operations, their uni�cation process as well as main design
decisions have been described. This section comprises a discussion of the
expected bene�ts of the uni�ed operations.

Likewise to the expected bene�ts of the uni�ed conceptual model (see Sec-
tion 5.3), the uni�ed operations can be used in a descriptive manner. By
systematically building on the functionality of contemporary and diverse
tools from both the SPLE and SCM research area, they extend the common
foundation for uni�ed management of variability in space, broadening the
body of knowledge and advancing state of the art. Researchers and practi-
tioners can use the operations for understanding and getting an overview of
recent research and practices, and for comparing functionalities of existing
tools. Beyond that, compatibility of tools can be analyzed by means of their
supported operations and expected inputs and provided outputs.

Moreover, the uni�ed operations can be used in a prescriptive manner. A tool
that supports the uni�ed operations could provide bene�ts in several ways:
Since it manages both variability dimensions simultaneously, it liberates from
the necessity of employing and maintaining particular tools for either version
control or product line engineering that need to be compatible while requiring
developers to often switch context. Thus, no heterogeneous tool landscape is
required, which reduces maintenance costs and development time, since data
does not need to be imported and exported between tools, which may also
lead to loss of information. Furthermore, by addressing gaps in state of the art
(such as dealing with variability in space and time while explicitly managing
Feature Revisions and System Revisions simultaneously) and not losing
functionality of the analyzed tools, the uni�ed operations propose novel
ways for uniformly operating on concepts for variability in space and time.
Upon every modi�cation of the Unified System, either of the problem space
(i.e., Features and Constraints) or the solution space (i.e., Fragments), the
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Figure 6.12.:Contribution of Chapter 6 of the thesis.

computation of a new System Revision, Feature Revisions and Mappings

happens in a fully automated manner. While direct editing operations require
signi�cant manual e�ort and are thus error-prone and costly, the high degree
of automation of view-based editing signi�cantly reduces the manual e�ort
and the cognitive complexity of evolving a variable system. Consequently,
uni�ed view-based operations support the conception of novel techniques
with a higher degree of automation compared to direct editing operations.

6.5. Summary

This chapter presented the uni�ed operations (C2). The goal was to specify
the operational management of variability in space and time while consid-
ering Feature Revisions and System Revisions simultaneously, which is
beyond the behavior of the analyzed tools. Inputs and outputs of the uni�ed
operations were de�ned based on the concepts of the uni�ed conceptual
model (see Figure 5.3) to lift the operations to the same level of abstraction.
To identify relevant tool operations, an expert survey was conducted based
on use case questionnaires which were completed by one expert per tool,
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revealing the individual tool operations. Tool operations were considered that
i) deal with variability in space and time, ii) operate on the abstraction level of
the uni�ed conceptual model and, iii) modify the Unified System or produce
non-trivial, mutable output from a Unified System. Operations were catego-
rized based on a clear and self-contained concern to avoid redundancies and
ambiguities, for instance, one operation for externalizing a Product and an-
other operation for externalizing a Unified System. Moreover, the identi�ed
operations were classi�ed according to the edit modality (direct or view-based
editing) and development paradigm (platform or product-oriented develop-
ment). Finally, the uni�ed operations were speci�ed based on inputs, outputs,
and semantics, such that the capabilities of the studied tools are preserved
while extending the uni�ed operations to support both variability dimensions.
The same process was applied to identify and unify predicates that are used
in pre and post-conditions of operations. As result of the identi�cation and
uni�cation process, four predicates, 21 direct editing operations, and seven
view-based operations are provided. None of the tools support all operations
along with all pre and post-conditions for both variability dimensions, which
we consider a gap in current tool support for managing variability in space
and time simultaneously. Consequently, the uni�ed operations provide means
for researchers and practitioners to clarify, communicate and compare their
work based on their common and distinguishing operations. Moreover, the
uni�ed operations provide guidance for the design of novel uni�ed variability
management techniques while liberating from the burden of employing a
heterogeneous tool landscape to deal with both variability dimensions.

Thus, this contribution addresses RQ 1.2. Figure 6.12 shows an overview of
all contributions and highlights the contribution of this chapter in grey.
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7. Variability-Related
Inconsistencies

This chapter builds on a publication at SPLC [3].

This chapter presents a classi�cation of variability-related inconsistencies
that may occur during the evolution of a variable system including causes
and repair options.

The detection and repair of inconsistencies during the evolution of a variable
system is an open research problem that has been addressed by numerous
works in the SPLE community. Various types of inconsistencies can occur
that di�er in their causes, e�ects and possible repair options. Thus, notions of
consistency in SPLE are manifold and vary for the problem space and the solu-
tion space. Developing an understanding of when, why and in which artifacts
inconsistencies occur helps to support the evolution of a variable system in
a consistency-aware manner. To organize the research landscape in this �eld,
a literature survey has been performed, and its results have been generalized
and mapped to a classi�cation schema. Moreover, gaps in the schema have
been �lled while ensuring that there is no overlap among the types of inconsis-
tencies (i.e., they are disjoint). The goal was to obtain a generalized, complete,
and disjoint classi�cation of variability-related inconsistency types.

Referring to problem statement P2, the following research question is asked:

RQ 2.2 What types of inconsistencies can occur in variable systems?

Section 7.1 presents the literature survey. Section 7.2 introduces a classi�ca-
tion of variability-related inconsistency types. In Section 7.3, the identi�ed
types are discussed with respect to their completeness and symmetry. Finally,
Section 7.4 concludes this chapter with the expected bene�ts. The results are
summarized in Section 7.5.

This chapter thus constitutes the contribution C4.
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7. Variability-Related Inconsistencies

1("Software product line engineering" OR "Product line" OR "Variability" OR "

Variant") AND

2("Consistency" OR "Inconsistency" OR "Inconsistent" OR "Well-formedness" OR "

Well-formed" OR "Repair" OR "Fix") AND ("Evolution" OR "Evolved" OR "Co-

evolution")

Listing 7.1: Search string of the literature survey.

7.1. Literature Survey

I followed the methodology proposed by Kitchenham [113] to systematically
search the literature for identifying types of inconsistencies. The literature
survey focused on variability-related inconsistencies, i.e., any inconsistencies
that can occur during the evolution of a variable system and therefore a�ect
artifacts of the problem space or the solution space. Consequently, the main
objective of a publication should be related to providing support for consistent
variability evolution.

After careful consideration, the search string presented in Listing 7.1 was
used in di�erent scienti�c databases to retrieve relevant publications.

The following exclusion criteria was speci�ed and applied while inspecting
the title and abstract of the publications:

1. The publication is not written in English.

2. The publication originates from outside the software engineering area.

3. The year of the publication is before 2000.

4. The publication is not peer-reviewed.

Figure 7.1 shows the results of the literature search process. Step 1 encom-
passed a digital libraries search. Table 7.1 shows the �ndings based on IEEE
Xplore, the ACM Digital Library and SpringerLink. In total, 406 publications
were retrieved from which 25 papers were elicited based on the exclusion
criteria. Step 2 built on a systematic mapping study by Santos et al. [202]
that provides an overview of strategies for consistency checking on SPLs.
Based on this mapping study, snowballing was performed that provided 16
relevant publications until 2015, out of which 9 were already retrieved in
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Figure 7.1.: Results of the literature search process.

Table 7.1.:Overview on the literature survey of scienti�c databases.
Database Results Excluded O�topic Remaining

IEEE Xplore 116 92 15 9
ACM Digital Library 24 10 (+ 2 duplicates) 7 5
SpringerLink 266 143 (+ 7 duplicates) 105 11

Step 1 and thus represented duplicates. Finally, Step 3 involved an in-
spection of the last six instances of conference proceedings known to be key
venues of publication of the SPLE community: the Systems and Software
Product Line Conference (SPLC) and the Variability Modelling of Software-
Intensive Systems (VaMoS) Working Conference, revealing 8 further relevant
publications. Based on a total of 40 elicited publications between the years
2000 and 2021, a classi�cation of variability-related inconsistency is proposed
in the following.

7.2. Types of Inconsistencies

This section describes the identi�ed variability-related inconsistency types
that may occur during evolution of a variable system. Moreover, their causes,
e�ects as well as repair options are discussed.

The results of the literature survey were generalized and mapped onto four
discrete areas in which inconsistencies can be caused or repaired. Figure 7.2
shows these areas and the identi�ed types of inconsistencies. The region
outside the square represents a variable system and the region inside the
square represents a Product. Separated by a dashed line on the left hand side,
a variability model and variable implementation of another variable system
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7. Variability-Related Inconsistencies

indicate distributed development. The upper area outside the square is the
problem space of the variable system, which comprises a variability model, i.e.,
Features and Constraints. The lower area outside the square is the solution
space of the variable system, which comprises the variable implementation,
i.e., Fragments and Mappings. The upper area inside the square is the problem
space of a product, which comprises its Configuration. The lower area inside
the square is the solution space of a product, which comprises its non-variable
implementation, i.e., only Fragments. An inconsistency can be caused or
repaired in any of the four areas. Each type of inconsistency is depicted as an
arrow from cause (left side) to repair (right side). The Inconsistency Types
1 – 6 are either caused or repaired in a Product, Types 7 – 12 are caused or
repaired in the variable system, and Types 13 – 14 occur due to distributed
development across variable systems.

Table 7.2 shows an overview of the 40 publications collected in the literature
survey distinguished between those only considering consistency checking
and those additionally including consistency preservation. A publication is
arranged according to the addressed Inconsistency Type (rows), and whether
it only considers consistency checking (�rst column) or additionally includes
consistency preservation (second column). Note that some publications han-
dle multiple inconsistency types to support round-trip consistency preser-
vation (e.g., Types 2 and 5 or Types 11 and 12).

7.2.1. Product-Level Inconsistencies

Type 1 is caused in the problem space of the system if features are removed
or dependencies are introduced between features by adding constraints to
the variability model, which decreases the con�gurable space (in case of
feature modeling, this is commonly referred to as specialization [236]). This
might invalidate previously valid con�gurations that can be repaired by being
transitioned to a valid con�guration [25, 78, 174, 175]. All contributions
propose semi-automated repair options. Nieke et al. [174, 175] propose an
approach for guiding the evolution of con�gurations. For example, in cases
where features are merged, a con�guration is computed that maintains the
product behavior by automatically transitioning it to a con�guration with the
same set of artifacts based onmappings. Barreiros et al. [25] focus on the repair
of invalid con�gurations based on partioning and analysis of the featuremodel
while identifying the minimal number of changes to feature (de)selection
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Figure 7.2.:Variability-related inconsistency types. Adapted from [3, Fig. 4].

Table 7.2.:Overview of the 40 elicited publications of variability-related inconsistencies distin-
guished between those only considering consistency checking and those additionally including
consistency preservation.

Type Checking Checking & Preservation

1 - [78, 25, 175, 174]
2 [85, 203, 57, 237, 2] [149, 217]
3 - -
4 - -
5 [204, 85, 57, 147, 237, 103, 234, 133] [217, 65]
6 [85, 148, 64] [238, 186, 39]
7 [209] [29, 91, 192, 120, 18, 176, 17, 100, 94]
8 [54] [58, 44]
9 - [58]
10 [132] -
11 [70] [93, 213, 211, 81, 208, 214]
12 - [211, 81]
13 - [177]
14 - [87]
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7. Variability-Related Inconsistencies

from the initial con�guration. Gámez and Fuentes [78] additionally consider
the automated update of con�gurations (by adding or removing features)
based on changes of cardinality-based feature models.

Likewise, Type 2 is caused in the problem space of the system if new fea-
tures are added or dependencies between features are removed by deleting
constraints from the variability model, which increases the con�gurable
space (in case of feature modeling, this is commonly referred to as general-
ization [236]). This can validate previously invalid con�gurations and thus
enable new combinations of features. However, deriving a product based on
such new con�guration might lead to an inconsistent implementation, for
instance, because a new combination of features requires additional imple-
mentation [85, 203, 57, 237, 2, 149, 217]. A repair would require to modify
the implementation of a�ected products, respectively. This type of incon-
sistency cannot be fully automated since manual inspection is required in
case of new feature combinations that may lead to inconsistencies in the
solution space. For instance, if features 𝐹1 and 𝐹2 can be selected in the same
con�guration after changing the variability model, features 𝐹1 may delete
methods required by 𝐹2. Lopez-Herrejon and Egyed [149] propose hints to
support the user in �xing such inconsistencies. The authors combine model-
driven development with feature-oriented modeling and propose a heuristic
based on a feature model analysis to identify the features (and, consequently,
the feature modules) where a �x (i.e., required model elements) should be
placed. Seidl et al. [217] focus on evolution support due to changes of either
the variability model or the non-variable implementation. To this end, the
authors propose remapping operations that perform consistency preserving
updates of mappings between features and implementation artifacts.

In contrast, Type 3 and 4 occur in the problem space of a product if an invalid
con�guration has been selected. For Type 3, a repair requires the transition of
the con�guration to a valid one. In that case, repair options for Inconsistency
Type 1 could be applied. For Type 4, a repair requires the modi�cation of the
variability model, such that the desired con�guration becomes valid. Similar
techniques as for Type 7 could be leveraged to update the variability model
in order to support a desired con�guration.

Type 5 is caused in the solution space of a product if a change is performed in
a product’s implementation. This may a�ect other products, such that their
implementation becomes inconsistent [204, 85, 57, 147, 237, 103, 234, 217, 133,
65]. For instance, if a feature 𝐹1 (that is part of several products) is modi�ed
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7.2. Types of Inconsistencies

in one product 𝑝 to reference an element introduced by another feature 𝐹2
that is part of 𝑝 , but not part of all the other products with feature 𝐹1, this
would lead to an inconsistent implementation for all products with feature 𝐹1
but without feature 𝐹2. A repair would require to invalidate con�gurations of
the now inconsistent products by lifting the dependencies between features
on the solution space to the variability model in the problem space (e.g.,
𝐹1 ⇒ 𝐹2). While most identi�ed publications focus on consistency checks,
Seidl et al. [217] propose consistency preserving updates of mappings between
features and implementation artifacts due to changes either in the solution
space of a product or the variability model (as described above for Type
2). Feichtinger et al. [65] propose an approach that performs a static code
analysis of individual products to determine all dependencies and visualizes
these as links between features in the feature model to guide the developer
in repairing inconsistencies.

Likewise, Type 6 is caused by changing the solution space of a product. While
di�erent artifact types within one product of the variable system describe
partially overlapping information that must be kept consistent [116, 62, 56,
242], products also share partially overlapping information in the form of
features. Thus, if a feature changes in one product, all other products with the
same feature must be changed accordingly [39, 186, 85, 148, 238, 64]. Across
all identi�ed publications in the research area of SPLE, consistency between
heterogeneous artifacts of a particular product is supported by means of con-
sistency checking and error messages without repair options. For instance,
Vierhäuser et al. [238] propose an approach where manually de�ned consis-
tency constraints between the involved artifacts are incrementally evaluated.
In case of violated constraints, error messages are provided to support repairs.
To deal with heterogeneous artifacts, the approach requires a speci�c facade
for each artifact type in order to convert the elements contained in an artifact
into a generic and artifact-agnostic representation. To ensure consistency
between products in case a feature has been changed, Pfofe et al. [186] in-
troduce the rather recent approach VariantSync that employs feature trace
recording [39] to automatically synchronize products.

7.2.2. System-Level Inconsistencies

Type 7 is caused in the problem space of the system if dependencies are
introduced between features by adding constraints to the variability model,
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like for Type 1. This can lead to inconsistencies in the variability model,
often referred to as defects or anomalies [120, 94, 29, 100, 176, 91, 18, 17,
209, 192], such as dead features (i.e., features cannot be selected in any valid
con�guration of the product line) or redundant constraints (i.e., the removal of
a constraint does not change the con�gurable space). A repair would require
to �x the variability model in order to resolve the inconsistencies. Several
works go beyond the mere detection of variability model inconsistencies
(mostly using SAT) and additionally provide explanations to guide the user in
�xing [29, 120, 94, 192], or avoiding them [176, 100]. Guo et al. [91] provide
an overview of semantic and syntactic consistency constraints of feature
models and propose an ontology-based approach to identify feature model
inconsistencies and restore them bymeans of additionally executed operations
(e.g., the removal of a feature invalidates its child features which thus would be
removed to maintain the consistency of the feature model). Arcaini et al. [18,
17] propose a rather recent approach to support the automated evolution
of feature models upon change requirements, i.e., based on a desired set of
features and con�gurations, an evolutionary algorithm aims at obtaining a
feature model that satis�es the speci�ed requirements.

Similarly, Type 8 is caused in the problem space of the system by adding fea-
tures or removing constraints. Analogously, a repair would require to modify
the solution space [54, 58, 44]. However, in contrast to Type 2, the repair is
not performed on a product view, but directly on the variable implementa-
tion of the system. Buchmann et al [44] propose an annotative approach for
mapping constraints of the feature model to model elements. The approach
preserves consistency per construction (e.g., it is not allowed to annotate
model elements with undeclared features) or by performing repairs (feature
annotations are automatically propagated to dependent model elements).

Type 9 is caused in the solution space of the system if the variable implemen-
tation is changed such that dependencies between feature implementations
are added that are not re�ected in the variability model. In such a case, the
implementation and the variability model have become inconsistent. This
would require the modi�cation of the variability model (which could be the
same repair as for Type 5). To support the co-evolution of the variable im-
plementation with the variability model, Dhungana et al. [58] propose a
model-driven approach that identi�es changes in the variable implementa-
tion using a state-based comparison and suggests actions for repairing the
variability model by adding or deleting model elements.
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Type 10 is caused in the solution space of the system if a change in the
variable implementation leads to an inconsistency in the implementation
of products, e.g., syntactically malformed products in case of undisciplined
annotations [135] or dangling references in some products. Lauenroth and
Pohl [132] propose a formal framework to automatically check the consistency
of the requirements speci�cation of the product line and thereby support the
detection of inconsistencies prior to the derivation of individual products.

Likewise to Type 10, Type 11 is caused in the solution space of the system if
the variable implementation has been changed. This can lead to a non-viable
implementation of products [93, 70, 213, 211, 81, 208, 214]. A repair is per-
formed on the externalized products. Several works propose approaches to
preserve consistency for this inconsistency type. Heider et al. [93] research
the impact of changes to the variable implementation on derived products,
classify types of changes and propose con�ict resolutions during updates of
products (e.g., by replaying con�guration decisions in case only non-variable
parts of the variable implementation have been changed). Schulze et al. [211]
present an approach that identi�es and repairs inconsistencies between an
evolved variable implementation and an evolved product based on a three-way
comparison (i.e., a product that constitutes an evolved working copy, a newly
derived product based on the evolved variable implementation, and the prod-
uct before the evolution serving as common base). The approach provides
merging techniques ranging from fully automated to manual inconsistency
repair. Gerling [81] proposes to support the co-evolution of the solution
space of the system and product by automatically merging semantic units (i.e.,
semantically related lines of code for a particular purpose). For instance, if a
feature is added or changed in a product, the artifacts from which the product
was derived must be changed accordingly. In the tool SuperMod [213, 208,
214], which is also studied in this thesis, well-formedness consistency rules
are de�ned and evaluated after a product’s externalization. Note that when
externalizing a product in SuperMod, the workspace is populated upfront with
a feature model which is used to con�gure the product. In case of violated
consistency rules (e.g., an object with multiple container objects), default reso-
lution strategies (e.g., the most recent change to add a containment reference
value with respect to the object) are applied to the respective product.

Type 12 is caused by changing the implementation of a product, for instance,
to perform improvements or �x bugs. Consequently, the product and the
variable implementation di�er. The desired repair integrates the improve-
ments of the product into the variable implementation [211, 81]. While in
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case of direct editing this is an entirely manual task, view-based operations
(such as the ones provided in this thesis, e.g., 𝑖𝐶) automate this task to a point
where the user only needs to specify an expression manually. Similar as for
Type 11, the approaches proposed by Schulze et al. [211] and Gerling [81] for
supporting the co-evolution between the evolved variable implementation
and an evolved product also support Type 12.

7.2.3. Cross-System Inconsistencies

Type 13 andType 14 cover inconsistencies due to distributed development.

In Type 13, the problem space of two instances of the uni�ed system (e.g.,
created via a distributed operation such as 𝑒𝑈𝑆) evolve independently. For
instance, an alternative-group of features is changed to an or-group in another
instance of the uni�ed system. When the two instances shall be integrated
again (e.g., via the distributed operation 𝑖𝑈𝑆), these changes must be consoli-
dated. Depending on how far the two problem spaces have diverged from each
other, the e�ort for the consolidation can range from trivial (fully automated)
to very complex manual merges. Niu et al. [177] propose resolution strategies
for integrating variability models, e.g., in case a feature is mandatory in the
variability model of one instance of the uni�ed system but optional in another,
it becomes mandatory in the other instance of the uni�ed system.

Likewise, in Type 14, the variable implementation of two instances of a
uni�ed system evolve independently. For example, the mappings (e.g., in
the form of annotations such as if-defs) have been changed in one instance
of the uni�ed system and shall be integrated into the instance it has been
derived from (e.g., via the distributed operations 𝑒𝑈𝑆 followed by 𝑖𝑈𝑆). To
this end, Greiner et al. [87] propose an approach to automatically propagate
annotations from one variable system to another.

7.3. Discussion

The literature survey provides evidence that, for most inconsistency types,
numerous works exist that target the detection of such inconsistencies. Some
approaches additionally provide explanations on the cause of the inconsis-
tency (particularly of inconsistencies that are caused in the problem space),
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while only very few works exist that deal with the repair of inconsistencies.
Consequently, consistency preservation ranges from providing recommen-
dations for repair to actually performing them fully automatically. To this
end, several relevant scienti�c databases and diverse publication venues were
considered to improve the reliability of the �ndings and the generalizability
of the results.

As an inconsistency can be caused or repaired in any of the four areas (i.e., the
problem and solution space of the variable system and of the product), there
are theoretically 42 = 16 possible types of inconsistencies (excluding the two
cross-system inconsistency types). However, not all of those combinations
of cause and repair are sensible, covered by the de�nitions of consistency of
this thesis (see Section 2.7), or can be found in the literature. Therefore, this
work only considers 12 of the 16 possible combinations of cause and repair
as types of variability-related inconsistencies.

The literature survey did not yield research on Type 3 and Type 4 inconsisten-
cies. However, according to the de�nitions of consistency of this thesis (see
Section 2.7) reasonable scenarios could be constructed with corresponding
causes and repairs. For example, in case of Type 4, such a scenario would
be reactive SPLE [12], where the variable system shall be extended with a
new (not yet valid) con�guration by accordingly adapting the variability
model. Therefore, these two types of inconsistencies were deemed relevant
and included to obtain a complete picture and ensure that the identi�ed
variability-related inconsistency types are general enough to also remain
relevant in the future.

Two of the combinations that were not considered as types of inconsistencies
are caused in the solution space of the system (i.e., the variable implementa-
tion) and repaired in the problem space of a product (i.e., its con�guration),
and vice versa. Both cases are covered by a sequence of other types of incon-
sistencies with an intermediate step via the problem space of the system (i.e.,
the variability model). In the former case, if the implementation of a system
is modi�ed such that the con�guration of a product must be changed, this
is covered by Type 9 (which is caused in the implementation of a system)
followed by Type 1 (which is repaired in the con�guration of a product). In
the latter case, if the con�guration of a product is modi�ed such that the
implementation of the system must be changed, this is covered by Type 4
(which is caused in the con�guration of a product) followed by Type 8 (which
is repaired in the implementation of the system).
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The remaining two combinations that were not considered as types of incon-
sistencies are caused and repaired in the solution space of the product (i.e., its
implementation) and the problem space of the product (i.e., its con�guration).
The literature survey did not reveal work where a modi�cation of the imple-
mentation of a product requires to repair the con�guration of the product
and it is questionable whether sensible scenarios can be found. Conversely, a
modi�cation of the con�guration of a product that requires a repair in the
implementation of the product was also not evident by the literature survey.
In this case, it can even be questioned, whether the transition of a product to
another con�guration is sensible, as the identity of a product is given by its
con�guration. Therefore, in a case where another con�guration is desired,
instead of changing the con�guration of an existing product, simply a new
product can be derived from the system.

There is a symmetry between causes and repairs over all inconsistency types,
as for every type of consistency there is another type with the same, but
reversed, areas of cause and repair. For example, Type 2 is symmetric to
Type 5. Such symmetry does not exist between problem space and solution
space. For example, Type 2 is caused in the problem space of the system
(i.e., variability model) and repaired in the solution space of the product, but
there is no type of inconsistency that is caused in the solution space of the
system and repaired in the problem space of the product. Similarly, there is
no symmetry between the system and the product.

7.4. Expected Benefits

In total, 14 types of variability-related inconsistencies were identi�ed and
classi�ed according to their cause and repair in either the problem space
or the solution space. This section comprises a discussion of the expected
bene�ts.

The performed synthesis of the existing body of knowledge on variability-
related inconsistency types maps and organizes the corresponding research
landscape. It enables researchers to classify, communicate, and scope their
work. Furthermore, the literature survey revealed inconsistency types that are
less considered and thus might be candidates for further research. Moreover,
beyond the results of the literature survey, further inconsistency types were
identi�ed. Due to the generality and disjointedness of the inconsistency types,

100



7.5. Summary

future work on variability-related inconsistencies is expected to be classi�able
according to the proposed types. The product line community is invited to
classify their research according to the proposed classi�cation scheme.

7.5. Summary

This chapter presented the identi�ed variability-related inconsistencies (C4).
Based on a literature survey [113], 40 relevant publications were collected,
generalized, mapped to a schema, and gaps in the schema have been �lled
while ensuring that there is no overlap among the types of inconsistencies
(i.e., they are disjoint). The goal was to obtain a generalized, complete, and
disjoint classi�cation of variability-related inconsistency types. Ultimately, 14
di�erent inconsistency types were identi�ed and classi�ed according to their
cause and repair in either the problem space or the solution space of either the
variable system or a product. This chapter comprised a description of each
inconsistency type, introduced relevant works in that �eld and explained
repair options. Interestingly, it became obvious that while some inconsistency
types are often subject to research in SPLE (i.e., Type 1, 2, 5, 7, and 11), the
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remaining inconsistency types are researched less. While several approaches
propose explanations of inconsistencies or fully-automated repair options,
this particularly addresses the problem space. Consistency preservation
involving the solution space is addressed signi�cantly less, especially when
it comes to heterogeneous artifacts and distributed development.

Thus, this contribution addresses RQ 2.1. Figure 7.3 shows an overview of all
contributions and highlights the contribution of this chapter in grey.
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8. Unified Approach

This chapter builds on a publication at VaMoS [10] and SPLC [3].

This chapter presents the uni�ed view-based approach to support consistent
management of variable systems. Since the uni�ed approach builds upon
all prior contributions (C1–C4), it bene�ts from the insights of unifying
concepts, their relations, and operations to deal with variability in space and
time simultaneously as well as of variability-related inconsistencies, their
causes and possible repairs. The goal is to provide an approach that deals
with variability in space and time involving both Feature Revisions and
System Revisions and that is also capable of handling variability-related
inconsistencies during the evolution of a system.

Referring to problem statement P2, two research questions are asked:

RQ 2.2 How can uni�ed operations be combined with consistency preserva-
tion of variability-related inconsistency types?

RQ 2.3 How can the Vitruvius approach be leveraged to support variabil-
ity in space and time and preserve consistency in variable systems
comprised of heterogeneous artifacts?

Section 8.1 introduces the construction process of the uni�ed approach. Sec-
tion 8.2 gives an overview of the conceptual architecture of the uni�ed ap-
proach. The proposed work�ow of the uni�ed approach when evolving a
variable system is presented in Section 8.3. Section 8.4 comprises an augmen-
tation of uni�ed operations with consistency preservation, while Section 8.5
encompasses a demonstrating application. Finally, Section 8.6 provides details
on how the uni�ed approach deals with a selected subset of variability-related
inconsistencies caused or repaired in the solution space. Section 8.7 presents
the prototypical implementation of the uni�ed approach before expected
bene�ts in Section 8.8 and a summary of the results in Section 8.9 conclude
this chapter.

This chapter thus constitutes the contribution C5.
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8. Uni�ed Approach

8.1. Construction Process

Figure 8.1 shows the process for constructing the uni�ed approach.
In Step 1 , I identi�ed types of inconsistencies that occur during the evolution
of a variable system and possible repair options (see Chapter 7). In Step 2 ,
I re�ned the uni�ed elements (i.e., the uni�ed conceptual model and uni�ed
operations) into a concrete metamodel and corresponding operations of the
uni�ed approach. Finally, in Step 3 , I augmented the uni�ed operations with
capabilities of consistency preservation, ranging from automated suggestions
to restore consistency to fully-automated repair. In the following, necessary
re�nements to the uni�ed conceptual model and operations are explained.

Augmentation with
consistency
preservation

Identification of
variability-related
inconsistencies


Refinement


Types of
inconsistencies


Concrete metamodel
and operations


Unified approach


Unified
elements


1 2 3

Figure 8.1.:Uni�ed approach construction process.

8.2. Conceptual Architecture

This section presents the conceptual architecture of the uni�ed approach.
Main design ideas of the approach are explained and key mechanisms de-
scribed. The section starts with re�nements made to the uni�ed conceptual
model, and continues with the integration with the Vitruvius approach and
re�nements of the employed uni�ed view-based operations.
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1 context CrossTreeConstraint

2 inv:

3 Set{self.expression} -> closure(e:Expression |

4 if e.oclIsKindOf(Operator) then e.expr else Set{})

5 -> select(e:Expression | e.oclIsKindOf(Variable))

6 -> forAll(v:Variable | v.option.oclIsKindOf(FeatureOption))

Listing 8.1:Well-formedness of a Cross-tree Constraint.

8.2.1. Concrete Metamodel

Figure 8.2 shows the concrete metamodel of the uni�ed approach as a
re�nement of the uni�ed conceptual model. Thereby, metaclasses are created
for each concept and new metaclasses are introduced where necessary.
Equivalent to the conceptual model, metaclasses for variability in space are
colored green, for variability in time orange, for variability in both dimensions
purple, and metaclasses for uni�ed concepts (that cope with either one
variability dimension or both) are white. Relations are colored analogously.
Lighter colors and italic fonts represent abstract metaclasses. The concrete
metamodel employs the metaclasses Unified System, Feature, Feature

Revision, System Revision, Mapping, and Configuration, and re�nes
Constraint and Fragment. A Feature Model is used as variability model,
which is the de-facto standard of variability modeling in research and indus-
try [50, 107, 117, 194]. Both Tree Constraint and Cross-tree Constraint

specialize Constraint. While Tree Constraints only refer to Features (that
can be decomposed into optional Features, mandatory Features, or-groups,
and alternative-groups), Cross-tree Constraints can be formulated on
Features and Feature Revisions via a Boolean Expression. The Unified

System contains Delta Modules that specialize Fragments and represent the
variability mechanism for composing Products based on a Configuration. A
Delta Module comprises Deltas that for now are omitted from the �gure. A
Mapping relates Delta Modules and Options via a Boolean Expression. The
expression is represented by an expression tree where inner nodes represent
operators, such as Implication or Conjunction, and leafs represent Options. An
additional OCL constraint in Listing 8.1 ensures that expressions contained
in Cross-tree Constraints only refer to Feature Options instead of any
Option, as is the case for expressions contained in Mappings.
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Figure 8.2.:Concrete metamodel of the uni�ed approach. Adapted from [3, Fig. 3].

8.2.2. Integration with Vitruvius

To leverage Vitruvius’ consistency preservation mechanisms between di�er-
ent artifact types (see Section 2.6.2), its integration with the uni�ed approach
is explained in the following. Figure 8.3 shows a conceptual model that
describes the connection between the uni�ed approach and Vitruvius, high-
lighting concepts that belong to the solution space in orange and concepts
that belong to the problem space in blue. Note that only the connecting
concepts are depicted.

Most depicted concepts are part of the solution space. The Delta Module of
the uni�ed approach re�nes the Fragment and comprises Changes (i.e., Deltas)
from Vitruvius. A Change can be atomic, such as an additive or subtractive
Change, or be a compound Change. Vitruvius uses a dedicated metamodel to
describe possible change types that are omitted for the sake of simplicity. An
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Artifact Model is derived by applying Changes and represents an engineering
artifact of a particular type, e.g., an artifact model for Java source code or an ar-
tifact model for a UML diagram. An Artifact Model conforms to an Artifact

Metamodel, e.g., Java metamodel or UML metamodel. A V-SUM is comprised
of Artifact Models and conforms to the V-SUM Metamodel that, in turn, con-
tains the Artifact Metamodels. Moreover, the V-SUM Metamodel comprises
Consistency Preservation Rules (CPRs) that are speci�ed between two
Artifact Metamodels. The V-SUM Product specializes the V-SUM of Vitru-
vius and the Product of the uni�ed approach. Speci�cally, the V-SUM Product

temporarily stores Changes (i.e., original changes performed by the developer
during the modi�cation of an Artifact Model) until they are integrated into
the Unified System. Moreover, the V-SUM Product contains its valid and com-
plete Configuration (see Figure 6.3), that connects concepts of the problem
space (i.e., Options) with concepts of the solution space (i.e., Product). Based
on the System Revision and Feature Revisions in this Configuration, the
newly created System Revision and Feature Revisions can be related cor-
rectly in the revision graphs of the Unified System upon the integration
of Changes. The Unified System contains Configuration and Mappings. All
three concepts connect the problem space and the solution space (i.e., the
Unified System contains concepts that are part of both spaces, while the
Mapping relates Optionswith Fragments). Note that consequential changes are
not stored since they may vary based on the context, i.e., the Configuration
of the Product, in which the causing original changes are applied.

In sum, the uni�ed approach leverages the consistency preserving mecha-
nisms of Vitruvius to preserve consistency between artifact models in the
solution space. Speci�cally, by employing the Deltas used in Vitruvius and
by specializing its V-SUM as Product. In turn, the uni�ed approach extends
Vitruvius with concepts of the problem space to enable uni�ed variability
management.

8.2.3. Concrete Operations

The inputs and outputs of the view-based uni�ed operations are re�ned ac-
cordingly to the concrete metamodel. The 𝑒𝐷 operation produces a feature
model as output and the 𝑖𝐷 operation takes a feature model as input instead
of sets of Features and Constraints. The 𝑒𝑃 operation utilizes Deltas as
transformational variability mechanism [206]. The 𝑖𝐶 operation internalizes
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Figure 8.3.:A conceptual model of the relevant concepts for describing the connection between
the uni�ed approach and Vitruvius.

the manually performed changes on a product view by propagating recorded
Deltas to the Unified System. In the following, the algorithms for each
operation are presented using the notation introduced in Section 5.2.3.

The 𝑒𝐷 operation is shown in Algorithm 8.1. It takes as input a set of System
Revisions 𝑆𝑅. The set of Feature Options 𝐹𝑂 ′, Tree Constraints 𝑇𝐶 ′ and
Cross-tree Constraints 𝐶𝑇𝐶 ′, that are enabled by any of the given System

Revisions 𝑠𝑟 ∈ 𝑆𝑅, are obtained and used to construct the feature model 𝐹𝑀 .
Finally, the feature model 𝐹𝑀 is returned.

The 𝑖𝐷 operation is shown in Algorithm 8.2. It takes as input a feature model
𝐹𝑀 . First, a new System Revision 𝑠𝑟 ′ is created. All System Revisions from
which the feature model 𝐹𝑀 was created via 𝑒𝐷 are set as predecessors of the
new System Revision 𝑠𝑟 ′ and receive it as successor. Next, the new System

Revision 𝑠𝑟 ′ is added to the Unified System. It enables the Feature Options,
Tree Constraints and Cross-tree Constraints in the feature model 𝐹𝑀 .
Existing Mappings 𝑀 ′, that contain any of the System Revisions in 𝑆𝑅𝐹𝑀 ,
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are obtained and copied to𝑀 ′′, and all occurrences of any System Revision

in their expression 𝑒𝑚 of a Mapping𝑚 ∈ 𝑀 ′′ are replaced by the new System

Revision 𝑠𝑟 ′. The copied and updated Mappings are added to the Unified

System.

The 𝑒𝑃 operation is shown in Algorithm 8.3. It takes as input a Configuration
𝑐 . First, it is checked whether 𝑐 is a valid and complete Configuration. Then,
all Mappings 𝑀 ′ ⊆ 𝑀 in the Unified System whose expression is satis�ed
by the given Configuration 𝑐 are obtained in the same order in which they
were added to the Unified System via 𝑖𝐶 (shown in Algorithm 8.4). These
Mappings𝑀 ′ are used to construct the Product 𝑝 . Speci�cally, each Fragment

𝑓 𝑡 ∈ 𝐹𝑇𝑚 to which a Mapping 𝑚 ∈ 𝑀 ′ refers represents a Change. These
Changes are applied in sequence to the initially empty model 𝐼 . Note that
no additional re-ordering of Changes is needed, since the deltas are recorded
on product views and not created manually. This guarantees that required
deltas are already contained in the Unified System as they are needed for
the externalization of the Product in the �rst place. Finally, the Product 𝑝 is
constructed and returned.

The 𝑖𝐶 operation is shown in Algorithm 8.4. It takes as input a Product

𝑝 and a conjunction of Feature Options 𝑒 . First, a new System Revision

𝑠𝑟 ′ is created. All System Revisions of the Configuration 𝑐𝑝 of the given
Product 𝑝 are set as direct predecessors. The new System Revision 𝑠𝑟 ′ is
set as successor for all its predecessors and added to the Unified System 𝑢𝑠 .
Next, the enables relations of all predecessor System Revisions are copied
to the new System Revision. For every Feature 𝑓 in the expression 𝑒 , a new
Feature Revision 𝑓 𝑟 ′

𝑓
is created and added to that Feature’s set of Feature

Revisions 𝑓 .𝐹𝑅. Each new Feature Revision is set as direct successor for
all Feature Revisions of the same Feature 𝑓 in the Configuration 𝑐𝑝 of the

Algorithm 8.1 Externalize Domain (eD) operation
1: function eD(𝑆𝑅)
2: 𝐹𝑂 ′← ⋃

𝑠𝑟 ∈𝑆𝑅 𝐹𝑂𝑠𝑟 ⊲ Obtain enabled features
3: 𝑇𝐶 ′← ⋃

𝑠𝑟 ∈𝑆𝑅 𝑇𝐶𝑠𝑟 ⊲ Obtain enabled tree constraints
4: 𝐶𝑇𝐶 ′← ⋃

𝑠𝑟 ∈𝑆𝑅 𝐶𝑇𝐶𝑠𝑟 ⊲ Obtain enabled cross-tree constraints
5: 𝐹𝑀 ← (𝑆𝑅, 𝐹𝑂 ′,𝑇𝐶 ′,𝐶𝑇𝐶 ′) ⊲ Construct feature model
6: return 𝐹𝑀

7: end function
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Algorithm 8.2 Internalize Domain (iD) operation
1: function iD(𝐹𝑀)
2: 𝑠𝑟 ′← () ⊲ Create new system revision
3: 𝑠𝑟 ′.succ← {}
4: 𝑠𝑟 ′.pred← {𝑠𝑟 | 𝑠𝑟 ∈ 𝑆𝑅 ∧ 𝑠𝑟 ∈ 𝑆𝑅𝐹𝑀 } ⊲ Set predecessors of new

system revision
5: for each 𝑠𝑟 ∈ 𝑠𝑟 ′.pred do

6: 𝑠𝑟 .succ← 𝑠𝑟 .succ ∪ {𝑠𝑟 ′} ⊲ Add new system revision as successor
7: end for

8: 𝑆𝑅 ← 𝑆𝑅 ∪ {𝑠𝑟 ′} ⊲ Add new system revision to uni�ed system
9: 𝐹𝑂𝑠𝑟 ′ ← 𝐹𝑂𝐹𝑀 ⊲ New system revision enables feature options of FM
10: 𝑇𝐶𝑠𝑟 ′ ← 𝑇𝐶𝐹𝑀 ⊲ New system revision enables tree constraints of FM
11: 𝐶𝑇𝐶𝑠𝑟 ′ ← 𝐶𝑇𝐶𝐹𝑀 ⊲ New system revision enables cross-tree

constraints of FM
12: 𝑀 ′← {𝑚 | 𝑚 ∈ 𝑀 ∧ 𝑠𝑟 ′.pred ∩ 𝑒𝑚 ≠ ∅} ⊲ Obtain mappings that

contain current system revision(s)
13: 𝑀 ′′ ← <Copy each mapping𝑚 ∈ 𝑀 ′ and replace all occurrences of

any 𝑠𝑟 ∈ 𝑆𝑅𝐹𝑀 in the expression of any𝑚 ∈ 𝑀 ′′ by 𝑠𝑟 ′>
14: 𝑀 ← 𝑀 ∪𝑀 ′′ ⊲ Add copied and updated mappings to uni�ed system
15: end function

Algorithm 8.3 Externalize Product (eP) operation
1: function eP(𝑐)
2: if ¬valid(𝑐) ∨ ¬complete(𝑐) then ⊲ Check if con�guration is valid

and complete
3: return ERROR
4: end if

5: 𝑀 ′← {𝑚 | 𝑚 ∈ 𝑀 ∧ 𝑆𝐴𝑇 (𝑐 ∧ 𝑒𝑚} ⊲ Obtain mappings whose
expression is satisifed by the con�guration

6: 𝐼 ← () ⊲ Create empty model
7: for each𝑚 ∈ 𝑀 ′ do
8: for each 𝑓 𝑡 ∈ 𝐹𝑇𝑚 do

9: 𝐼 ← apply(𝐼 , 𝑓 𝑡) ⊲ Apply delta module to model
10: end for

11: end for

12: 𝑝 ← (𝑐, 𝐼 ) ⊲ Construct product
13: return 𝑝

14: end function
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given Product 𝑝 . The new Fragments 𝐹𝑇 + (which constitute the recorded
Changes that were applied to Product 𝑝) are obtained. Existing Mappings

𝑀 ′, that contain any of the System Revisions in 𝑐𝑝 , are obtained and copied
to 𝑀 ′′, and all occurrences of any System Revision in their expression 𝑒𝑚
of a Mapping 𝑚 ∈ 𝑀 ′′ are replaced by the new System Revision 𝑠𝑟 ′. The
copied and updated Mappings are added to the Unified System. Finally, a
new Mapping is created for the new Fragments 𝐹𝑇 + with the expression 𝑠𝑟 ′∧𝑒
and also added to the Unified System.

8.3. ProposedWorkflow

Figure 8.4 depicts a UML activity diagram of the general work�ow with in-
volved roles of the uni�ed approach. Traditional proactive SPLE distinguishes
between domain engineering and application engineering [191]. Respectively,
the domain engineer de�nes the variability at an appropriate level of ab-
straction (for developers as well as customers) by de�ning the variability
model and establishing the reusable platform. The application engineer builds
customer-speci�c applications by deriving and completing Products based on
the platform established in domain engineering. While the uni�ed approach
proposed in this thesis relies on the main principles of SPLE, such as the
reusable platform and feature-oriented development, it represents a VarCS
(see De�nition 2.2) and thus encourages product line development based on
product views to overcome limitations of existing variability management
practices (see Section 2.2.2). Consequently, the roles of the uni�ed approach
deviate from the traditional roles in SPLE.

Analogously to the domain engineer in SPLE, the problem space engineer
de�nes the variability and commonality of the product line by means of a vari-
ability model (i.e., a feature model). Based on a particular System Revision,
the operation 𝑒𝐷 (see Algorithm 8.1) provides a feature model to the problem
space engineer. Due to changed requirements, the problem space engineer
evolves the feature model, for instance, by adding new Features. To in-
tegrate the performed changes back into the Unified System, the evolved
feature model is input to the operation 𝑖𝐷 (see Algorithm 8.2) and leads to
an updated instance of the Unified System. Analogously to the application
engineer in SPLE, the solution space engineer externalizes a Product based
on a Configuration via 𝑒𝑃 (see Algorithm 8.3) and develops product-speci�c
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Algorithm 8.4 Internalize Changes (iC) operation
1: function iC(𝑝 , 𝑒)
2: 𝑠𝑟 ′← () ⊲ Create new system revision
3: 𝑠𝑟 ′.succ← {}
4: 𝑠𝑟 ′.pred← {𝑠𝑟 | 𝑠𝑟 ∈ 𝑢𝑠.𝑆𝑅 ∧ 𝑠𝑟 ∈ 𝑐𝑝 } ⊲ Set predecessors of new

system revision
5: for each 𝑠𝑟 ∈ 𝑠𝑟 ′.pred do

6: 𝑠𝑟 .succ← 𝑠𝑟 .succ ∪ {𝑠𝑟 ′} ⊲ Set new system revision as successor
7: end for

8: 𝑢𝑠.𝑆𝑅 ← 𝑢𝑠.𝑆𝑅 ∪ {𝑠𝑟 ′} ⊲ Add new system revision to uni�ed system
9: 𝑠𝑟 ′.enablesF← ⋃

𝑠𝑟 ∈𝑠𝑟 ′.pred 𝑠𝑟 .enablesF
10: 𝑠𝑟 ′.enablesTC← ⋃

𝑠𝑟 ∈𝑠𝑟 ′.pred 𝑠𝑟 .enablesTC
11: 𝑠𝑟 ′.enablesCTC← ⋃

𝑠𝑟 ∈𝑠𝑟 ′.pred 𝑠𝑟 .enablesCTC
12: for each 𝑓 ∈ 𝑒 do
13: 𝑓 𝑟 ′

𝑓
← () ⊲ Create new feature revision

14: 𝑓 𝑟 ′
𝑓
.𝑓 ← 𝑓 ⊲ Set feature of feature revision

15: 𝑓 .𝐹𝑅 ← 𝑓 .𝑓 𝑟𝐹𝑅 ∪ {𝑓 𝑟 ′
𝑓
} ⊲ Add feature revision to feature

16: 𝑓 𝑟 ′
𝑓
.succ← {}

17: 𝑓 𝑟 ′
𝑓
.pred← {𝑓 𝑟 𝑓 | 𝑓 𝑟 ∈ 𝐹𝑅𝑓 ∧ 𝑐𝑝 } ⊲ Set predecessor of new feature

revision
18: for each 𝑓 𝑟 𝑓 ∈ 𝑓 𝑟 ′

𝑓
.pred do

19: 𝑓 𝑟 𝑓 .succ← 𝑓 𝑟 𝑓 .succ ∪ {𝑓 𝑟 ′𝑓 } ⊲ Set new feature revision as
successor

20: end for

21: end for

22: 𝐹𝑇 + ← 𝑝.recordedChanges ⊲ Get recorded changes
23: 𝑀 ′← {𝑚 | 𝑚 ∈ 𝑀 ∧ 𝑠𝑟 ′.pred ∩ 𝑒𝑚 ≠ ∅} ⊲ Obtain mappings that

contain current system revision(s)
24: 𝑀 ′′ ← <Copy each mapping𝑚 ∈ 𝑀 ′ and replace all occurrences of

any 𝑠𝑟 ∈ 𝑐𝑝 in the expression of any𝑚 ∈ 𝑀 ′′ by 𝑠𝑟 ′>
25: 𝑢𝑠.𝑀 ← 𝑢𝑠.𝑀 ∪𝑀 ′′ ⊲ Add copied and updated mappings to uni�ed

system
26: 𝑚′← (𝑠𝑟 ′ ∧ 𝑒, 𝐹𝑇 +) ⊲ Create mapping for new fragments (i.e., deltas)
27: 𝑢𝑠.𝑀 ← 𝑢𝑠.𝑀 ∪ {𝑚′} ⊲ Add mapping to uni�ed system
28: end function
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Figure 8.4.: Proposed work�ow of the uni�ed approach with roles.

artifacts. Moreover, the solution space engineer is also responsible for devel-
oping reusable artifacts of the platform. Respective Changes to the Product
are recorded by a change monitor, and integrated into the Unified System

in a �ne-grained feature-oriented manner via 𝑖𝐶 based on an expression (see
Algorithm 8.4), which further updates the Unified System. Finally, a user
can externalize a Product based on a Configuration via 𝑒𝑃 .

To sum up, instead of domain and application engineering, the uni�ed ap-
proach classi�es activities into problem space and solution space engineering.
By integrating changes performed on a product in a �ne-grained manner
into the reusable platform, other products can bene�t from these changes.
Additionally, documenting changes in a feature-aware manner allows for
intensional versioning (i.e., the externalization of Products that have never
been internalized before). While the described work�ow supports traditional
proactive development of an SPL, it particularly encourages reactive develop-
ment.
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8.4. Augmentation of Operations with Consistency
Preservation

Table 8.1 maps the product-level types of inconsistencies to uni�ed view-
based operations. For every inconsistency type, the causing operation, the
a�ected artifact, respective repair operations (denoted as regular expressions)
and the artifact in which the repair is performed are identi�ed. While the
uni�ed approach o�ers consistency preservation for inconsistency types that
are either caused or repaired in the solution space (i.e., Type 2, 5, and 6), the
augmentation of uni�ed view-based operations with consistency preservation
for every product-level type of inconsistency is described in the following to
answer RQ 2.2.

Producing a view on the feature model via 𝑒𝐷 and integrating modi�ca-
tions, such as the addition of a constraint, via 𝑖𝐷 , may lead to Type 1 or 2
inconsistencies. Removing features or adding constraints between features
(Type 1) reduces the con�gurable space, which might invalidate con�gura-
tions currently in use. After 𝑖𝐷 , a repair automatically suggests an alternative
con�guration according to one of several possible strategies. Such strategies
could be based on already existing ideas in literature (see Section 7.2.1). In
addition, update strategies can be conceived by analyzing and quantifying
di�erences in features as well as in implementation for the selection of ad-
jacent valid con�gurations: i) the highest number of common features, i.e.,
the lowest number of removed features; ii) the lowest number of feature
di�erences, i.e., the lowest number of added and removed features; iii) the
highest overlap of implementation, i.e., the lowest number of deletions in the
implementation; iv) the smallest di�erence in implementation, i.e., the lowest
number of insertions and deletions in the implementation. Furthermore, v)
already performed changes on a product implementation and yet another
update strategy that minimizes the a�ect of the transition on the already
changed parts of the implementation could be considered. Optionally, the
developer may intervene and manually adapt the computed con�guration,
or simply con�rm it as input to 𝑒𝑃 to transition to the new product.

In contrast, adding features or removing constraints between them (Type 2)
increases the con�gurable space and enables new con�gurations that may not
(yet) lead to consistent product implementations due to missing implementa-
tion of new feature(s) or feature interaction(s). Thus, after 𝑖𝐷 , an enumeration
of new features and feature combinations is provided. Henceforth, in case the
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developer externalizes an a�ected con�guration via 𝑒𝑃 , a hint is issued that
the product implementation produced by 𝑒𝑃 may be missing implementation
for new features or feature combinations and thus be inconsistent. While
the approach provides suggestions for the developer, the actual �x must be
implemented manually and internalized via (𝑖𝐶)+.

Producing a product via 𝑒𝑃 based on an invalid con�guration leads to Type 3
and 4 inconsistencies. A repair requires either to externalize another product
via 𝑒𝑃 with a valid con�guration (semi-automatically by selecting a transition
strategy, as mentioned for Type 1) or by adapting the feature model (via
approaches such as minimal unsatis�able subsets [136], which could be used
to suggest possible repair options in the feature model). In the latter case, a
view on the feature model corresponding to the causing con�guration can be
generated automatically via 𝑒𝐷 , and possible repairs to the feature model can
be applied to the externalized view automatically. Again, the developer may
intervene and make further modi�cations, or simply con�rm and internalize
the repaired feature model via 𝑖𝐷 .

Producing the product via 𝑒𝑃 and integrating changes via 𝑖𝐶 may lead to
Type 5 and 6 inconsistencies. In both cases, the implementation may have
become inconsistent. If a feature dependency has been added on implemen-
tation level that is not captured by the feature model (Type 5), products with
an inconsistent implementation may be externalized. A repair requires to
add the respective implementation level dependency between features in
the feature model. The view on the domain can be created via 𝑒𝐷 and the
corresponding feature dependency can be added as a cross-tree constraint to
the feature model automatically to invalidate con�gurations of inconsistent
products. Again, the developer can make further modi�cations to the feature
model view, e.g., perform a more impactful restructuring of the feature model,
and then con�rm the repair by performing 𝑖𝐷 .

Changing redundant or dependent information across heterogeneous arti-
facts of the same product, e.g., by modifying the Java view of a product
produced via 𝑒𝑃 and applying it to the system via 𝑖𝐶 , can quickly lead to
inconsistencies in other artifact types and products due to redundancies or de-
pendencies (Type 6). Based on consistency preserving mechanisms provided
by Vitruvius (see Section 2.6.2), this type of inconsistency can be detected
and repaired (semi-) automatically by applying consequential changes as re-
action to the manually performed original changes of the developer. The
consequential changes can perform repairs in the same type of artifacts and
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other types of artifacts, or other products entirely. In the latter case, these
consequential changes may di�er based on the product in which they are
applied. If the abstraction level of the corresponding artifacts di�ers, several
valid repair options can be possible. Thus, the automatically applied conse-
quential changes may require user interaction, e.g., an added Java class could
represent a UML component or not be propagated at all in case it is only
supposed to represent a class on implementation level.

In conclusion, inconsistencies can be caused by modi�cations to di�erent
artifacts of a variable system and require di�erent kinds of repairs that may
vary in their potential for automation. While in some cases, e.g., Types 3
and 4, several semi-automated repair options exist, there are cases that require
manual inspection, such as Type 2.

8.5. Demonstrative Application

This section illustrates the above described uni�ed consistency preservation
based on the running example (Section 2.1). We start at system revision one
where feature Dist does not exist yet and all other features have exactly one
feature revision.

Assume that we externalize the domain (i.e., feature model) in the �rst system
revision via 𝑒𝐷 . We add feature Dist to the feature model and internalize it
via 𝑖𝐷 , leading to the second system revision. The newly supported products
are initially inconsistent as they are missing the implementation for the new
feature (Type 2). Therefore, we externalize a product via 𝑒𝑃 with the con�g-
uration {Car1, ET, Gas1, Dist}. We add Lines 7 and 11 to it and internalize the
changes via 𝑖𝐶 with the expression Dist, leading to the �rst feature revision
for Dist and the third system revision. Additionally, we add the interaction
between features Gas and Dist by adding Line 8. We internalize it with ex-
pression Gas && Dist, leading to the second revision of Gas and Dist, and
the fourth system revision. In the process, other artifact types and products
may have become inconsistent (Type 6). To restore consistency in the SysML
model, changes performed in Java are automatically propagated to the SysML
model in Line 5. To restore consistency in other a�ected products that involve
the added feature Dist, such as {Car1, ET, Ele1, Dist2}, we externalize it via
𝑒𝑃 . This product is inconsistent as it lacks a return statement in method
getDistanceLeft(). Thus, Line 9 is added and internalized with the expression
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Table 8.1.:Mapping between inconsistency types and uni�ed operations.
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8. Uni�ed Approach

Ele && Dist, leading to the second revision for Ele, the third revision for
Dist and the �fth system revision. Since electric cars need to constantly
monitor the remaining distance, Line 5 is added and internalized with the
expression Ele. While this leads to the third revision for Ele and the sixth
system revision, it causes a dependency between Ele3 and Dist3 that is not
covered by the feature model (Type 5), and thus allows for externalizing in-
consistent products (e.g., {Car1, ET, Ele3). Speci�cally, the mapping of Line 5
(Ele3) in conjunction with the feature model does not imply the mapping
the required Line 7 (Dist3). Therefore, the feature model is externalized
via 𝑒𝐷 , the cross-tree constraint Ele3 ⇒ Dist33 is added as a constraint
to the feature model, and the repaired feature model is internalized again
via 𝑖𝐷 , which this leads to the seventh system revision. As a consequence,
the product {Car1, ET, Ele3} is not supported anymore (Type 1). Transition-
ing the con�guration to {Car1, ET, Ele3, Dist3}—with the highest number of
common features and lowest number of feature di�erences—validates the
con�guration. Finally, assume that we strive for a hybrid car and create a
con�guration {Car1, ET, Ele3, Gas2, Dist3}, which, however, is not supported
by the feature model. Since we do not want to change our con�guration
(Type 3), we externalize the domain (in the latest system revision) and change
the alternative group of the features Gas and Ele to an or group (Type 4),
leading to the eighth system revision. Now, we just need to add the missing
interactions between Gas2, Ele3 and Dist3 in the hybrid car product (Type 2).
Thus, we remove Lines 8 and 9 from the product, add Line 10 and internalize
the changes with Gas && Ele, leading to the third revision for Gas, the fourth
revision for Ele, and the ninth system revision. Note that the mappings of
the deleted lines are appended with the negation of the provided features.

8.6. Preservation of Solution Space Inconsistencies

While the uni�ed operations have been augmented with consistency preser-
vation capabilities for all product-level types of inconsistencies, the uni�ed
approach integrates consistency preservation for a selected subset of these.
Speci�cally, it addresses inconsistency types that are either caused or repaired
in the solution space of a product, i.e., Type 2 (feature model to product con-
sistency), Type 5 (product to feature model consistency), and Type 6 (product
consistency). In the following, the work�ow of the uni�ed approach for
dealing with each of these inconsistency types is depicted.
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8.6.1. Feature Model to Product Consistency

Figure 8.5 shows a UML sequence diagram, and Figure 8.6 an illustrative
depiction, of the work�ow of the proposed uni�ed approach for Type 2 in-
consistencies. First, the developer externalizes the domain via 𝑒𝐷 (e.g., at the
second System Revision via 𝑒𝐷 (𝑆𝑅.2)) that returns a feature model at that
point in time. The developer edits the feature model by removing constraints
(e.g., by removing the excludes constraint ¬𝐴∨¬𝐵 between features A and B).
This increases the con�gurable space, since features or feature revisions may
now be combined in a valid con�guration that previously could not. Internaliz-
ing the changed feature model via 𝑖𝐷 triggers an analysis of the con�guration
space based on a SAT solver. For each individual feature and feature combina-
tion, the uni�ed approach checks whether it is supported by the unchanged
feature model and the changed feature model, respectively. Speci�cally, the
set 𝐻 of new features and feature combinations is computed as follows:

𝐻 = {ℎ | SAT(𝐹𝑀new ∧ ¬𝐹𝑀old ∧ ℎ)}

In case a valid assignment can be found for all features and feature combina-
tions in both feature models, the con�gurable space has not changed. In case a
valid assignment can be found for a particular feature or feature combination
only in the unchanged feature model, the con�gurable space has decreased.
Finally, in case a valid assignment can be found for a feature or feature combi-
nation only in the changed featuremodel, the con�gurable space has increased.
In this case, all newly valid features and feature combinations are stored.

Upon 𝑒𝑃 , newly valid and not yet dealt with features or feature combinations
may lead to an inconsistent product. On the one hand, desired feature in-
teractions may be missing and need to be implemented. On the other hand,
undesired static or dynamic feature interactions may occur. In the former
case, the implementation of one feature may con�ict with the implementa-
tion of another, e.g., one feature may delete a method that is required by
the other feature. The latter is the case when the behaviors of two features
interfere, which may lead to undesired behavior of the system. When the
developer externalizes a product with a con�guration with new features or
combinations thereof (e.g., via 𝑒𝑃 (𝑆𝑅.1, 𝐴.1, 𝐵.2,𝐶.1)), the approach provides
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a set of respective hints 𝐻 to the developer in the form of a list of not yet
dealt with features and feature combinations that could a�ect the product:

𝐻 = {ℎ | ℎ ∈ 𝐻 ∧ SAT(ℎ ∧ 𝑐)}

The developer becomes aware of the missing feature or possible interaction
and may resolve it if necessary, e.g., by providing an implementation particu-
larly for the interaction of features. If the developer internalizes changes via
𝑖𝐶 with an expression that addresses one of the hinted at features or feature
combinations (e.g., via 𝑖𝐶 (𝑝1, 𝐴 ∧ 𝐵)), the respective hint (e.g., 𝐴 ∧ 𝐵) is re-
moved from the list of hints and will not be provided anymore for the feature
or combination of the features that have been speci�ed in the expression 𝑒 of
𝑖𝐶 :

𝐻 ′ = 𝐻 \ {𝑒}

Example: In the demonstrative application of the Car system (see Section 8.5),
inconsistencies of this type occur twice. First, when the feature Dist is
added to the feature model, as it is missing implementation. Although this
does not lead to an inconsistency with respect to syntactic well-formedness,
the implementation of the feature should be added to ensure problem space–
solution space consistency (see Section 2.7). Second, this inconsistency occurs
when the alternative group of the features Gas and Ele is changed to an or
group in the feature model, which requires to add the pair-wise interaction
between Gas2 and Ele3 to realize the Car product with a hybrid engine.

8.6.2. Product to Feature Model Consistency

Figure 8.7 shows a UML sequence diagram, and Figure 8.8 an illustrative de-
piction, of the work�ow of the proposed uni�ed approach for Type 5 inconsis-
tencies. First, the developer externalizes a product (e.g., via 𝑒𝑃 (𝑆𝑅.1, 𝐴.1, 𝐵.2))
and adds a dependency in the solution space between elements of two fea-
ture revisions (e.g., an element of 𝐴.1 refers to an element of 𝐵.2) that were
independent before on both the problem space as well as the solution space.
Next, the developer internalizes the performed changes on the product and
speci�es the feature to which the change applies (e.g., feature𝐴 via 𝑖𝐶 (𝑝1, 𝐴)).
The 𝑖𝐶 operation triggers a dependency analysis.
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iC (p1, A ⋀ B)

Figure 8.5.: Sequence diagram of the feature model to product consistency.

In the �rst step of the analysis, all pairs of deltas are identi�ed that either
require or exclude each other based on the elements they a�ect (e.g., a delta
that adds a reference to an element excludes a delta that deletes that ele-
ment, and requires a delta that creates the element). Then, dependencies
are lifted from the solution space (deltas) to the problem space (features) via
the mappings between them. Based on the requiring and excluding deltas,
the respective mappings that refer to the deltas are identi�ed. Consequently,
mappings may require or exclude other mappings. Thus, the expression 𝑒1
(e.g., 𝐴.1) of a requiring mapping must imply the expression 𝑒2 (e.g., 𝐵.2) of
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Unified Approach Model


Product 1 (A, B, C)
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2. iD(FM)

edit()

Figure 8.6.: Feature model to product consistency overview.

the required mapping (𝑒1 ⇒ 𝑒2), and at least one of the expressions 𝑒3 and 𝑒4
of two exclusive mappings must be false (¬𝑒3 ∨ ¬𝑒4). A SAT solver is used to
check whether the above conditions hold for a feature model 𝐹𝑀 . Speci�cally,
for a requires relationship to be violated, all clauses of a feature model 𝐹𝑀
together with requiring expression 𝑒1 and negated required expression ¬𝑒2
must be satis�able:

𝑆𝐴𝑇 (𝐹𝑀 ∧ 𝑒1 ∧ ¬𝑒2)

If this is the case, there is at least one con�guration where the requiring delta
is applied without the required delta and the dependency of the solution
space is not represented by the problem space. The current feature model
is externalized via 𝑒𝐷 (e.g., at system revision 𝑆𝑅.2 via 𝑒𝐷 (𝑆𝑅.2)) and the
constraint 𝑒1 ⇒ 𝑒2 is automatically added to the feature model (e.g., 𝐴.1⇒
𝐵.2). For an excludes relationship to be violated, all clauses of a feature model
together with the two excluding expressions 𝑒3 and 𝑒4 must be satis�able:

𝑆𝐴𝑇 (𝐹𝑀 ∧ 𝑒3 ∧ 𝑒4)

If this is the case, there is at least one con�guration where both excluding
deltas are applied and the dependency of the solution space is automatically
added as constraint to the feature model. The developer may investigate the

122



8.6. Preservation of Solution Space Inconsistencies

opt

opt

p1:Product

(A.1, B.2)

fm:Feature
Model

us:Unified
System

dependency 

analysis

eP(SR.1,A.1,B.2)

A.1 B.2

2. iC(p1, A)

edit()

edit()
A.1⇒ B.2

p1

[Solution space dependency 

not in problem space]

edit()

iD(fm)

eD(SR.2)
fm

Figure 8.7.: Sequence diagram of the product to feature model consistency.

feature model with the performed repair and perform further modi�cations
before internalizing them into the uni�ed system via 𝑖𝐷 .

Example: In the demonstrative application of the Car system (see Section 8.5),
inconsistencies of this type occur once. Adding Line 5 and internalizing it
with the expression Ele leads to a dependency between Ele3 and Dist3 that
is not covered by the feature model. The dependency analysis is performed,
which leads to the cross-tree constraint Ele3 =⇒ Dist3. The constraint
is automatically added by the approach to the feature model to resolve the
inconsistency between the product and the feature model.
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Unified Approach Model
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Figure 8.8.: Product to feature model consistency overview.

8.6.3. Product Consistency

Figure 8.9 shows a UML sequence diagram, and Figure 8.10 an illustrative
depiction, of the work�ow of the uni�ed approach for Type 6 inconsistencies.
First, the developer externalizes a product via 𝑒𝑃 (𝑆𝑅.1, 𝐴.1, 𝐵.2) and edits it.
In case redundant or dependent information across heterogeneous artifact
models were modi�ed, e.g., by modifying the Java view of the product, this
may lead to inconsistencies of other artifact models. Based on the Consis-
tency Preservation Rules (CPRs) of Vitruvius (see Section 2.6.2), changes
are propagated to dependent artifact models by (semi-) automatically apply-
ing consequential changes as reactions to original changes performed by the
developer.

Next, the developer integrates the performed changes into the system by
providing the changed product and specifying the a�ected feature(s) in the
respective expression via 𝑖𝐶 (𝑝1, 𝐴)). In this way, a change applied in one prod-
uctmay a�ect other products. On the one hand, this illustrates an advantage of
the uni�ed approach that allows to propagate improvements or �xes made to
a feature implementation in one product to all other a�ected products. Conse-
quently, other products bene�t from the changes performed in one particular
product. On the other hand, this may lead to inconsistencies in the other prod-
ucts, as the context (i.e., other present features) is di�erent in each product.
To summarize, changes are propagated between heterogeneous artifact mod-
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Figure 8.9.: Sequence diagram of the product consistency.

els when one type of artifact is modi�ed via a product view, or when a new
product is externalized and changes are propagated that were originally
performed on another product.

Example: In the demonstrative application of the Car system (see Section 8.5),
inconsistencies of this type occur several times. Changes to the Java view that
realize the feature Dist (Lines 7 and 11) and the interaction between Gas and
Dist (Line 8) are automatically propagated to the SysML view (Line 5). To
restore consistency in other a�ected products that involve the added feature
Dist, such as {Car1, ET, Ele1, Dist2}, it is externalized via 𝑒𝑃 . This product is
inconsistent, as it lacks a return statement in method getDistanceLeft(). Thus,
Line 9 is added and internalized with the expression Ele && Dist.
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Unified Approach Model


Product 1 (Configuration 1)

Java SysML

1. eP(C1)

edit() * *

2. iC()

* * * *

Product 2 (Configuration 2)

Java SysML

3. eP(C2)

Original Change Consequential Change

Figure 8.10.: Product consistency overview.

8.7. Prototypical Implementation as VaVe 2.0 Tool

The presented uni�ed approach for supporting the consistent evolution of
variable systems composed of heterogeneous artifacts has been prototypically
implemented in the VaVe 2.0 (uni�ed Variants and Versions management) tool.
Note that VaVe 2.0 is an extension of the VaVe tool (see Section 2.4.2) and
realizes the uni�ed approach. VaVe 2.0 has been implemented in Java using
the Eclipse Modeling Framework (EMF) 1 (see Section 2.5.2).

The metamodel shown in Figure 8.2 has been implemented as Ecore meta-
model. VaVe 2.0 makes use of the Vitruvius framework (see Section 2.6.2)
for product derivation and consistency preservation. Speci�cally, the Delta
Module in the VaVe 2.0 metamodel refers to the EChanges in the change de-
scriptions metamodel of Vitruvius, which de�nes a metaclass for each type
of change that is possible in Ecore models. Furthermore, the V-SUM Product

(which represents the Product concept of the uni�ed conceptual model) has
been implemented as a specialization of the V-SUM of Vitruvius and thus
inherits support for multiple heterogeneous artifact models and consistency
preservation among them (see Section 8.2.2). For the latter, the uni�ed ap-
proach makes use of the Reactions language of Vitruvius (see Section 2.6.2)

1 https://www.eclipse.org/modeling/emf/

126

https://www.eclipse.org/modeling/emf/


8.8. Expected Bene�ts

that is used for de�ning unidirectional transformations that preserve consis-
tency between elements of the same or di�erent models. The uni�ed view-
based operations were implemented as methods of the VaVe 2.0 Unified

System according to the speci�cations given in Listings 8.1, 8.2, 8.3 and 8.4.

8.8. Expected Benefits

The proposed uni�ed approach, its architecture, integration with the Vitru-
vius approach, work�ow and consistency preservation has been explained.
This section comprises a discussion on the expected bene�ts of the uni�ed
approach.

Krüger and Berger [127] explain how missing proactive tracking of variability
evolution may lead to additional costs. To this end, the uni�ed approach
addresses this shortcoming by tracking the revision history of the variable
system as well as of its comprised features while explicitly relating both.
Consequently, costs can be reduced, the need for retrospective information
mining is eliminated, and immediate analyses of evolution history is enabled,
i.e., how often a feature changes in the course of a particular time period.

By following product line development based on product views, as encour-
aged by the upcoming research area of VarCS (see De�nition 2.2), limitations
of existing variability management practices, such as manually integrating
changes into the reusable platform, can be overcome [141, 214]. The user
develops the variable system based on a product where variability is fully
bound (i.e., each feature is either selected or deselected) while variability
is managed fully automatically by employing a variability mechanism in-
ternally and hidden from the user. Moreover, other products bene�t from
improvements performed in one particular product, since these changes are
integrated into the reusable platform and, thus, can be propagated to other
products. This not only eases the transition from tedious clone-and-own
development to a systematic evolution process for variable systems, it also
reduces cognitive complexity [212, pp. 128] since several tasks are performed
fully automatically (e.g., adding a feature automatically creates a new system
revision, a new feature revision, links them respectively and computes a
corresponding mapping). Thus, the uni�ed approach is expected to reduce
the complexity as well as manual e�ort when managing a variable system.
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Figure 8.11.:Contribution of Chapter 8 of the thesis.

Finally, the uni�ed approach helps to detect and repair the variability-related
inconsistencies caused or repaired in the solution space (i..e, Types 2, 5, and
6), ranging from hints to developers for Type 2 to fully automated repairs for
Types 5 and 6. As a consequence, the uni�ed approach is therefore expected
to reduce costs and improve the system’s quality.

8.9. Summary and Conclusion

This chapter presented the uni�ed approach to support consistent manage-
ment of variable systems (C5). The uni�ed approach re�nes the uni�ed con-
ceptual model (C1) and uni�ed operations (C2)), augmenting the uni�ed op-
erations with consistency preservation. Fragments of the uni�ed conceptual
model are re�ned using Deltas and feature modeling is enabled through re-
�ning Constraints by Tree Constraints and Cross-tree Constraints. The
evolution of a variable system is supported based on a product or domain
view (i.e., the feature model). Consequently, no speci�c variability mecha-
nisms for di�erent types of artifacts are required anymore since variability is
already fully bound in the product. Moreover, multiple tasks are performed

128



8.9. Summary and Conclusion

fully automatically to support the evolution of a variable system, such as
the automated addition of system revisions and feature revisions upon the
integration of changes, while also reducing cognitive complexity for the de-
veloper [212, pp. 128]. Since the uni�ed approach builds on insights from the
uni�cation (i.e., C1 and C2), it combines the advantages of the analyzed tools.
Additionally, it closes the gap of handling Feature Revisions and System

Revisions simultaneously, which additionally enables it to support systems
that vary in space and time holistically.

Moreover, the uni�ed approach supports the consistent evolution of a variable
system. It o�ers consistency preservation for dealing with variability-related
inconsistency types that are either caused or repaired in the solution space
(i.e., Type 2, 5, and 6).
Adding features or removing constraints between them increases the con-
�gurable space and enables new con�gurations that may not (yet) lead to
valid product implementations due to missing implementation of new fea-
ture(s) or feature interaction(s) (Type 2). While the uni�ed approach cannot
repair such inconsistencies fully automatically, it supports the user in in-
creasing the awareness of potential inconsistencies by providing hints in
the form of all new features or new valid feature combinations for which
no implementation has been provided yet. If a feature dependency has been
added on implementation level that is not captured by the feature model,
products with an inconsistent implementation may be externalized (Type 5).
The uni�ed approach performs a dependency analysis between deltas of the
Unified System and, if necessary, lifts the dependencies to the feature model
by automatically adding missing constraints. Finally, changing redundant
or dependent information across heterogeneous artifacts of the same prod-
uct can lead to inconsistencies in other artifact types and products due to
redundancies or dependencies (Type 6). To this end, the uni�ed approach
integrates the consistency preserving mechanism of the Vitruvius approach
to propagate changes between dependent artifact models as well as when
deriving a product to ensure consistency among all artifact models of the
respective product. Particularly, the uni�ed approach employs the Deltas

used in Vitruvius and specializes its V-SUM as Product. Thus, consistency
preserving mechanisms of Vitruvius are leveraged while it is extended with
concepts of the problem space to enable uni�ed variability management.

This contribution addresses RQ 2.2 and RQ 2.3. Figure 6.12 shows an overview
of all contributions of the thesis and highlights the contribution of this chapter
in grey.
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Part III.

Evaluation and Discussion





9. Overview

Chapter 5-Chapter 8 described main contributions of this thesis to support
consistent management of variable systems composed of heterogeneous ar-
tifacts. This encompassed uni�ed concepts to cope with variability in space
and time (C1), uni�ed operations (C2), variability-related inconsistencies that
may occur during the evolution of a system (C4) and, �nally, the uni�ed
approach building upon the preceding contributions (C5).

Part III presents an empirical evaluation of the proposed contributions, struc-
tured according to the GQMmethod [27]. First, the general evaluation process
of the uni�cation results is explained in Chapter 10. To this end, metrics
for uni�cation are proposed (C3). Subsequently, the conducted evaluation
is presented for the uni�ed conceptual model in Chapter 11, for the uni�ed
operations in Chapter 12, and for the uni�ed approach in Chapter 13. For
each contribution, the evaluation goal, questions, evaluation process and
results are discussed.
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10. Evaluation Process and Metrics

This chapter builds on publications at SPLC [7] and Empirical Software Engi-
neering [5].

This chapter describes the performed evaluation process in a generalized way
for the uni�ed conceptual model (C1) and uni�ed operations (C2) with the
purpose of reproducability. The goal of the evaluation is to make reliable
statements about whether individual tool elements have been appropriately
uni�ed as well as about their applicability.

Referring to problem statement P1, the following research question is asked:

RQ 1.3 How can the appropriateness of a uni�cation with respect to the
studied approaches be quanti�ed?

Section 10.1 describes the general evaluation process for the uni�ed concep-
tual model (C1) and uni�ed operations (C2). Section 10.2 introduces and
illustrates the conceived metrics for uni�cation (C3). A summary in Sec-
tion 10.3 closes this chapter.

This chapter thus constitutes the contribution C3.

10.1. General Evaluation Process

Figure 10.1 shows the general two-step evaluation process of the uni�cation.
Based on the construction mappings (between the uni�ed elements and each
tool’s elements), I conceived metrics for uni�cation. The metrics are based on
properties for the evaluation of modeling languages proposed by Guizzardi et
al. [90] (Step 5 ). Themetric results indicate the appropriateness of the uni�ed
elements regarding granularity and coverage with respect to the individual
tool elements. Moreover, the application of uni�ed elements is exemplary
demonstrated (Step 6 ), which concludes the evaluation process.
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Figure 10.1.:General evaluation process.

10.2. Metrics for Unification

Evaluating the appropriateness of an abstraction for a diverse set of tools is
di�cult as the abstraction shall describe a common mental model that suites
each analyzed tool. Unfortunately, no techniques are provided in the literature
yet to quantify and assess the appropriateness of an abstraction. The closest
work is proposed by Guizzardi et al. [90]. The authors introduce a framework
to evaluate the appropriateness of modeling languages comprising the prop-
erties laconic, lucid, complete, and sound. This thesis contributes metrics for
evaluating the appropriateness of a uni�cation (C3) based on this framework.
Although the same properties are used, their framework is augmented in three
ways: First, instead of a tool’s language, its abstraction in the form of the tool’s
structure and operations is considered. Second, metrics are introduced that
range from 0.0 to 1.0 to measure to what extent these properties hold for an
abstraction (i.e., the uni�ed model and operations) and a tool. Finally, metrics
are added to compare an abstraction not just to a single tool but to a set of tools.
The metrics laconicity and lucidity quantify the granularity of the abstraction.
The metrics completeness and soundness quantify their coverage. Each metric
is de�ned for a uni�cation𝑈 and a tool 𝑇 ∈ T , where T is the set of studied
tools. The uni�cation𝑈 is a set of uni�ed elements 𝑢 ∈ 𝑈 . A tool𝑇 ∈ T is a set
of tool elements 𝑡 ∈ 𝑇 . R𝑈

𝑇
⊆ 𝑈 ×𝑇 is the set ofmappings of uni�ed elements in

𝑈 onto tool elements in𝑇 . Figure 10.2 shows graphical illustrations of the four
metrics. In the following, each metric is de�ned and an example is provided.

De�nition 10.1 presents the metric laconicity. As an example, consider Fig-
ure 10.2a, where all four tool elements (right side) are laconic. Consequently,
the laconicity of the abstraction (left side) with respect to the tool (right side)
is 1. In Figure 10.2e, two of the three tool elements (right side) are laconic.
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Abstraction Tool

(a) Laconicity = 1.0

Abstraction Tool

(b) Lucidity = 1.0

Abstraction Tool

(c)Completeness = 1.0

Abstraction Tool

(d) Soundness = 1.0

Abstraction Tool

(e) Laconicity = 2
3 =

0.67

Abstraction Tool

(f) Lucidity = 2
3 = 0.67

Abstraction Tool

(g) Complete. = 2
3 =

0.67

Abstraction Tool

(h) Soundness = 2
3 =

0.67

Figure 10.2.:Overview of the uni�cation metrics. Abstraction refers to the uni�cation elements
and tool refers to a tool’s elements [5, Fig. 6].

Consequently, the laconicity of the abstraction (left side) with respect to the
tool (right side) is 0.67.

De�nition 10.1 (Metric laconicity [5, p. 29]) A tool’s element 𝑡 is laconic,
i� it implements at most one uni�ed element𝑢 of the uni�cation𝑈 . Laconicity ∈
[0..1] (higher is better) is then the fraction of laconic tool elements:

laconic(𝑈 ,𝑇 , 𝑡) =
{
1 if |{𝑢 | (𝑢, 𝑡) ∈ R𝑈

𝑇
}| ≤ 1

0 otherwise

laconicity(𝑈 ,𝑇 ) =
∑

𝑡 ∈𝑇 laconic(𝑈 ,𝑇 , 𝑡)
|𝑇 |

Low laconicity indicates that elements of the uni�cation may be too �ne-grained,
i.e., there are redundant elements in the uni�cation that should be merged.

De�nition 10.2 presents the metric lucidity. As an example, consider Fig-
ure 10.2b, where all four uni�cation elements (left side) are lucid. Conse-
quently, the lucidity of the abstraction (left side) with respect to the tool (right
side) is 1. In Figure 10.2f, two of the three uni�cation elements (left side) are
lucid. Consequently, the lucidity of the abstraction (left side) with respect to
the tool (right side) is 0.67.
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De�nition 10.2 (Metric lucidity [5, p. 29]) A uni�cation’s element 𝑢 is lu-
cid, i� it is implemented by at most one element 𝑡 of a tool 𝑇 . Lucidity ∈ [0..1]
(higher is better) is then the fraction of lucid uni�cation elements:

lucid(𝑈 ,𝑇 ,𝑢) =
{
1 if |{𝑡 | (𝑚, 𝑡) ∈ R𝑈

𝑇
}| ≤ 1

0 otherwise

lucidity(𝑈 ,𝑇 ) =
∑

𝑚∈𝑀 lucid(𝑈 ,𝑇 ,𝑢)
|𝑈 |

Low lucidity indicates that elements of the uni�cation may be too coarse-grained,
meaning that there are unspeci�c elements in the uni�cation that should be
split up.

De�nition 10.3 presents the metric completeness. As an example, consider Fig-
ure 10.2c, where all three tool elements (right side) are complete. Conse-
quently, the completeness of the abstraction (left side) with respect to the
tool (right side) is 1. In Figure 10.2g, two of the three tool elements (right
side) are complete. Thus, the completeness of the abstraction (left side) with
respect to the tool (right side) is 0.67.

De�nition 10.3 (Metric completeness [5, p. 30]) A tool’s element 𝑡 is com-
plete, i� it is represented by at least one element𝑢 in the uni�cation𝑈 . Complete-
ness ∈ [0..1] (higher is better) is then the fraction of complete tool elements:

complete(𝑈 ,𝑇 , 𝑡) =
{
1 if |{𝑢 | (𝑢, 𝑡) ∈ R𝑈

𝑇
}| ≥ 1

0 otherwise

completeness(𝑈 ,𝑇 ) =
∑

𝑡 ∈𝑇 complete(𝑈 ,𝑇 , 𝑡)
|𝑇 |

Low completeness indicates that the uni�cation may be missing concepts that
should be added.

De�nition 10.4 presents the soundness metric. As an example, consider Fig-
ure 10.2d, where all three uni�cation elements (left side) are sound. Conse-
quently, the soundness of the abstraction (left side) with respect to the tool
(right side) is 1. In Figure 10.2h, two of the three uni�cation elements (left
side) are sound. Consequently, the soundness of the abstraction (left side)
with respect to the tool (right side) is 0.67.
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De�nition 10.4 (Metric soundness [5, p. 30]) A uni�cation’s element 𝑢 is
sound, i� it is implemented by at least one element 𝑡 in the tool𝑇 . Soundness ∈
[0..1] (higher is better) is then the fraction of sound uni�cation elements:

sound(𝑈 ,𝑇 ,𝑢) =
{
1 if |{𝑡 | (𝑢, 𝑡) ∈ R𝑈

𝑇
}| ≥ 1

0 otherwise

soundness(𝑈 ,𝑇 ) =
∑

𝑢∈𝑈 sound(𝑈 ,𝑇 ,𝑢)
|𝑈 |

Low soundness indicates that the uni�cation may include unused elements that
should be removed.

Finally, in De�nition 10.5, metrics are speci�ed for a �nite set of tools T to
quantify whether the uni�cation is of appropriate granularity and coverage
with respect to all selected tools T . Laconicity and completeness for a set of
tools are de�ned such that the properties laconic and complete are evaluated
for the union of all tools’ constructs. Lucidity and soundness for a set of tools
are de�ned such that respectively all tools (min) and at least one tool (max)
must satisfy the corresponding property for each uni�ed element. Note that
tool elements that map to the same uni�cation element are not considered as
equivalent. Therefore, tool elements are unique (i.e., for all 𝑇1,𝑇2 ∈ T with
𝑇1 ≠ 𝑇2 it holds that 𝑇1 ∩𝑇2 = ∅).

De�nition 10.5 (Metrics over a set of tools [5, p. 31]) A uni�cation ele-
ment 𝑢 is lucid, if it is lucid in all tools𝑇 ∈ T . A uni�cation element 𝑢 is sound,
if it is sound in at least one tool 𝑇 ∈ T :

laconicity(𝑈 ,T) = laconicity
(
𝑈 ,

⋃
𝑇 ∈ T

𝑇

)
lucidity(𝑈 ,T) =

∑
𝑢∈𝑀

(
min𝑇 ∈T lucid(𝑈 ,𝑇 ,𝑢)

)
|𝑈 |

completeness(𝑈 ,T) = completeness
(
𝑈 ,

⋃
𝑇 ∈ T

𝑇

)
soundness(𝑈 ,T) =

∑
𝑢∈𝑈

(
max𝑇 ∈T sound(𝑈 ,𝑇 ,𝑢)

)
|𝑈 |
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Figure 10.3.:Contribution of Chapter 10 of the thesis.

10.3. Summary

This chapter presented the general evaluation process with respect to the
appropriateness and applicability of a conceived uni�cation (i.e., the uni�ed
conceptual model and uni�ed operations) performed in this thesis to fos-
ter reproducability. The evaluation process comprises the computation of
the metrics for uni�cation (C3) as well as an exemplary application of the
uni�cation. The metrics have been conceived based on properties from the
literature proposed by Guizzardi et al. [90] and quantify the appropriateness
of a uni�cation with respect to a set of tools based on the granularity and
coverage of the uni�ed elements.

Thus, this contribution addresses RQ 1.3. Figure 10.3 shows an overview of
all contributions and highlights the contribution of this chapter in grey.
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11. Evaluation of the Unified
Conceptual Model

This chapter builds on publications at SPLC [7] and Empirical Software En-
gineering [5]. An open-access repository comprises all artifacts related to the
construction and evaluation of the uni�ed conceptual model.1

Chapter 5 presented the uni�ed conceptual model for variability in space
and time (C1). This chapter presents its evaluation based on the GQM
method [27].

Section 11.1 introduces the goals and questions of the evaluation. Section 11.2
presents the specialized evaluation process of the uni�ed conceptual model.
Section 11.3 encompasses the �rst part of the evaluation which comprises
a qualitative analysis based on an expert survey. A quantitative analysis
follows in Section 11.4 and uses the uni�cation metrics introduced in Sec-
tion 10.2. The second part of the evaluation demonstrates an application of
the uni�ed conceptual model in Section 11.5. Degrees of freedom for re�ning
the conceptual model are presented as well as the derivation of two exem-
plary tools. Additionally, Section 11.6 presents a formal concept analysis to
provide additional insights of the uni�cation. Section 11.7 o�ers answers to
the posed questions while threats to validity are considered in Section 11.8.
Section 11.9 comprises a discussion of the limitations and future work of the
uni�ed conceptual model. A summary of the main insights in Section 11.10
closes this chapter.

1 https://doi.org/10.5281/zenodo.5751916
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11. Evaluation of the Uni�ed Conceptual Model

11.1. Goals and Questions

The uni�ed conceptual model aims at appropriately unifying concepts and
relations for variability in space, time, and both based on the selected tools.
The following three goals regarding granularity, coverage and applicability
shall be met by the conceptual model:

Granularity: The uni�ed conceptual model shall describe concepts with ap-
propriate granularity that are neither unnecessarily �ne-grained nor
unnecessarily coarse-grained.

Coverage: The uni�ed conceptual model shall comprise all concepts and
relations used by the tools selected for uni�cation, but no more than
necessary.

Applicability: The uni�ed conceptual model shall serve as foundation to
derive new tools that are able to cope with variability in space and time.

Based on these goals, the following questions are asked:

Q 1.1 To what extent is the uni�ed conceptual model of appropriate gran-
ularity?

Q 1.2 To what extent is the uni�ed conceptual model of appropriate cover-
age?

Q 1.3 To what extent is the uni�ed conceptual model applicable?

11.2. Specialized Evaluation Process

Figure 11.1 shows the evaluation process of the uni�ed conceptual model. It
follows the construction process shown in Figure 5.1 and extends the general
evaluation process (see Section 10.1) by a qualitative analysis that encom-
passes an expert survey. Step 5 represents the expert survey based on
questionnaires with the uni�ed conceptual model (as input) which results in
the validation mapping (as output). The mapping is input to the quantitative
analysis in Step 6 where metrics for uni�cation are computed (see Sec-
tion 10.2). Finally, Step 7 comprises an exemplary application of the uni�ed
conceptual model based on two illustrating tools to demonstrate possible
re�nements as well as the computation of the uni�cation metrics.
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Figure 11.1.: Evaluation process of the uni�ed conceptual model. Adapted from [5, Fig. 5].

Qualitative analysis: The qualitative analysis comprised an expert survey
with one expert per tool. I conducted the expert survey based on question-
naires. Each expert received a questionnaire to create a mapping between
tool constructs, their relations as well as well-formedness rules and the con-
cepts, relations and well-formedness rules of the uni�ed conceptual model.
Additionally, experts were asked to document all tool constructs and relations
that could not be mapped to the uni�ed conceptual model.

Quantitative analysis: The quantitative analysis involved an application of
the metrics for uni�cation (see Section 10.2). I computed the metrics for the
uni�ed conceptual model based on the created mappings for each tool and, in
addition, an aggregated metric value over all tools. The metrics laconicity and
lucidity quantify the granularity of concepts (i.e., whether the concepts are as
speci�c as possible while still being generic enough). Themetrics completeness
and soundness quantify the coverage of concepts and relations.

Exemplary Application: To demonstrate applicability, I created two �ctive
tools based on the uni�ed conceptual model. Degrees of freedom for re�ning
the uni�ed conceptual model are explained as well as the design choices of
each tool. Additionally, the metrics for uni�cation are computed for each tool
to illustrate them in greater detail.

11.3. Qualitative Analysis

In the following, Step 5 of Figure 11.1 is described encompassing the expert
questionnaires and the resulting validation mappings.
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11.3.1. Expert Questionnaire

For each tool, one expert completed a questionnaire for mapping the tool’s
constructs, relations, and well-formedness rules to the concepts, relations and
well-formedness rules of the uni�ed conceptual model. The questionnaire
guide consisted of three parts. First, the uni�ed conceptual model along with
a de�nition of each concept and relation was introduced. Second, the guide
asked for a mapping between each concept and relation of the conceptual
model and a semantically equivalent construct and relation of the respective
tool (also asking for constructs and relations that could not be mapped by the
tool experts). Finally, well-formedness rules of the conceptual model were
presented, asking for a mapping to well-formedness rules employed by the
respective tool.

11.3.2. Validation Mapping

The validation mappings were derived from the completed expert question-
naires. To obtain an equivalent comparison between the tools and the model,
the mappings were performed on the conceptual level of the tools. Since
abstract concepts (such as Option and Revision) cannot be instantiated, they
were not considered in a mapping.

11.3.3. Results

The validation mappings of concepts, relations, and well-formedness rules
are shown in Table 11.1, Table 11.2, and Table 11.3.

Table 11.1 shows the mapping of uni�ed model concepts (rows) to the con-
structs of each tool (columns). While all tools employ constructs for the �ve
concepts Unified System, Fragment, Mapping, Configuration, and Product,
the used terminology and their semantics di�er considerably across the tools.
For example, the concept Fragment is realized by the constructs Blob (�le
content) and Tree Object (directory) in the tool Git, while equivalent con-
structs in SVN are called File Node and Directory Node. SuperMod and ECCO
refer to Fragment respectively as Product Element and Artifact. Moreover,
delta-oriented tools (i.e., SiPL, DeltaEcore, DarwinSPL, VaVe) use the Core Model

and Delta Module as Fragments. In some cases, the terminology used by the
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11.3. Qualitative Analysis

Table 11.1.:Validation Mapping: Results of mapping the constructs of each tool to the concepts
in the conceptual model [5, Tab. 1].
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1The concept exists at the conceptual level of the tool without an explicit construct in the
implementation.
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11. Evaluation of the Uni�ed Conceptual Model

di�erent tools is almost uniform. For instance, seven tools use the term
Configuration and six tools use the term Product. However, across all tools,
there are still �ve di�erent terms for Configuration and three di�erent terms
for Product. This shows that there is quite some disparity in terminology even
for the constructs with the highest consensus among the tools. Particularly
interesting to note are the cases where di�erent tools have constructs with the
same name but with di�erent semantics that map to di�erent model concepts.
For example, the tools VaVe, ECCO and FeatureIDE all have a construct named
Variant. However, in each tool, it maps to another model concept, namely
to Feature, Product and Configuration, respectively. Consequently, even
within just the SPLE community there are overloaded terms that are used to
refer to di�erent concepts. Furthermore, one can see how the studied tools
cover concepts for variability in space and/or time. Git and SVN use System
Revisions for variability in time, while FeatureIDE, pure::variants, and SiPL
use Features and Constraints for variability in space. All remaining tools
(i.e., ECCO, SuperMod, DeltaEcore, DarwinSPL, VaVe) cope with both variability
dimensions and involve the concept Feature in addition to System Revision

or Feature Revision. None of the studied tools deals both variability di-
mensions while also considering System Revision and Feature Revision,
as described in Section 5.2.2. Finally, a Mapping is understood equivalently
across all tools by connecting Fragments and Options. While for tools cop-
ing with variability in time a Mapping simply links a System Revision to
Fragments, the Mapping becomes more complex for tools that (additionally)
consider variability in space, as Fragments can potentially be linked to any
number of Features.

Table 11.2 shows whether relations among concepts of the uni�ed conceptual
model (rows) also exist among the respective constructs of each of the
studied tools (columns). All tools employ the �ve relations: Fragment

has * Fragment, Mapping has * Fragment, Configuration has * Option,
Unified System has * Fragment and Unified System has * Mapping.
Whether the remaining relations are supported by a tool or not depends
on the supported variability dimension. Moreover, the uni�ed conceptual
model lacks the remotes relation that is used by the tools Git and ECCO by
which repositories (i.e., Unified Systems) can refer to each other to support
distributed development.

Table 11.3 shows the mapping of the well-formedness rules (see Section 5.2.4)
of the uni�ed conceptual model to each tool. A tool either satis�es a rule by
construction (�), enforces it at all times ( ), evaluates it but does not enforce
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11.3. Qualitative Analysis

Table 11.2.:Validation Mapping: Results of mapping the relations in each tool to the relations in
the conceptual model [5, Tab. 2].
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 The relations are identical. G# The cardinality of the relation in the conceptual model is less
restrictive than the cardinality of the relation in the tool.
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11. Evaluation of the Uni�ed Conceptual Model

Table 11.3.:Validation Mapping: Results of mapping the well-formedness rules of the conceptual
model to each tool [5, Tab. 3].

Rule

Tool FeatureIDE pure::variants SiPL SVN Git ECCO SuperMod DeltaEcore DarwinSPL VaVe

Rule 1 — — — � � — � � � �

Rule 2 — — — � � — � � � �

Rule 3 — — — � � — � � � �

Rule 4 �  �    �   �

Rule 5 # G# �    �   �

Rule 6   � — — — �   #

Rule 7 — — — — — — � —  —

Rule 8 — — — — — — � —  —

Rule 9 — — — — — — — — — —

Rule 10 — — — — — — � — � —

� The rule is satis�ed by construction.  The rule is enforced at all times. G# The rule is
evaluated, but not enforced. # The rule is neither evaluated nor enforced. — The rule does not

apply.

it ( G#), does not evaluate it (#), or the rule does not apply for the tool (—). If
a tool satis�es a rule by construction, it is not necessary to enforce or evaluate
it as the tool’s structure makes it impossible to create a violating state. For
instance, Rule 3 (see Listing 5.2) is satis�ed by construction in SVN and Git,
since they only employ System Revisions for which the Repository is the
only container. If a tool enforces a rule at all times, it guarantees its ful�llment
by means of checks. If a rule is violated, the causing change is prohibited
upfront or the system’s state is repaired. To this end, DeltaEcore enforces Rule 4
(see Listing 5.3) at all times by evaluating and ensuring the well-formedness of
a con�guration upon its creation. If a tool evaluates a rule but does not enforce
it, it only checks if the rule is violated, but does not enforce it by additional
actions if it is. For example, pure::variants evaluates Rule 5 (see Listing 5.3),
but supports the import of external Fragments. Moreover, some tools neither
evaluate nor enforce some rules even though they would be applicable. For
instance, FeatureIDE neither evaluates nor enforces Rule 5 and therefore allows
external Fragments to be used. Finally, a rule does not apply, if a tool neither
employs concepts nor relations the rule refers to. For instance, Rules 1–3 and
7–10 cannot be applied to tools that do not deal with variability in time.
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11.4. Quantitative Analysis

SuperMod, that supports System Revisions, satis�es most of the rules by
construction. For instance, it ensures Rule 1 and Rule 2 by employing a linear
sequence of revisions (instead of a revision graph) where every new revision
is appended at the end of the sequence. DarwinSPL achieves similar mapping
results while also using System Revisions, but enforces most rules. Further-
more, across all tools, either all or no well-formedness rules of the revision
graph (i.e., Rules 1–3) are satis�ed. Finally, Rule 9 is not applicable to any tool,
since no tool supports both System Revisions and Feature Revisions.

11.4. Quantitative Analysis

In the following, Step 6 of Figure 11.1 is described. It encompasses an
application of the metrics for uni�cation (see Section 10.2).

11.4.1. Metrics

The metrics laconicity (see De�nition 10.1) and lucidity (see De�nition 10.2)
quantify the granularity of concepts and relations of the uni�ed conceptual
model (Q 1.1) with respect to the elicited tools. The metrics completeness
(see De�nition 10.3) and soundness (see De�nition 10.4) quantify their cov-
erage (Q 1.2).

The uni�cation 𝑈 is the uni�ed conceptual model 𝑀 that is a set of model
concepts 𝑚 ∈ 𝑀 . A tool 𝑇 ∈ T is a set of tool constructs 𝑡 ∈ 𝑇 . Relations
are considered as concepts and constructs, too. The mappings of uni�ed
model concepts and relations in𝑀 onto tool constructs and relations in𝑇 are
displayed in Tables 11.1 and 11.2, respectively.

The conceptual model 𝑀 with the concepts Fragment (𝐹𝑇 ), Product (𝑃 ),
Unified System (𝑈𝑆), Mapping (𝑀), Feature (𝐹 ), System Revision (𝑆𝑅),
Feature Revision (𝐹𝑅), Configuration (𝐶), and Constraint (𝐶𝑇 ) yields the
set

𝑀 = {𝐹𝑇 , 𝑃,𝑈𝑆,𝑀, 𝐹, 𝑆𝑅, 𝐹𝑅,𝐶,𝐶𝑇 }
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11. Evaluation of the Uni�ed Conceptual Model

In the following, an example for each metric is shown by applying it to
DeltaEcore. For simplicity, in the example, we only consider uni�ed conceptual
model concepts and tool constructs and not their relations. The metrics are
thus computed based on the mapping in Table 11.1. DeltaEcore implements
nine constructs:

𝑇DeltaEcore ={Core Model,Delta Module, Product, Product Line,
Mapping Model, Feature,Version,Con�guration,Constraint}

Laconicity No tool construct in DeltaEcore maps to more than one model
concept, which indicates that the uni�ed conceptual model is not un-
necessarily �ne-grained. Thus, the laconicity with respect to DeltaEcore
is ideal:

laconicityDeltaEcore (𝑀,𝑇DeltaEcore) = 1+1+1+1+1+1+1+1+1
9 = 9

9 = 1.0

Lucidity The model concept Fragment maps to the two constructs Core

Model and Delta Module in DeltaEcore. All other model concepts are
either not implemented by any construct or by exactly one construct
in DeltaEcore and have no impact on the value of the metric. Thus, the
uni�ed conceptual model is slightly more coarse-grained and generic
than DeltaEcore and lucidity is fairly high:

lucidityDeltaEcore (𝑀,𝑇DeltaEcore) = 0+1+1+1+1+1+1+1+1
9 = 8

9 = 0.889

Completeness There are no constructs in DeltaEcore that do not map to
any model concept, i.e., all its constructs correspond to at least one
model concept. This indicates that the uni�ed conceptual model is not
missing any concepts to fully cover DeltaEcore. The completeness with
respect to DeltaEcore is thus ideal:

completenessDeltaEcore (𝑀,𝑇DeltaEcore) = 1+1+1+1+1+1+1+1+1
9 = 9

9 = 1.0

Soudness The model concept System Revision cannot be mapped to any
construct in DeltaEcore. All other model concepts are implemented by
at least one construct in DeltaEcore. This indicates that there is one
concept in the model that is not required by DeltaEcore. The soundness
of the uni�ed conceptual model with respect to DeltaEcore is thus fairly
high, albeit not ideal:

soundnessDeltaEcore (𝑀,𝑇DeltaEcore) = 1+1+1+1+1+0+1+1+1
9 = 8

9 = 0.889
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11.4. Quantitative Analysis

11.4.2. Results

Table 11.4 shows the values of the four metrics (columns) for each tool (rows).
The values are presented separately for concepts and relations of variability
in space, time, both, and uni�ed concepts and relations as well as in total.
In case of lucidity and soundness, each row shows the percentage and the
absolute number of conceptual model concepts and relations that satisfy
each property. In case of laconicity and completeness, each row shows the
percentage and the absolute number of tool constructs and relations that
satisfy each property. A horizontal line indicates that a tool does not sup-
port a particular variability dimension or their combination. For instance,
the tool SiPL supports variability in space but not variability in time (and,
consequently, also no concepts and relations of both dimensions, such as the
Feature Revision). The values for laconicity, lucidity, and completeness are
between 92% and 100% for all analyzed tools. For example, lucidity of the
conceptual model with respect to Git is 96%, as the concept Fragment maps to
the two constructs Tree Object and Blob. As another example, the concep-
tual model is 93 % laconic with respect to SVN, because the Revision Number

represents both the model concepts System Revision and Configuration.
Since there is no tool that implements all concepts and relations of the uni�ed
conceptual model, the soundness values are generally lower. Thus, for tools
that do not support one of the variability dimensions or their combination,
the soundness value is even zero. This is, for example, the case for all tools
that do not support variability in time (i.e., the concept System Revision and
the two respective relations Unified System has * System Revisions and
Revision has * Successor and * Predecessor). Vice versa, tools that only
support variability in time (i.e, SVN, Git) have a soundness value of zero for
variability in space. Moreover, tools that support variability in space and
time via Feature Revisions but not via System Revisions reach a sound-
ness value of 50% for variability in both dimensions, since they support the
Feature Revision concept and the containment relation to the Feature, but
not the two enables relations of the System Revision.

Table 11.5 shows the aggregated results over all tools. The four metrics are
shown as columns for concepts/constructs and relations and concepts/con-
structs and relations for variability in space, time, both, and uni�ed as rows.
Metric values are at or close to 100%. The lower value for laconicity is due
to the construct Commit in Git and the contruct Revision in SVN that each
represent the two concepts Configuration and System Revision. Note that
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11. Evaluation of the Uni�ed Conceptual Model

Conceptual Model Tool System
refinement instantiation

Figure 11.2.:Application stages of the conceptual model [5, Fig. 9].

the mapping to Configuration is debatable, since Git and SVN do not have an
explicit construct for a Configuration, as it would simply consist of a single
commit hash or revision number, respectively. The lower value for laconicity
is due to several constructs representing the Fragment concept. For example,
delta-oriented tools employ the constructs Core Model and Delta Modules to
represent the Fragment. Considering completeness, self-relating repositories
(such as in Git and ECCO) are not represented by the conceptual model. Finally,
the conceptual model is entirely sound over all tools, as for every concept
and relation there is at least one tool that implements it.

11.5. Exemplary Application

This section describes Step 7 shown in Figure 11.1 to demonstrate the ap-
plicability of the uni�ed conceptual model. First, possible re�nements of the
conceptual model are explained when designing a conforming tool. Then, two
exemplary tool metamodels are introduced by re�ning the uni�ed conceptual
model: the �rst tool uses a feature model and Feature Revisions, while the
second tool employs both System Revisions and Feature Revisions. Finally,
the computation of the uni�cation metrics for both tools is demonstrated.

Figure 11.2 shows the two subsequent application stages for applying the
conceptual model. In the �rst step, the conceptual model is re�ned by spec-
ifying abstract model concepts, such as Fragments, with concrete constructs,
such as Deltas. In the second step, the resulting tool is instantiated for a
system. While tool developers perform the re�nement step, users implicitly
perform the second step by applying the tool. UML class diagrams are used
to illustrate the result of the �rst step while UML object diagrams are used
to illustrate the result of the second step for both tools.
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11.5. Exemplary Application

Table 11.4.:Metric Results for each tool individually [5, Tab. 4].
for laconicity lucidity completeness soundness

F
e
a
t
u
r
e

I
D
E

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time − (0/0) 100% (3/3) − (0/0) 0% (0/3)
Both − (0/0) 100% (4/4) − (0/0) 0% (0/4)

Uni�ed 100% (12/12) 100% (12/12) 100% (12/12) 100% (12/12)
Total 100% (17/17) 100% (24/24) 100% (17/17) 71% (17/24)

p
u
r
e
:
:

v
a
r
i
a
n
t
s

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time − (0/0) 100% (3/3) − (0/0) 0% (0/3)
Both − (0/0) 100% (4/4) − (0/0) 0% (0/4)

Uni�ed 100% (12/12) 100% (12/12) 100% (12/12) 100% (12/12)
Total 100% (17/17) 100% (24/24) 100% (17/17) 71% (17/24)

S
i
P
L

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time − (0/0) 100% (3/3) − (0/0) 0% (0/3)
Both − (0/0) 100% (4/4) − (0/0) 0% (0/4)

Uni�ed 100% (11/11) 92% (11/12) 100% (11/11) 100% (12/12)
Total 100% (16/16) 96% (23/24) 100% (16/16) 71% (17/24)

S
V
N

Space − (0/0) 100% (5/5) − (0/0) 0% (0/5)
Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Both − (0/0) 100% (4/4) − (0/0) 0% (0/4)

Uni�ed 92% (11/12) 92% (11/12) 100% (12/12) 100% (12/12)
Total 93% (14/15) 96% (23/24) 100% (15/15) 63% (15/24)

G
i
t

Space − (0/0) 100% (5/5) − (0/0) 0% (0/5)
Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Both − (0/0) 100% (4/4) − (0/0) 0% (0/4)

Uni�ed 92% (12/13) 92% (11/12) 92% (12/13) 100% (12/12)
Total 94% (15/16) 96% (23/24) 94% (15/16) 63% (15/24)

E
C
C
O

Space 100% (2/2) 100% (5/5) 100% (2/2) 40% (2/5)
Time − (0/0) 100% (3/3) − (0/0) 0% (0/3)
Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Uni�ed 100% (12/12) 100% (12/12) 92% (11/12) 100% (12/12)
Total 100% (16/16) 100% (24/24) 94% (15/16) 67% (16/24)

S
u
p
e
r

M
o
d

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Uni�ed 100% (11/11) 100% (12/12) 100% (11/11) 100% (12/12)
Total 100% (21/21) 100% (24/24) 100% (21/21) 92% (22/24)

D
e
l
t
a

E
c
o
r
e

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time 100% (1/1) 100% (3/3) 100% (1/1) 0% (0/3)
Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Uni�ed 100% (12/12) 92% (11/12) 100% (12/12) 100% (12/12)
Total 100% (20/20) 96% (23/24) 100% (20/20) 79% (19/24)

D
a
r
w
i
n

S
P
L

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Uni�ed 100% (12/12) 92% (11/12) 100% (12/12) 100% (12/12)
Total 100% (22/22) 96% (23/24) 100% (22/22) 92% (22/24)

V
a
V
e

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time 100% (1/1) 100% (3/3) 100% (1/1) 0% (0/3)
Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Uni�ed 100% (11/11) 92% (11/12) 100% (11/11) 100% (12/12)
Total 100% (19/19) 96% (23/24) 100% (19/19) 79% (19/24)
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Table 11.5.:Metric results over all tools [5, Tab. 5].

Kind for laconicity lucidity completeness soundness

C
o
n
c
e
p
t
/

C
o
n
s
t
r
u
c
t Space 100% (15/15) 100% (2/2) 100% (15/15) 100% (2/2)

Time 100% (4/4) 100% (1/1) 100% (4/4) 100% (1/1)
Both 100% (3/3) 100% (1/1) 100% (3/3) 100% (1/1)

Uni�ed 96% (48/50) 80% (4/5) 100% (50/50) 100% (5/5)
Total 97% (70/72) 89% (8/9) 100% (72/72) 100% (9/9)

R
e
l
a
t
i
o
n

Space 100% (22/22) 100% (3/3) 100% (22/22) 100% (3/3)
Time 100% (10/10) 100% (2/2) 100% (10/10) 100% (2/2)
Both 100% (7/7) 100% (3/3) 100% (7/7) 100% (3/3)

Uni�ed 100% (68/68) 100% (7/7) 97% (66/68) 100% (7/7)
Total 100% (107/107) 100% (15/15) 98% (105/107) 100% (15/15)

A
l
l

Space 100% (37/37) 100% (5/5) 100% (37/37) 100% (5/5)
Time 100% (14/14) 100% (3/3) 100% (14/14) 100% (3/3)
Both 100% (10/10) 100% (4/4) 100% (10/10) 100% (4/4)

Uni�ed 98% (116/118) 92% (11/12) 98% (116/118) 100% (12/12)
Total 99% (177/179) 96% (23/24) 99% (177/179) 100% (24/24)

11.5.1. Refinement Process of the Conceptual Model

To develop a conforming tool, the developer has to decide between several
degrees of freedom. Speci�cally, concrete subclassesmust extend non-abstract
concepts. For example, if a tool uses featuremodeling, the Constraint concept
may be re�ned by concrete subclasses to represent alternative or mandatory
Features. Abstract concepts such as Feature Option, Option, and Revision

are not supposed to be specialized when designing tools based on the uni�ed
conceptual model. In the following, the degrees of freedom for re�ning and
applying the conceptual model are introduced.

Revision. The Revision concept can be re�ned by Feature Revisions, System
Revisions or a combination of both revision types.

Constraint. The Constraint can be extended by subclasses and re�ned by
attributes, e.g., to express optional Features or cross-tree constraints
in a feature model.

Fragment. Fragments can be re�ned analogously to Constraints. For in-
stance, by employing a Core Model and Delta Modules in case a trans-
formational variability mechanism is used to derive a Product.
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11.5. Exemplary Application

Mapping. This concept can be re�ned to express relations between Options

and Fragments. For instance, by using Boolean expressions.

Configuration. The re�nement of the Configuration concept is optional.
Developers may use this concept directly as it is in the conceptual
model (i.e., a set of references to Options) or re�ne it similar to a
Mapping. Also, its containment in the Unified System is considered
optional for representing non-persistent Configurations.

In the following, two exemplary tool re�nements are introduced encompass-
ing design choices, the resulting metamodels, a computation of the metrics
for uni�cation and an exemplary instantiation based on the running example
of the Car system.

11.5.2. Feature-Revision / Transformational Tool𝑇𝑇

Figure 11.3 shows the metamodel for the exemplary tool 𝑇𝑇 resulting from
re�ning the conceptual model. It employs a transformational variability
mechanism.

Design Decisions. The tool 𝑇𝑇 was created by extending and re�ning the
uni�ed conceptual model as described above. Added concepts are high-
lighted with a hatched area and are the Change, Delta Module, Expression,
Cross-tree Constraint, and Tree Constraint). Unused concepts of the con-
ceptual model are highlighted in red (i.e., System Revision and its relations).
Identical concepts and relations to the conceptual model are depicted as they
are within that model. Furthermore, attributes were added (e.g., value, or
id) to several concepts. The following design decisions were incorporated
to derive the tool’s metamodel.

Revision: Feature Revisions. Feature Revisions are employed as the only
type of revision. While incorporating System Revisions jointly with
Feature Revisions o�ers many advantages, for this example, both
types of revisions were not combined to reduce complexity.

Constraint: Feature Model. The Constraint concept is specialized by the
two subclasses Tree Constraint and Cross-tree Constraint. Tree
Constraints can only refer to Features. Cross-tree Constraints can
refer to Feature Options (i.e., Features and Feature Revisions) via
a Boolean expression represented as a tree where nodes are operators
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Figure 11.3.: Feature-revision / transformational tool model𝑇𝑇 [5, Fig. 10].

and leafs are Feature Options. For space reasons, these details are
omitted from the metamodel.

Fragment: Delta Module, Change. In the exemplary instantiation, deltas are
used to implement Fragments and to compose Products. Therefore,
the new constructs Delta Module and Change are added to the meta-
model. A delta module comprises an ordered cohesive set of changes
and can require other delta modules. A change can be of additive or
subtractive nature and thus be used to add or delete a Fragment (i.e.,
value) at a certain position (i.e., path). A String value can be used for
textual Fragments, although the value is not limited to text.

Mapping: Boolean Expression. The relation between a Mapping and Options
is represented with a Boolean expression.

Configuration: No Containment in Unified System. The Configuration is
not considered as part of the Unified System and therefore not
contained in the tool’s metamodel.

Metrics Computation.

The metrics for uni�cation (see Section 11.4.1) are computed for the uni�ed
conceptual model with respect to the constructs of 𝑇𝑇 . It de�nes nine
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non-abstract constructs: 𝑇𝑇 = {Unified System, Feature, Tree Constraint,
Cross-tree Constraint, Feature Revision, Configuration, Mapping, Delta
Module, Change } (note that enumeration types are not considered and thus
ignored for computation).

Since there is not a single construct in𝑇𝑇 that can be mapped to more than one
concept, the laconicity of the uni�ed conceptual model with respect to𝑇𝑇 is:

laconicity𝑇𝑇 (𝑀,𝑇𝑇𝑇 ) =
9
9 = 1.0

The two constructs Tree Constraint and Cross-tree Constraint imple-
ment the model concept Constraint, while the remaining tool constructs
correspond to at most one model concept. Thus, lucidity of the uni�ed con-
ceptual model with respect to 𝑇𝑇 is:

lucidity𝑇𝑇 (𝑀,𝑇𝑇𝑇 ) =
8
9 = 0.889

The constructs Unified System, Feature, Tree Constraint, Cross-tree

Constraint, Feature Revision, Configuration, Mapping and Delta Module

map to at least one model concept. Note that the construct Delta Module

can be considered to map to Fragment (as it represents a specialization).
However, the construct Change of 𝑇𝑇 does not implement any model concept.
Consequently, the completeness of the uni�ed conceptual model with respect
to 𝑇𝑇 is:

completeness𝑇𝑇 (𝑀,𝑇𝑇𝑇 ) =
8
9 = 0.889

While 𝑇𝑇 implements the seven model concepts Unified System, Feature,
Constraint, Feature Revision, Configuration, Mapping and Fragment, there
are no corresponding constructs that represent the twomodel concepts System
Revision and Product. Consequently, the soundness of the uni�ed conceptual
model regarding the tool 𝑇𝑇 is:

soundness𝑇𝑇 (𝑀,𝑇𝑇𝑇 ) =
7
9 = 0.778
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In sum,𝑇𝑇 re�nes model concepts, which leads to lower lucidity. Furthermore,
it adds constructs, which lowers the completeness value. Moreover, not all
model concepts are employed, which lowers soundness. Since every construct
maps to at most one concept, the laconicity value remains ideal.

Instantiation.

Figure 11.4 depicts an exemplary instance of the tool 𝑇𝑇 ’s metamodel for
an excerpt of the Car example. The Unified System (named Car) contains
a Mapping, Cross-tree Constraint and the root feature Car. The feature in-
stances EngineType and Distance are children of the Car feature. EngineType
is a mandatory feature (due to the Tree Constraint instance of type manda-
tory) and Distance an optional feature (due to the Tree Constraint instance
optional). The feature instances Gasoline and Electric are children of the
EngineType feature (due to a Tree Constraint instance of type or). While the
features Car and Gasoline have one Feature Revision, the feature Electric
and Distance exist in three subsequent Feature Revisions. Moreover, the
Unified System comprises a Cross-tree Constraint with the expression
¬𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 .3 ∨ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.3 that requires a valid Configuration with the fea-
ture Electric in its third revision to specify the Distance feature in its
third revision. The Mapping comprises the expression 𝐶𝑎𝑟 .1, which refers to
the �rst revision of feature Car, and a Delta Module instance which con-
sists of two Change instances that are of type additive. The line "class
EngineController" is added to Line 1 of the �le Car.java by Change c1, while
Change c2 adds the line "void doDriving()" to Line 4 of the same �le. A
Configuration instance refers to the �rst revision of features Car, Distance,
and Gasoline.

11.5.3. Both-Revisions / Compositional Tool𝑇𝐶

For the second exemplary tool 𝑇𝐶 , quite di�erent design decisions were fol-
lowed. The goal was to create𝑇𝐶 as close as possible to the conceptual model
with minimal specialization. Moreover, the tool 𝑇𝐶 employs a compositional
variability mechanism and combines both System Revisions and Feature

Revisions. Figure 11.5 depicts the tool’s metamodel.

Design Decisions.

The tool’s 𝑇𝐶 metamodel was re�ned by the constructs Mapping Expression

and Constraint Expression. The Mapping Expression is part of the Mapping

158



11.5. Exemplary Application

sy
st

em
: U

ni
fie

d 
Sy

st
em

 n
am

e=
"C

ar
"

fe
at

2:
 F

ea
tu

re

 n
am

e=
"E

ng
in

eT
yp

e"

fe
at

3:
 F

ea
tu

re

 n
am

e=
"D

is
ta

nc
e"

fe
at

1:
 F

ea
tu

re

 n
am

e=
"C

ar
"

fr6
: F

ea
tu

re
 R

ev
is

io
n

 id
="

1"

ct
c1

: C
ro

ss
-tr

ee
 C

on
st

ra
in

t
m

1:
 M

ap
pi

ng
d1

: D
el

ta
 M

od
ul

e

c1
: C

ha
ng

e

 ty
pe

=A
D

D
IT

IV
E


 v
al

ue
="

cl
as

s 
En

gi
ne

C
on

tro
lle

r"



 p
at

h=
C

ar
.ja

va
:1

c2
: C

ha
ng

e

 ty
pe

=A
D

D
IT

IV
E


 v
al

ue
="

vo
id

 d
oD

riv
in

g(
)"



 p

at
h=

C
ar

.ja
va

:4

ro
ot

co
n1

: C
on

fig
ur

at
io

n
co

ns
1:

 T
re

e 
C

on
st

ra
in

t

 ty
pe

=M
AN

D
AT

O
R

Y

fr1
: F

ea
tu

re
 R

ev
is

io
n

 id
="

1"

co
ns

2:
 T

re
e 

C
on

st
ra

in
t

 ty
pe

=O
PT

IO
N

AL

fe
at

4:
 F

ea
tu

re

 n
am

e=
"G

as
ol

in
e"

fr2
: F

ea
tu

re
 R

ev
is

io
n

 id
="

1" fe
at

5:
 F

ea
tu

re

 n
am

e=
"E

le
ct

ric
"

fr3
: F

ea
tu

re
 R

ev
is

io
n

 id
="

1"

co
ns

3:
 T

re
e 

C
on

st
ra

in
t

 ty
pe

=O
R

fr7
: F

ea
tu

re
 R

ev
is

io
n

 id
="

2"

fr8
: F

ea
tu

re
 R

ev
is

io
n

 id
="

3"su
cc

s
pr

ed
s

su
cc

s
pr

ed
s

...

fr4
: F

ea
tu

re
 R

ev
is

io
n

 id
="

2"

fr5
: F

ea
tu

re
 R

ev
is

io
n

 id
="

3" su
cc

s
pr

ed
s

su
cc

s
pr

ed
s

C
ar

.1

¬E
le

ct
ric

.3
 

 D
is

ta
nc

e.
3

Sp
ac

e 
C

on
ce

pt
s

Ti
m

e 
C

on
ce

pt
s

U
ni

fie
d 

C
on

ce
pt

s
Sp

ac
e 

& 
Ti

m
e 

C
on

ce
pt

s

Figure 11.4.:Object diagram of tool𝑇𝑇 applied to the Car example [5, Fig. 11].
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and refers to Options. The Constraint Expression is comprised by the
Constraint and can be de�ned over Feature Options, respectively. Both ex-
pression types represent Boolean expressions in the form of expression trees,
which are omitted for the sake of simplicity. Nodes represent Boolean opera-
tors (such as implication or negation). Leafs represent literals (i.e., Options
in case of Mappings and Feature Options in case of Constraints). Further-
more, selected and deselected Options in Configurations are distinguished.
In contrast to𝑇𝑇 , a Product directly contains the Fragments (instead of being
derived by them, as is the case with Delta Modules as Fragments. The tool’s
metamodel is based on the following design decisions.

Revision: Feature Revisions and System Revisions. System Revisions and
Feature Revisions are employed jointly to explicitly manage both
revision types.

Constraint: Boolean Expression. To represent Constraints, Boolean expres-
sions are used with Feature Options. Therefore, the new construct
Constraint Expression relates Constraints and Feature Options.

Fragment: Implementation Artifacts. Fragments are represented by imple-
mentation artifacts (e.g., source code). Based on a compositional vari-
ability mechanism, implementation artifacts are added in an arbitrary
order to obtain a valid Product. This is in contrast to the transfor-
mational variability mechanism of tool 𝑇𝑇 using deltas, which must
be applied in a speci�c order to construct a Product and that are not
directly contained by the Product.

Mapping: Boolean Expression. To represent Mappings, Boolean expressions
are used with Options. Thus, the new construct Mapping Expression

relates Mappings and Options.

Configuration: Selected and Deselected Options. The concept Configura-

tion is re�ned by means of distinguishing between explicitly selected
and deselected Options. Also, it is possible to leave Options undecided
for expressing partial Configurations.

Metrics Computation. The metrics for uni�cation (see Section 11.4.1) are
computed for the uni�ed conceptual model with respect to the constructs
of𝑇𝐶 . It de�nes eleven constructs: 𝑇𝐶 = { Unified System, Feature, Feature
Revision, System Revision, Constraint, Constraint Expression, Mapping
Expression, Mapping, Configuration, Fragment, Product }.
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Figure 11.5.: Both-Revisions / Compositional tool model𝑇𝐶 [5, Fig. 12].

Since there is not a single construct in 𝑇𝐶 that can be mapped to more than
one concept, the laconicity of the uni�ed conceptual model with respect to
𝑇𝐶 is:

laconicity𝑇𝐶 (𝑀,𝑇𝑇𝐶 ) =
11
11 = 1.0

Moreover, there is not a single model concept that can be mapped to more
than one construct in 𝑇𝐶 . Thus, the lucidity of the uni�ed conceptual model
with respect to 𝑇𝐶 is:

lucidity𝑇𝐶 (𝑀,𝑇𝑇𝐶 ) =
9
9 = 1.0

While the eight 𝑇𝐶 constructs Unified System, Feature, Feature Revision,
System Revision, Constraint, Configuration, Mapping, Fragment, and
Product map to at least one model concept, the constructs Constraint

Expression and Mapping Expression cannot be mapped to any model
concept. Thus, completeness of the uni�ed conceptual model with respect
to 𝑇𝐶 is:

161



11. Evaluation of the Uni�ed Conceptual Model

completeness𝑇𝐶 (𝑀,𝑇𝑇𝐶 ) =
9
11 = 0.818

Since all nine model concepts can be mapped to at least one construct in 𝑇𝐶 ,
the soundness of the uni�ed conceptual model regarding tool 𝑇𝐶 is:

soundness𝑇𝑇 (𝑀,𝑇𝑇𝑇 ) =
9
9 = 1.0

In summary, only the added construct Expression (for de�ning Mappings

and Constraints) results in lower completeness, while the remaining metric
values remain ideal.

Instantiation. Figure 11.6 shows an instance of the tool 𝑇𝐶 ’s metamodel for
an excerpt of the Car example. An instance of the Unified System named Car
is located at its center and contains the features Car, EngineType, Gasoline,
and Electric. The features contain instances of their Feature Revisions.
Moreover, the Unified System contains one System Revision that enables
Feature Revision 1 of features Car, Gasoline, and Electric. Note that
the System Revision also enables the abstract feature EngineType. While
these three revisions result in a valid state of the Car system, other Feature
Revision combinationsmay lead to inconsistencies. Additionally, the Unified
System comprises two Constraints. Constraint c1 contains the Constraint
Expression 𝐶𝑎𝑟 , specifying that the Car feature must be always present in a
Product, since it is the root feature. The second Constraint c2 contains the
Constraint Expression 𝐶𝑎𝑟 ⇔ 𝐸𝑛𝑔𝑖𝑛𝑒𝑇𝑦𝑝𝑒 . It expresses that both features
Car and EngineType depend on each other and always appear together in
a Product. Thus, EngineType is a mandatory feature. Instead of expressing
Constraint Expressions as expression trees, they are shown in a simpli�ed
way as formulas placed on the respective references. Finally, two Fragments

represent each a line of code of the Car system (according to the respective
value attribute). Both Fragments are related to the �rst revision of the Car

feature via the Mapping Expression 𝐶𝑎𝑟 .1. The Configuration Customer1
yields a Product comprising both Fragments. Therefore, it selects Feature
Revisions𝐶𝑎𝑟 .1,𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒.1 and EngineType (represented by the “+” symbol),
and deselects the feature Electric (represented by the “-” symbol).
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Figure 11.6.:Object diagram of tool𝑇𝐶 applied to the Car example [5, Fig. 13].
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11.6. Formal Concept Analysis

To further analyze the commonalities and di�erences of the studied tools and
the uni�ed conceptual model, I performed a formal concept analysis (FCA) [79,
80]. FCA is an applied branch of lattice theory. It derives a hierarchy of
concepts and their attributes by means of a concept lattice. For conducting the
FCA, the same data (i.e., mappings) was used as for computing the metrics
for uni�cation. The FCA o�ers a comprehensible overview of the relation-
ships among the tools as well as their relationships to the uni�ed conceptual
model.

Figure 11.7 depicts the concept lattice between objects (represented by the
studied tools) and attributes (represented by concepts of the uni�ed concep-
tual model). Every node associates a set of tools with a set of concepts that
could be mapped to constructs of these tools. A blue �lled upper semicircle
indicates that there are one or more concepts attached to the node. A black
�lled lower semicircle of a node indicates that there are one or more tools
attached to it. The color scheme of concepts of the uni�ed conceptual model is
reused to highlight the edges of the FCA. The concept lattice is inspected from
top to bottom. The color of an edge stems from the concepts that are attached
to the node it leads to, i.e., if an edge leads to a node with a concept attached
for variability in time, such as Feature, the edge is colored green, respectively.
In case green and orange edges are input to a node, the lea�ng edge is colored
purple. Consequently, purple edges remain of the same color during their path
from top to bottom. Inspecting the FCA reveals that nodes and edges top left
are related to variability in time. Nodes and edges in the center and top right
relate to variability in space. Those on the bottom and right side relate to both
variability dimensions. Consequently, the color of edges remain separate until
they eventually merge when approaching the uni�ed conceptual model.

The top node depicts common concepts in all tools. The bottom node depicts
the uni�ed conceptual model itself. The FCA o�ers two insights by inspecting
the concept lattice: On the one hand, the extent to which tools are related to
the conceptual model based on their concepts. On the other hand, the extent
to which tools are related to each other. The tools are grouped according to
their supported concepts for variability in space, time, or both. For instance,
Git and SVN use System Revisions, while SiPL, pure::variants and FeatureIDE
employ Constraints and Features. Solely ECCO copes with variability in both
dimensions, but does not employ Constraints and therefore no variability
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Unified System

Configuration

Fragment

Mapping

Product

 SVN
 Git
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 SiPL
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 FeatureIDE

 Unified Conceptual Model

 ECCO

 DarwinSPL

 SuperMod

 VaVe

 DeltaEcore

Constraint

Feature Revision

Feature

Concept Node

Tool Node

Figure 11.7.: FCA of tools based on uni�ed conceptual model concepts [5, Fig. 7].

model. While DarwinSPL, SuperMod, VaVe, and DeltaEcore are closest to the
uni�ed conceptual model, there is no tool that involves all of its concepts.

Figure 11.8 shows the concept lattice between the tools and, in addition to the
concepts, also the relations of the uni�ed conceptual model. Concept labels
are not depicted to reduce the visual overhead. This visualization allows to
further di�erentiate the tools that employ the same concepts and support
the comparison between tools and to the conceptual model. The top node
represents six relations common to all tools. Edges on the left represent rela-
tions between concepts for variability in time and between uni�ed concepts,
while edges on the right represent relations between concepts for variability
in space. Again, when getting closer to the conceptual model, edges merge as
they represent relations related to both variability dimensions. Interestingly,
only the two tools DarwinSPL and DeltaEcore are directly adjacent to the uni�ed
conceptual model. Moreover, tools that employ System Revisions, Features,
and Constraints, i.e., DarwinSPL and SuperMod, also let System Revisions en-
able Constraints and Feature Options. Consequently, enables-relations are
not employed in tools that deal with just one of the variability dimensions.
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 Unified System has * Fragment
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Figure 11.8.: FCA of tools based on uni�ed conceptual model concepts and relations [5, Fig. 8].

11.7. Discussion

From the qualitative and quantitative analyses as well as the illustrating
applications, insights could be obtained to answer the questions and discuss
the evaluation results.

Q 1.1: To what extent is the uni�ed conceptual model of appropriate granular-
ity?

Laconicity and lucidity indicate whether granularity is appropriate. The
two tools Git and SVN represent both model concepts System Revision and
Configuration by the construct Configuration, i.e., the System Revision is
equivalent to the Configuration. Thus, the laconicity values indicate that
both model concepts are unnecessarily �ne-grained with respect to these tools
and could be merged to increase the laconicity values for both tools. Nonethe-
less, for any tool that deals with variability in space, a Configuration is a set of
Features. Merging both concepts would decrease the overall laconicity. The
lucidity values of the six tools Git, SVN, DeltaEcore, SiPL, DarwinSPL, and VaVe
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indicate that the concept Fragment is too coarse-grained. The low values stem
from di�erent levels of abstraction: delta-oriented tools (i.e., DeltaEcore, SiPL,
DarwinSPL, and VaVe) re�ne a Fragment into a Core Model and Delta Modules.
In Git, a Fragment is represented by Blob and Tree Object, and in SVN by File
Node and Directory Node. These cases lead to lower lucidity and could be split
up. Since the uni�ed conceptual model is intended to be tool-agnostic (which,
otherwise, would cause lower laconicity), a reduction in lucidity is justi�ed.

To summarize, the results provide evidence that the granularity of the uni�ed
conceptual model is appropriate. Concepts should neither be merged nor
could be split up without lowering the abstraction to an undesired level.

Q 1.2: To what extent is the uni�ed conceptual model of appropriate coverage?

Completeness and soundness indicate whether coverage is appropriate. The
relation Remote of the two tools Git and ECCO is not represented by any
relation of the conceptual model. Consequently, this lowers the completeness
values. Moreover, the soundness values are rather low per tool. Since the
uni�ed conceptual model is intended to describe all concepts and relations
of the elicited tools, those supporting only one variability dimension, such
as SVN, Git or FeatureIDE (which are located on the upper half of the FCA
in Figure 11.8 and, thus, further away from the uni�ed conceptual model)
lead to lower soundness. However, there are no unused concepts or relations
in the conceptual model, which is evidenced by the aggregated values in
Table 11.5. Consequently, every concept in the uni�ed conceptual model is
required by at least one of the studied tools.

To summarize, the results provide evidence that the coverage of the uni�ed
conceptual model is almost ideal. It neither employs unused concepts or
relations, nor misses concepts. Solely, the uni�ed conceptual model misses
support for distributed development. Consequently, adding the relation
Unified System refers to * Unified System is the only remaining change
that would lead to an improvement of the model (i.e., completeness 100%).
Figure 11.9 shows the �nal conceptual model with the missing added remotes

relation.

Q 1.3: To what extent is the uni�ed conceptual model applicable?

The illustrating examples presented in Section 11.5 demonstrate the applica-
bility of the uni�ed conceptual model. Based on several degrees of freedom,
such as re�ning the Constraint to express feature modeling, or the Fragment
depending on the employed variability mechanism, the uni�ed conceptual
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model can be re�ned to apply it in practice. The re�nement process was
exemplary performed by deriving two tools. While the �rst tool 𝑇𝑇 employs
Feature Revisions and a feature model, the second tool 𝑇𝐶 employs System
Revisions and Feature Revisions simultaneously. Additionally, metrics for
uni�cation were demonstratively computed for both tools.

To summarize, the results provide evidence that the conceptual model can be
applied to de�ne new tools and to compare them against the uni�ed concep-
tual model as well as against other tools based on the metrics for uni�cation.

11.8. Threats to Validity

This section describes threats to the validity and how they were mitigated.

Construct Validity. The mapping of tool constructs to model concepts was
performed on the conceptual level. Consequently, it was not always clear
whether a tool construct constituted the conceptual level or the implemen-
tation level. For instance, the concept Constraint could be implemented
in a tool by speci�c constructs to support feature modeling, e.g., an op-
tional feature or alternative feature group. In such cases, the representative
parent constructs was selected for the mapping, such as the Constraint. In-
terestingly, the tool experts provided answers usually on the same level of
abstraction which reassured the mapping results. In most cases, there was no
necessity to adjust the level of abstraction, and the answers were considered
as literally as possible.

Internal Validity. Some tool experts were involved in the construction
process of the uni�ed conceptual model. This could have led to bias to-
wards their tools, which is potential threat to internal validity. Involving
further researchers and practitioners into the construction process, as even
recommended [1], mitigated this threat.

External Validity. Whether tools can be mapped to the uni�ed conceptual
model is matter of external validity. It can be argued that the set of elicited
tools is representative as it covers a broad body of existing contemporary
tools from both, SPLE and SCM. Moreover, the selected tools are diverse
by employing either or both variability dimensions by di�erent means, i.e.,
via System Revisions or Feature Revisions). Consequently, bias and local
optimizations towards particular tools were mitigated.
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Figure 11.9.: Final uni�ed conceptual model.
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Conclusion Validity. Occasionally, the answers of tool experts left space for
interpretation, or were incomplete, or posed questions. To mitigate this threat,
I repeatedly conferred with the tool experts until consensus. To improve
the conclusion validity, all data is published in an open-access repository, so
other researchers are able to check the results.

11.9. Limitations and Future Work

Design decisions and evaluation results indicate limitations of the proposed
uni�ed conceptual model. In the following, the limitations as well as future
work is discussed.

During the construction of the uni�ed conceptual model, several design deci-
sions were made that may be debatable. Versioning is applied to Options only
but not to Constraints, Configurations or Mappings. In the selected tools,
these concepts are not versioned either. Furthermore, it can be argued that, in
contrast to Options, these concepts do not have their own identity but instead
are comprised of concepts with identity (e.g., Configurations are comprised
of Options, and Constraints are comprised of Feature Options).

Moreover, there may be other concepts or relations required by researchers
or practitioners in the future not covered by the uni�ed conceptual model
yet. While there is no dedicated extension mechanism for the model, it relies
on common object-oriented mechanisms for re�nement. One idea for an
extension would be to let Constraints be formulated over System Revisions.
In the current state of the uni�ed conceptual model, Constraints can only be
formulated over Feature Options and not over Options in general. Nonethe-
less, Constraints are enabled by System Revisions. While this relation is
not as powerful as an arbitrary expression in terms of expressiveness, it can
be argued that practically relevant cases can be covered. For example, since
di�erent System Revisions (i.e., points in time) implicitly exclude each other,
Constraints where two System Revisions exclude or require each other are
either always or never satis�ed, respectively. If this or any similar modi�ca-
tion is still required in the future, the relevant model concepts can be re�ned
accordingly (e.g., by creating a sub-class of Constraint that also refers to
System Revisions).
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For future work, it would be interesting to apply the conceptual model to a
set of real-world case studies from disciplines other than SPLE and SCM to
identify further limitations or shortcomings. This would also allow to inves-
tigate whether concepts or relations between them are missing to provide
bene�ts beyond the current state of the art in SPLE and SCM.

11.10. Summary

This chapter presented an evaluation of the appropriateness and applicability
of the uni�ed conceptual model. The evaluation encompassed a qualitative
analysis that involved amapping between concepts and relations of the uni�ed
conceptual model to constructs and relations of selected tools based on an
expert survey. Subsequently, a quantitative analysis comprised an application
of the metrics for uni�cation to quantify the appropriateness of granularity
and coverage of the uni�ed conceptual model with respect to the studied
tools. The evaluation results showed that concepts should neither be merged
(i.e., generalized) nor split up (i.e., made more speci�c). Moreover, the uni�ed
conceptual model neither misses concepts nor employs unused concepts or
relations, it did solely not support a relation related to distributed development.
Furthermore, the uni�ed conceptual model can serve as base to derive novel
tools. Therefore, degrees of freedom when re�ning the uni�ed conceptual
model were described and its applicability based on two exemplary tools
was demonstrated. Additionally, for both tools, metrics for uni�cation were
computed to demonstrate their application. The uni�ed conceptual model
provides a foundation for comparing and communicating current research as
well as for designing novel tools for managing variability in space and time.
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12. Evaluation of Unified Operations

Chapter 6 presented the uni�ed operations to support the evolution of a
variable system that copes with variability in space and time (C2). This
chapter presents their evaluation following the GQM method [27].

Section 12.1 introduces the goals and questions of the evaluation. Section 12.2
presents the specialized evaluation process of the uni�ed operations. Sec-
tion 12.3 encompasses the �rst part of the evaluation which comprises a quan-
titative analysis based onmetrics to quantify the uni�cation of operationswith
respect to the analyzed tools. The second part of the evaluation demonstrates
an application of the uni�ed operations based on evolution scenarios from the
literature in Section 12.4. Section 12.5 o�ers answers to the posed questions
while threats to validity are considered in Section 12.6. Section 12.7 comprises
a discussion of the limitations and future work of the uni�ed operations. A
summary of the main insights in Section 12.8 closes the chapter.

12.1. Goals and Questions

Since the individual tools (used for constructing the uni�ed operations) have
already either been published at peer-reviewed scienti�c venues, or are widely
adopted and successful in practice (e.g., Git and SVN), properties, such as
correctness or scalability, of the uni�ed operations are not validated. Instead,
the �rst goal of the evaluation is to analyze whether the uni�ed operations
appropriately unify operations from the individual tools without losing any
functionality while adding additional semantics for coping with variability
in space and time simultaneously where necessary. The second goal of
the evaluation is to demonstrate the applicability of the uni�ed operations.
Therefore, the following three sub-goals are de�ned regarding granularity,
coverage and applicability that shall be met by the uni�ed operations:

173



12. Evaluation of Uni�ed Operations

Granularity: The granularity of the uni�ed operations shall be appropriate,
that is, each operation shall have one responsibility (i.e., deal with
exactly one concern) which it covers fully and shall not address any
other.

Coverage: The uni�ed operations shall cover all functionality of the selected
tools in both variability dimensions.

Applicability: The uni�ed operations shall be applicable to common variability-
related evolution scenarios.

Based on these goals, the following questions are asked:

Q 2.1 Are the uni�ed operations of appropriate granularity?

Q 2.2 Are the uni�ed operations of appropriate coverage?

Q 2.3 To what extent are the uni�ed operations applicable to support di�er-
ent development paradigms (i.e., platform-oriented or product-oriented
development)

Q 2.4 To what extent are the uni�ed operations applicable to support di�er-
ent edit modalities (i.e., direct or view-based editing)?

Answering these questions allows for assessing whether the uni�ed opera-
tions meet the de�ned goals.

12.2. Specialized Evaluation Process

Figure 12.1 shows the specialized evaluation process of the uni�ed operations.
It is consecutive to the uni�cation process shown in Figure 6.1 and based on
the general evaluation process described in Section 10.1. Step 5 represents
the quantitative analysis. The use case mappings (Step 2 in Figure 6.1) are
input to the metric computation in Step 5 . Finally, Step 6 encompasses a
demonstration of the applicability of the uni�ed operations based on diverse
variability scenarios from the literature.

Quantitative analysis: For the quantitative analysis, I applied the metrics for
uni�cation (see Section 10.2) to the uni�ed operations with respect to the
elicited tools. The metrics laconicity and lucidity quantify the granularity of
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Metric
computation

Use case
mappings

Unified
operations


Metric results

5
Exemplary
application

6

Figure 12.1.: Evaluation process of the uni�ed operations.

the uni�ed operations. The metrics completeness and soundness quantify the
coverage of the uni�ed operations.

Exemplary Application: To demonstrate the applicability of the uni�ed opera-
tions, I identi�ed variability scenarios from the literature, and analyzed how
these scenarios can be addressed by the uni�ed operations.

12.3. Quantitative Analysis

In the following, Step 5 shown in Figure 12.1 is described. It encompasses
an application of the metrics for uni�cation (see Section 10.2).

12.3.1. Metrics

The metrics laconicity (see De�nition 10.1) and lucidity (see De�nition 10.2)
quantify the granularity of uni�ed operations, that is, whether each operation
addresses exactly one responsibility (Q 2.1). The metrics completeness (see Def-
inition 10.3) and soundness (see De�nition 10.4) quantify their coverage, that
is, whether there is any unused or missing functionality (Q 2.2).

The uni�cation𝑈 is the set of uni�ed operations 𝑈𝑂 . A tool 𝑇 ∈ T is a set
of tool operations 𝑡 ∈ 𝑇 . The mappings of uni�ed operations in 𝑈𝑂 onto tool
operations in 𝑇 are displayed in Table 6.2 and Table 6.4.
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The set of uni�ed operations𝑈𝑂 comprises the 21 direct editing operations
𝑈𝑂𝐷𝑖𝑟𝑒𝑐𝑡 as well as the seven view-based operations:

𝑈𝑂 = 𝑈𝑂𝐷𝑖𝑟𝑒𝑐𝑡 ∪ {𝑒𝐷, 𝑖𝐷, 𝑒𝑃, 𝑖𝑃, 𝑖𝐶, 𝑒𝑈𝑆, 𝑖𝑈𝑆}

In the following, an example for each metric is shown by applying it to the
tool SuperMod. Note that this tool employs view-based operations that are
used in either platform-oriented development or involved in both platform
and product-oriented development. SuperMod does not employ direct editing
operations (that allow the user to directly edit the Unified System). SuperMod
implements two operations:

𝑇SuperMod = {checkout, commit}

Laconicity According to the operation mapping in Table 6.4, four uni�ed
operations are implemented by two operations in SuperMod: 𝑒𝐷 (that
is used in platform-oriented development) and 𝑒𝑃 (that is used in both
development paradigms) via checkout, and 𝑖𝐷 and 𝑖𝐶 (that are both used
in platform-oriented development) via commit. This is due to the fact
that SuperMod uses both its operations as a two-step process: First, to
con�gure the domain for one point in time (i.e., via a System Revision)
followed by a con�guration of the product (i.e., via Features) based
on the externalized domain. Analogously, the integration of changes
into the Repository in SuperMod comprises both the internalization
of the updated domain as well as of the changed product. The uni�ed
operations that do not map to any operation in SuperMod (i.e., 𝑖𝑃 ,
𝑒𝑈𝑆 and 𝑖𝑈𝑆) do not a�ect the metric. The laconicity for SuperMod is
therefore even zero:

laconicitySuperMod (𝑈𝑂,𝑇SuperMod) = 0+0
2 = 0

2 = 0.0

Lucidity All uni�ed operations (view-based or direct editing operations
used in product or platform-oriented development), according to the
operation mappings in Table 6.3 and Table 6.4, are either implemented
by at most one tool operation or by no tool operation in SuperMod. The
lucidity of the uni�ed operations with respect to SuperMod is thus ideal:

luciditySuperMod (𝑈𝑂,𝑇SuperMod) = 21+1+1+1+1+1+1+1
28 = 28

28 = 1.0

Completeness In the example of SuperMod, according to the operation map-
ping in Table 6.4, there are no operations in SuperMod that do not
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map to any uni�ed operation. Both its two operations can be mapped
to at least one uni�ed operation. The completeness for SuperMod is
therefore ideal:

completenessSuperMod (𝑈𝑂,𝑇SuperMod) = 1+1
2 = 2

2 = 1.0

Soudness Regarding SuperMod, out of the 28 uni�ed operations, four are
implemented by at least one operation in SuperMod, according to the
concept mappings in Table 6.3 and Table 6.4. This is due to SuperMod
not employing direct editing operations at all (out of which there are
21 operations) along with operations used only for product-oriented
development (i.e., 𝑖𝑃 ). Thus, the soundness of the uni�ed operations
with respect to only SuperMod is quite low:

soundnessSuperMod (𝑀,𝑇SuperMod) = 0+1+1+1+0+1+0+0
28 = 4

28 = 0.14

12.3.2. Results

Table 12.1 shows the values for the four metrics (columns) per tool (rows), sep-
arated by the development paradigm of an operation, i.e., platform-oriented,
product-oriented, or both as well as in total. In case of lucidity and soundness,
each row shows the percentage and the absolute number of uni�ed operations
that satisfy the condition for each metric. In case of laconicity and complete-
ness, each row shows the percentage and the absolute number of individual
tool operations that satisfy the condition for each metric. A horizontal line
indicates that a tool does not employ operations of either or both development
paradigms. For instance, the tool ECCO supports product-oriented develop-
ment (i.e., the 𝑖𝑃 operation), no operation for platform-oriented development,
but operations for both development paradigms (i.e., 𝑒𝑃 , 𝑒𝑈𝑆 , and 𝑖𝑈𝑆). The
metric values for lucidity and completeness are at 100 % for all analyzed tools,
indicating that the uni�ed operations are not too coarse-grained and do not
miss any concern of the individual tools. For almost every tool, the metric
values for laconicity are at 100%, indicating that the uni�ed operations are not
too �ne-grained. An exception is the tool SuperMod, which is the only tool
whose metric values for laconicity are at 0%. On the one hand, this is due to
the fact that both 𝑒𝐷 and 𝑒𝑃 are part of SuperMod’s checkout operation (note
that this operation is counted as one that supports both the platform-oriented
and the product-oriented development paradigm). On the other hand, both
𝑖𝐷 and 𝑖𝐶 art part of SuperMod’s commit operation. Consequently, both tool
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operations are not laconic as they implement more than one uni�ed opera-
tion. Another tool whose laconicity value is lower at 82% is VTS. Both 𝑒𝑃 and
𝑒𝑈𝑆 art part of VTS’s get operation, while both 𝑖𝐶 and 𝑖𝑈𝑆 art part of VTS’s
put operation. In contrast to SuperMod though, VTS employs direct editing
operations, such as add, update and delete of the concepts Mapping, Fragment

and Feature. Consequently, while its view-based operations are not laconic,
its direct editing operations are. Finally, the metric values for soundness of
the uni�ed operations vary between 7% and 64%. This is due to the fact the
three direct editing operations (add/update/delete System Revision) are not
implemented by at least one tool.

Table 12.2 shows the aggregated results over all tools. The four metrics
are shown as columns for the view-based and direct edit modality and for
the development paradigm of an operation, i.e., platform-oriented, product-
oriented, or both. The metric values are at or close to 100%. While the
lower values for laconicity are due to the described view-based operations
of SuperMod and VTS, the lower values for soundness are due to the direct
editing operations for System Revisions that none of the tools employ.

12.4. Exemplary Application

This section describes Step 6 shown in Figure 12.1 to demonstrate the
applicability of the uni�ed operations based on variability scenarios.

12.4.1. Variability Scenarios

From the literature, eight variability scenarios (i.e., self-contained activities
of a developer with a speci�c intent that are related to the management of
a variable system) were identi�ed. While the collected scenarios may not be
exhaustive, they shall be diverse enough to demonstrate the applicability of
the uni�ed operations. Therefore, the following requirements are de�ned:

1. Scenarios shall holistically address variability management and there-
fore involve both the problem space and the solution space.

2. Scenarios shall be diverse and therefore involve product line evolution,
clone-and-own development and distributed development.
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Table 12.1.:Metric results for each tool individually.
for laconicity lucidity completeness soundness

F
e
a
t
u
r
e

I
D
E

Platform 100% (15/15) 100% (24/24) 100% (15/15) 63% (15/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 100% (2/2) 100% (3/3) 100% (2/2) 67% (2/3)
Total 100% (17/17) 100% (28/28) 100% (17/17) 61% (17/28)

V
T
S

Platform 100% (9/9) 100% (24/24) 100% (9/9) 42% (10/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 0% (0/2) 100% (3/3) 100% (2/2) 100% (3/3)
Total 82% (9/11) 100% (28/28) 100% (11/11) 46% (13/28)

S
i
P
L

Platform 100% (15/15) 100% (24/24) 100% (15/15) 63% (15/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 100% (1/1) 100% (3/3) 100% (1/1) 33% (1/3)
Total 100% (16/16) 100% (28/28) 100% (16/16) 57% (16/28)

S
V
N

Platform − (0/0) 100% (24/24) − (0/0) 0% (0/24)
Product 100% (1/1) 100% (1/1) 100% (1/1) 100% (1/1)

Both 100% (1/1) 100% (3/3) 100% (1/1) 33% (1/3)
Total 100% (2/2) 100% (28/28) 100% (2/2) 7% (2/28)

G
i
t

Platform − (0/0) 100% (24/24) − (0/0) 0% (0/24)
Product 100% (1/1) 100% (1/1) 100% (1/1) 100% (1/1)

Both 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Total 100% (4/4) 100% (28/28) 100% (4/4) 14% (4/28)

E
C
C
O

Platform − (0/0) 100% (24/24) − (0/0) 0% (0/24)
Product 100% (1/1) 100% (1/1) 100% (1/1) 100% (1/1)

Both 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Total 100% (4/4) 100% (28/28) 100% (4/4) 14% (4/28)

S
u
p
e
r

M
o
d

Platform 0% (0/1) 100% (24/24) 100% (1/1) 13% (3/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 0% (0/1) 100% (3/3) 100% (1/1) 33% (1/3)
Total 0% (0/2) 100% (28/28) 100% (2/2) 14% (4/28)

D
e
l
t
a

E
c
o
r
e

Platform 100% (18/18) 100% (24/24) 100% (18/18) 75% (18/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 100% (1/1) 100% (3/3) 100% (1/1) 0% (0/3)
Total 100% (19/19) 100% (28/28) 100% (19/19) 64% (18/28)

D
a
r
w
i
n

S
P
L

Platform 100% (12/12) 100% (24/24) 100% (12/12) 50% (12/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 100% (1/1) 100% (3/3) 100% (1/1) 33% (1/3)
Total 100% (13/13) 100% (28/28) 100% (13/13) 46% (13/28)

V
a
V
e

Platform 100% (1/1) 100% (24/24) 100% (1/1) 4% (1/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 100% (1/1) 100% (3/3) 100% (1/1) 33% (1/3)
Total 100% (2/2) 100% (28/28) 100% (2/2) 7% (2/28)
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Table 12.2.:Metric results over all tools.

Kind for laconicity lucidity completeness soundness

V
i
e
w
-

B
a
s
e
d

Platform 67% (2/3) 100% (3/3) 100% (3/3) 100% (3/3)
Product 100% (3/3) 100% (1/1) 100% (3/3) 100% (1/1)

Both 81% (13/16) 100% (3/3) 100% (16/16) 100% (3/3)
Total 82% (18/22) 100% (7/7) 100% (22/22) 100% (7/7)

D
i
r
e
c
t

Platform 100% (68/68) 100% (21/21) 100% (68/68) 86% (18/21)
Product − (0/0) − (0/0) − (0/0) − (0/0)

Both − (0/0) − (0/0) − (0/0) − (0/0)
Total 100% (68/68) 100% (21/21) 100% (68/68) 86% (18/21)

A
l
l

Platform 99% (70/71) 100% (24/24) 100% (71/71) 88% (21/24)
Product 100% (3/3) 100% (1/1) 100% (3/3) 100% (1/1)

Both 81% (13/16) 100% (3/3) 100% (16/16) 100% (3/3)
Total 96% (86/90) 100% (28/28) 100% (90/90) 89% (25/28)

Table 12.3.: Scenarios and operation sequences.

Scenario

Platform-Oriented

Sequence

Product-Oriented

Sequence

S11 Transfer entire system iUS iUS
S21 Transfer subset of features eUS, iUS eUS, iUS
S31 Transfer individual product eUS, iUS (eUS, iUS) | (eP, iP)
S4 Retrieve supported product eP eP
S5 New combination of existing features eD, iD, (eP, (iC)+)+ eP, iP
S6 New separation of existing features eD, iD, (eP, (iC)+)+ eP, iP
S7 Add new feature eD, iD, (eP, (iC)+)+ eP, iP
S8 Update feature implementation in all products (eP, (iC)+)+ (eP, iP)+

1 Distributed development scenario. .

Table 12.3 shows the variability scenarios and the platform-oriented or product-
oriented operation sequences (noted as regular expressions) for addressing
them. The scenarios are lifted to the uni�ed conceptual model and extended
with temporal aspects in cases where a scenario considers only spatial vari-
ations. For example, scenarios that include updates or deletions shall not
actually update or delete objects in the uni�ed system, and instead create
new revisions to enable or disable them.

Scenarios S1, S2, and S3 are distributed development scenarios supported
in both paradigms. Scenario S1 [229, 127, 129] describes the transfer and
integration of all contents of one uni�ed system into another. Scenario
S2 (e.g., “propagating a feature” [104]) [229, 99, 129] describes the transfer and
integration of only a subset of all features (and the corresponding subset of
mappings and fragments). Scenario S3 deals with the transfer and integration
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of a product [161] (i.e., the relevant features, fragments, and mappings) from
a remote uni�ed system into the local uni�ed system. Scenario S4 [12, 129]
describes the retrieval of a product from a uni�ed system based on a valid
con�guration that is already supported (i.e., the product has already been
internalized via 𝑖𝑃 , or all required features and feature interactions have been
internalized via 𝑖𝐶). Scenario S5 (e.g., “asset merging” [183], “merge” [200])
and S6 (e.g., “asset splitting” [183], “split asset” [168]) deal with the retrieval of
a product, where two features or feature revisions are combined or separated
that have never been combined or separated in any previously internalized
product. Missing or surplus feature interaction fragments may have to be
added or deleted. The manually completed product shall then be integrated
into the uni�ed system. In Scenario S7 (“merge” [200, 129]), a new feature
(including the relevant fragments, constraints, and mappings) is added to the
uni�ed system. Finally, in Scenario S8 (“variant synchronization” [230, 110]),
the intention is to change the implementation of a feature (e.g., to �x a bug),
and have it take e�ect in all products with that feature.

12.4.2. Results

For Scenario S1, only operation 𝑖𝑈𝑆 is needed. For Scenario S2, 𝑒𝑈𝑆 is used
before 𝑖𝑈𝑆 , with a partial con�guration that deselects all undesired features
to derive a uni�ed system containing only the desired subset of features. For
Scenario S3, a complete con�guration is used to derive a uni�ed system con-
taining a single product via 𝑒𝑈𝑆 , followed by 𝑖𝑈𝑆 . Alternatively, the product
can be externalized from one uni�ed system via 𝑒𝑃 , and internalized into
another via 𝑖𝑃 . Scenario S4 is trivially possible via the operation 𝑒𝑃 , where
a con�guration is speci�ed that is already supported in the uni�ed system
(i.e., a product with that con�guration has been internalized before via 𝑖𝑃
or the necessary features have been internalized via 𝑖𝐶). Scenarios S5, S6,
and S7 are addressed using the same sequences of operations. In case of
platform-oriented development, the platform is edited via 𝑒𝐷 and 𝑖𝐷 to add
new features and delete constraints, such that new feature combinations are
allowed. This is followed by a repetition of 𝑒𝑃 and 𝑖𝐶 to add fragments and
corresponding mappings to the platform, until the desired product can be
derived entirely by the 𝑒𝑃 operation. During product-oriented development,
an incomplete product is externalized via 𝑒𝑃 by reusing relevant feature and
feature interaction fragments from previously internalized products. The
product must be modi�ed by adding fragments that implement the interaction
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of features (S5), removing surplus fragments (S6), or adding missing frag-
ments (S7). Finally, the �nished product is internalized via 𝑖𝑃 . The operation
sequences for Scenario S8 are similar except that the domain (i.e., options and
constraints) does not need to be modi�ed in the case of platform-oriented
development. For product-oriented development, this is a challenging sce-
nario, since the sequence, albeit the same as before, may need to be repeated
many times—in the worst case once per product.

12.5. Discussion

From the quantitative analysis and the exemplary application, insights could
be obtained to answer the questions and discuss the evaluation results.

Q 2.1: Are the uni�ed operations of appropriate granularity?

Laconicity and lucidity indicate whether granularity is appropriate. While the
metric values for lucidity are always at 100% (i.e., a uni�ed operation is imple-
mented by at most one operation of a tool), the laconicity values of view-based
uni�ed operations vary between 67% and 81% (i.e., a tool operation imple-
ments at most one uni�ed operation). Speci�cally, the tools VTS and SuperMod
provide two operations that each cover two uni�ed operations. For instance,
VTS’s operation put represents both 𝑖𝑈𝑆 and 𝑒𝑈𝑆 and SuperMod’s operation
checkout represents both 𝑒𝐷 and 𝑒𝑃 . Considered as a whole, this a�ects all
view-based operations that support the platform-oriented paradigm (i.e., 𝑒𝐷 ,
𝑖𝐷 , 𝑖𝐶) or both paradigms (i.e., 𝑒𝑃 , 𝑒𝑈𝑆 , 𝑖𝑈𝑆). Nonetheless, the a�ected uni�ed
operations were not merged to avoid ambiguities of an operation’s concern
and to clearly separate their concerns and responsibilities. Besides the direct
editing operations (whose laconicity value as at 100%), the only remaining
view-based uni�ed operation that is fully laconic is the 𝑖𝑃 operation which
is implemented in the tools SVN, Git and ECCO by exactly one operation.

To summarize, the results provide evidence that the uni�ed operations are of
appropriate granularity. Operations should neither be merged nor split up.
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Q 2.2: Are the uni�ed operations of appropriate coverage?

Completeness and soundness indicate whether coverage is appropriate. While
the metric values for completeness are always at 100% (i.e., a tool operation
is represented by at least one uni�ed operation), the soundness values of
direct uni�ed operations are at 86% (i.e., a uni�ed operation is implemented
by at least one operation in a tool). This is due to the fact that directly
adding, deleting and updating a System Revision is not supported by any
tool. Not supporting any direct edit operation for the System Revisionwould
increase the metric values for soundness. However, the direct editing of
System Revisions was retained to provide a complete set of direct editing
operations that is as comprehensive as possible.

To summarize, the results provide evidence that the uni�ed operations achieve
high coverage. While the direct editing of System Revisions represents
unused operations, there are no missing operations.

Q 2.3: To what extent are the uni�ed operations applicable to support di�erent
development paradigms?

A comparison of the operation-execution sequences when solving each sce-
nario with operations of either development paradigm o�ers an answer to this
question. While both paradigms support the same scenarios, the number of
necessary operations di�ers in several cases. A major distinguishing factor is
whether only a few or many products shall be a�ected. It is not surprising that,
in the latter case, platform-oriented development is more suitable, since SPLE
is tailored to that requirement. In the former case, it can bemore convenient to
use product-oriented development, since developers can focus on individual
products, which has always been an advantage of clone-and-own [75]. How-
ever, thanks to an increase in automated support for product-oriented devel-
opment (e.g., automated reuse among cloned variants via feature location [153,
20, 245, 160] or clone synchronization techniques [186, 198]), this line starts
to blur [127, 129]. This is also evidenced by the support for intensional ver-
sioning [48] in product-oriented development provided by the operations.

In summary, each development paradigm has its merits and should be chosen
based on the scenario. While the uni�ed view-based operations fully support
each development paradigm individually, it is still not possible to freely
alternate between them, which remains an open challenge.

Q 2.4: To what extent are uni�ed operations applicable to support di�erent edit
modalities?
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To answer this question, an analysis is performed whether view-based edit-
ing operations can be used to perform the same edits as the direct editing
operations shown in Table 6.3, except those editing the time dimension (i.e.,
revisions). The rationale for this comparison is that direct editing operations
cover the entire evolution spectrum, since there is no evolutionary change
in any scenario that cannot be covered (albeit with signi�cant manual e�ort)
via direct editing operations. In contrast, view-based editing operations of-
fer a higher degree of automation (such as tracking revisions or modifying
multiple mappings at once), and are therefore often more convenient to use,
but may be limited in what they can achieve. View-based editing operations
were found to support the same edits as direct editing operations with the
operation sequence (eD,iD)?(eP,(iC)+)+. However, changing mappings with
view-based operations is not as straightforward as with direct editing, since
the view (i.e., product) only shows fragments but not the mappings. The only
way to modify a mapping via view-based operations is by creating a product
via 𝑒𝑃 , modifying its fragments, and then internalizing it via 𝑖𝐶 , where new
mapping expressions are computed automatically and only for fragments
that were either added or deleted from the product. This limits the way in
which mapping expressions can be modi�ed. If the desired change of the
current mapping expression𝑚 to the new mapping expression𝑚′ is such that
𝑚′⇒𝑚, the mapping expression becomes more restrictive and the fragment
will be contained in a subset of the previous products. This can be achieved
via 𝑖𝐶 , since the new mapping expression is computed by appending the ex-
pression provided by the developer to the old mapping expression via a logical
and. If the relation between𝑚 and𝑚′ is such that𝑚 ⇒𝑚′ (i.e., it becomes
less restrictive and the fragment will be contained in additional products) or
there is no relation, this cannot be achieved via view-based operations.

In summary, the uni�ed view-based operations cannot fully replace the uni�ed
direct editing operations, as the former do not support arbitrary modi�cations
of mappings. However, this limitation of view-based operations is also present
in the studied tools and therefore represents an open challenge.

12.6. Threats to Validity

This section describes threats to the validity and how they were mitigated.
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Internal Validity. The uni�cation of the operations was performed on the
level of abstraction of the uni�ed conceptual model. Consequently, there may
be further details in the behavior of tools that may be missed. This threat was
mitigated by two means: i) conferring with the tool experts, and ii) verifying
that the uni�ed operations maintained the functionality and support the
same edits as the individual tools (the metric values for completeness are
always at 100%). Another potential threat to internal validity is the involve-
ment of tool experts in the uni�cation process of the operations, which could
have introduced bias towards their tools. However, this had the advantage
that current, detailed, and reliable information could be elicited instead of
only inspecting the respective tool-related publications. Furthermore, this
threat was mitigated by involving further researchers and practitioners in
the uni�cation process.

External Validity. A diverse and representative set of tools was elicited and
analyzed from both the SPLE and SCM research areas. The selected tools are
based on di�erent concepts and support di�erent modalities and paradigms.
Nonetheless, there may be other tools comprising further operations that
cope with variability in space and time. Thus, the set of uni�ed operations
may not be fully generalizable. This threat was mitigated by analyzing to
what extent the operations can be applied to di�erent variability scenarios
reported in the literature.

12.7. Limitations and Future Work

The discussed evaluation results indicate limitations of the uni�ed operations.
In the following, the limitations as well as future work are discussed.

The modi�cation of mappings can be performed straightforward with direct
editing. However, as the evaluation results showed, uni�ed view-based oper-
ations (and, respectively, the analyzed view-based tool operations) provide
only limited possibilities to change mappings, since the view (i.e., product)
only shows fragments but not the mappings. This is a current limitation
of the uni�ed operations. Future work could address this shortcoming by
combining both edit modalities to leverage bene�ts of both. While view-based
uni�ed operations provide a high degree of automation, direct editing allows
for �exibility where view-based operations don’t. However, combining both
edit modalities is challenging. The challenge would be to provide an editable
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view including mappings, since this could require a particular view for every
type of artifact. VTS is the only studied tool that supports both edit modalities.
Based on its 𝑔𝑒𝑡 operation, it either returns a product (that can be edited in
a view-based manner) or a partial product line (that can be edited directly).
In VTS, an editable view that also includes mappings can easily be provided,
as fragments are lines of text and mappings are annotations. While existing
approaches allow for dynamically switching between editable product and
platform views, they are also limited to textual fragments [162, 31]. Note that
the direct editing of time concepts is discouraged in this research to prevent
the user from accidentally changing the history.

Further future work is the combination of development paradigms, that is
envisioned to further support the evolution of a variable system. The ability
to arbitrarily alternate between platform-oriented and product-oriented de-
velopment would make it possible to leverage the bene�ts of both. However,
this remains an open challenge in state of the art, as none of the studied tools
allow to switch between the two paradigms. Platform-oriented development
would be the paradigm of choice to make modi�cations to the platform, but
it requires high cognitive e�ort [141, 214]. Product-oriented development
reduces complexity as it allows a developer to focus on a single product,
but does not produce �ne-grained mappings that are necessary for platform-
oriented development. Consequently, additional techniques such as feature
location [160, 20, 199] are required. Otherwise, it has only limited support
for intensional versioning (i.e., the derivation of new products [48]). Thus,
allowing a developer to pick the paradigm that is best suited for any given
development task can provide a substantial advantage.

12.8. Summary

This chapter presented the evaluation of the appropriateness and applicability
of the uni�ed operations. A quantitative analysis was performed to quantify
the appropriateness of the uni�ed operations with respect to the analyzed
tools. Therefore, metrics for uni�cation were applied (see Section 10.2). Main
insights showed that while the uni�ed operations do not miss any function-
ality of the considered tools, they provide operations that are not employed
by any tools (i.e., the direct editing of system revisions). Furthermore, the
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application of the uni�ed operations was demonstrated based on variabil-
ity scenarios identi�ed from the literature. While the scenarios were fully
supported, the number of necessary operations when solving each scenario
di�ers based on the development paradigm. Furthermore, the modi�cation
of mappings is only supported in a limited way via uni�ed view-based op-
erations (and, consequently, in the analyzed tools). Based on the insights,
future work as well as open challenges of combining editing modalities and
development paradigms are discussed.
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13. Evaluation of the Unified
Approach

Chapter 8 presented the uni�ed approach to support the consistent evolution
of systems that are subject to variability in space and time, and that are com-
posed of heterogeneous artifacts (C5). This chapter presents the evaluation
of its functional suitability based on the GQM method [27].

Section 13.1 presents the overall evaluation goal. Section 13.2 introduces
two real-world case study systems that are used for evaluation. For every
inconsistency type that is detected and resolved by the uni�ed approach,
i.e., Inconsistency Type 2 (feature model to product consistency, as described
in Section 8.6.1), Type 5 (product to feature model consistency, as described
in Section 8.6.2), and Type 6 (product consistency, as described in Section 8.6.3),
a tailored evaluation is provided in Section 13.3–Section 13.5. It encompasses
an overview of the questions and metrics, the applied evaluation process,
and a discussion of the evaluation results. Section 13.6 comprises a brief
description of the employed technologies. Section 13.7 involves a discussion
of the limitations and future work of the uni�ed approach. A summary of
the main insights in Section 13.9 closes the chapter.

13.1. Overall goal

The overall goal of the evaluation of the uni�ed approach is to provide ev-
idence on its functional suitability1. In particular, the approach shall fully
support the evolution of a variable system (i.e., functional completeness), de-
tect and repair inconsistencies correctly (i.e., functional correctness) with the
desired degree of automation (i.e., functional appropriateness).

1 https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
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13.2. Case Studies

To evaluate the uni�ed approach holistically and realistically, case studies
must meet several requirements. In the following, the selection criteria is
introduced and the selected case studies are described.

13.2.1. Selection Criteria

The goal is to evaluate the uni�ed approach by taking into account both
variability dimensions, the heterogeneity of implementation artifacts, and the
handling of variability-related inconsistencies that were caused or repaired in
the solution space (i.e., the heterogeneous implementation). Therefore, case
study systems were selected based on the following selection criteria:

1. The case study is variable in space, for example, by managing a set of
products and/or features and providing a variability model.

2. The case study is variable in time by having an evolution history,
ideally also of the variability model.

3. The case study has an implementation comprised of di�erent types of
artifacts.

4. The case study is a real-world system.

5. The case study is publicly available.

ArgoUML-SPL and MobileMedia are two case study systems that satisfy the
described selection criteria and that are introduced in the following. Both are
implemented in Java and use a preprocessor as variability mechanism. Since
the feature model only evolved in MobileMedia and not in ArgoUML-SPL,
MobileMedia was used for the evaluation of Type 2 and Type 5. For Type 6,
the evaluation was applied to both case studies.
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13.2.2. ArgoUML-SPL

ArgoUML-SPL that has been extracted from a snapshot of ArgoUML, a UML
modeling tool, in 2009.2 The ArgoUML-SPL serves as real-world case study in
the SPL research community that is widely used [49, 153, 159, 154]. ArgoUML-
SPL is implemented in Java, has about 130 KLOC and uses conditional com-
pilation via the Java preprocessor as variability mechanism. Figure 13.1
shows the feature model of the ArgoUML-SPL. It consists of three core fea-
tures (i.e., ArgoUML-SPL, Diagrams, Class) and seven optional features (e.g.,
Activity, Cognitive and Logging). Unfortunately, ArgoUML-SPL has not
been co-evolved with the original ArgoUML system. Although ArgoUML kept
evolving, the ArgoUML-SPL remained in its inital revision. To remedy this, I
manually evolved ArgoUML-SPL by retroactively replaying, i.e., comparing
and merging, the revision history of ArgoUML on the ArgoUML-SPL. In total,
28 commits of ArgoUML were analyzed, with a total of 32 changed Java �les
with 619 additions and 407 deletions that were merged into the ArgoUML-
SPL. Successive ArgoUML revisions that a�ected the same feature expression
were grouped into a single ArgoUML-SPL revision, which ultimately resulted
in nine ArgoUML-SPL revisions. Table 13.1 shows the nine revisions and
the respective expressions comprising features or feature interactions that
are a�ected (i.e., changed within a respective Java preprocessor annotation)
per revision. In total, four distinct feature expressions were a�ected: 𝐶𝑜𝑟𝑒 ,
𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 , 𝐿𝑜𝑔𝑔𝑖𝑛𝑔,𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒∧𝐿𝑜𝑔𝑔𝑖𝑛𝑔. In revision one, three, six, and eight,
only the core features are a�ected by changes. In revision two, seven, and
nine, the Logging feature is additionally changed. In the fourth revision,
only the Cognitive feature is changed, while in the �fth revision, both the
Cognitive feature along with the feature interaction 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 ∧ 𝐿𝑜𝑔𝑔𝑖𝑛𝑔 is
a�ected. For the evaluation, mandatory core features are considered that are
part of every product, the two optional cross-cutting features Cognitive and
Logging, and the additional optional Activity diagram feature. While the
data set contains four additional diagram features, they are omitted from this
evaluation, as they were not a�ected by any of the subsequent revisions. To
establish heterogeneous implementation artifacts for this evaluation, UML
class diagrams are automatically extracted for every product of the ArgoUML-

2 https://github.com/argouml-tigris-org/argouml/commit/

43d8b97eebec3e9d366744528465b1b253cbf482
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ArgoUML-SPL

Diagrams

Class

Cognitive Support Logging

State Activity Use Case Collaboration Deployment

Figure 13.1.: Feature model of the ArgoUML-SPL [49, Fig. 2].

Table 13.1.: Internalization expressions of the ArgoUML-SPL data set.

Revision Feature Expression(s)

1 Core
2 Core, Logging
3 Core
4 Cognitive
5 Cognitive, 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 ∧ 𝐿𝑜𝑔𝑔𝑖𝑛𝑔
6 Core
7 Core, Logging
8 Core
9 Core, Logging

SPL from its Java source code using functionality provided by Vitruvius (not
considering features, the product line, or variability at all).

13.2.3. MobileMedia

The second case study for the evaluation is MobileMedia3 [71]. MobileMedia
is an application for mobile devices to manage media, i.e., photos, music, and
videos. MobileMedia is implemented in Java, has approximately 3 KLOC and
uses conditional compilation via the Antenna preprocessor4 as variability
mechanism. In contrast to the ArgoUML-SPL, where the feature model does
not evolve, the feature model of MobileMedia changes in every revision.
Figure 13.2 shows a simpli�ed feature model of MobileMedia at revision 5.
It has 7 core features (e.g., the supported media type Photo, and the opera-
tions to Label and View/Play media) and four optional features (e.g., Sort,

3 https://sourceforge.net/projects/mobilemedia/, last visited on March 10, 2022.
4 http://antenna.sourceforge.net/wtkpreprocess.php, last visited on March 10, 2022.
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Mobile Media

Media

Photo

Sort Copy Media

Create/Delete Label View/Play

Favourites SMS Transfer Media Mngmt.

Figure 13.2.: Simpli�ed feature model of MobileMedia at revision 5. Adapted from [71, Fig. 3].

Table 13.2.: Internalization expressions of the MobileMedia data set.

Revision Feature Expression(s)

1 Core
2 Sort, Label
3 Core, Favourite
4 Core, Sort, Favourite, Sort ∧ Favourite, Copy
5 Core, Copy, SMS

Favourites). Table 13.2 shows the �rst �ve revisions (i.e., Git commits) start-
ing from an empty product line and the respective expressions comprising
features or feature interactions that are a�ected (i.e., changed within a respec-
tive Java preprocessor annotation) per revision. In the �rst revision, the core
features are added to MobileMedia, that are grouped by the expression Core.
In the second revision, both features Sort and Label are a�ected by changes
in the implementation. In the third revision, changes a�ect the Core and the
Favourite feature. The fourth revision comprises changes to most features.
Speci�cally, Core, Sort, Favourite and Copy change, as well as the feature
interaction 𝑆𝑜𝑟𝑡 ∧ 𝐹𝑎𝑣𝑜𝑢𝑟𝑖𝑡𝑒 . Finally, in the �fth revision, the Core, Copy, and
SMS features are a�ected by changes. Analogously to ArgoUML-SPL, heteroge-
neous implementation artifacts are created by automatically extracting UML
class diagrams for every product of MobileMedia from its Java source code.

13.3. Feature Model to Product Consistency

This section presents the evaluation for the Inconsistency Type 2 (feature
model to product consistency, as described in Section 8.6.1).
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13.3.1. Questions and Metrics

Following the overall goal of functional suitability, four questions are asked.
In case of adding new features or removing constraints between features,
new con�gurations and thus new products become viable. The �rst question
concerns the MobileMedia data set:

Q 3.1.1 How many products became valid after each feature model change?

This question can be answered based on metric M3.1.1:

Let 𝐶𝑟 be the set of valid con�gurations in the feature model at revision 𝑟 .

Let 𝐶+𝑟 = 𝐶𝑟 \𝐶𝑟−1 be the set of newly valid con�gurations at revision 𝑟

compared to the previous revision 𝑟 − 1.

M3.1.1 = |𝐶+𝑟 | is the number of newly valid con�gurations after the feature
model evolution.

If the implementation of the new feature(s) or feature interaction(s) is missing,
this leads to a problem space–solution space inconsistency (see Section 2.7).
Building upon Q 3.1.1, the second question asks:

Q 3.1.2 Which fraction of the newly valid products is inconsistent?

Moreover, the bene�cial characteristics of the view-based edit modality of
the uni�ed approach is considered:

Q 3.1.3 What is the proportion of the manually repaired products to restore
consistency in all other a�ected products?

Both questions can be answered based on M3.1.2 andM3.1.3:

Let 𝑃+𝑟 be the set of newly valid products at revision 𝑟 whose implementa-
tion does not match the implementation of the respective ground truth
products.

M3.1.2 =
|𝑃+𝑟 |
|𝑃+𝑟 | is the fraction of newly valid products that are inconsistent.
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Let 𝑃+𝑟 be the set of newly valid products that needed to be manually
repaired and internalized via 𝑖𝐶 before all newly valid products 𝑃+𝑟 became
consistent with the ground truth.

M3.1.3 =
|𝑃+𝑟 |
|𝑃+𝑟 | is the fraction of newly valid products that needed to be

repaired manually to restore consistency in all other a�ected products.

Finally, to check whether the uni�ed approach provides the correct hints,
the causing features or feature interactions of the inconsistencies are consid-
ered:

Q 3.1.4 Howmany of the causing features or feature interactions were hinted
at by the uni�ed approach?

This question can be answered based on metric M3.1.4:

Let 𝐻𝑟 be the set of hints computed by the uni�ed approach during 𝑖𝐷 of
revision 𝑟 .

Let 𝐻𝑟,𝑔𝑡 be the set of correct hints based on the ground truth, i.e., the set
of features and feature interactions causing the inconsistencies at revision 𝑟 .

M3.1.4 = |𝐻𝑟 ∩𝐻𝑟,𝑔𝑡 | is the number of causing features and feature inter-
actions that were hinted at by the uni�ed approach.

13.3.2. Evaluation Process

Figure 13.3 shows a UML activity diagram of the applied evaluation process.
Uni�ed operations are highlighted in grey. For every revision of MobileMedia,
the domain is externalized via 𝑒𝐷 which provides the feature model at a par-
ticular revision. Based on the ground truth feature model at the succeeding
revision, the provided feature model is evolved and internalized back via 𝑖𝐷
into the uni�ed system. Upon every internalization operation, a con�guration
space analysis of the evolved feature model is performed. In case of added
features or the removal of constraints between features, the con�gurable
space increases. If this is the case, a hint is provided for every new feature
and feature combination whose implementation is missing and may thus lead
to an inconsistency (see Section 2.7). While not all inconsistency-causing
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Type 2 evaluation process

r = 0

Internalize
Domain (iD)

Externalize
Product (eP)
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Changes (iC)

r++

Hints
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product at 
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Figure 13.3.: UML activity diagram of the evaluation process for feature model to product
consistency (Inconsistency Type 2).

expressions have been internalized, a product is externalized via 𝑒𝑃 and manu-
ally repaired based on the ground truth product at the succeeding revision r+1
and internalized into the system via 𝑖𝑃 , which addresses the corresponding
hint. The complete process is repeated for each revision of MobileMedia.

13.3.3. Results

Table 13.3 shows the results of the evaluation for Inconsistency Type 2. Each
cell shows the results for one particular metric (M.3.1.1–M3.1.4) (columns)
per revision (rows).
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Table 13.3.:MobileMedia evaluation results for Type 2.

Rev.

Metrics
M3.1.1 M3.1.2 M3.1.3 M3.1.4

1 +1 = 1 (+Root) 1/1 (100%) 1/1 (100%) 1/1
2 +2 − 1 = 2 (+Label, +Sort) 2/2 (100%) 2/2 (100%) 5/2
3 +2 = 4 (+Favourite) 2/2 (100%) 1/2 (50%) 4/1*
4 +4 = 8 (+Copy) 4/4 (100%) 1/4 (25%) 5/1
5 +8 = 16 (+SMS) 8/8 (100%) 1/8 (12,5%) 6/1

* Favourite ∧ Sort combination was hinted at but internalized later in revision 4.

Metric M3.1.1 indicates that the number of newly valid con�gurations in-
creases with every revision. In the �rst revision, the feature Root is added
to the feature model which leads to one product only consisting of the Root
feature. In the second revision, the mandatory Label feature and optional
Sort feature are added to the feature model, leading to two new products
(i.e., {Label}, {Label,Sort}) while a con�guration with only the Root feature is
not possible anymore. In the third revision, the optional feature Favourite is
added to the model, leading to two new products (four in total). In revision
four, the optional feature Copy is added to the feature model, thus leading
to four new products and eight products in total. Finally, in revision �ve,
the optional feature SMS is added to the feature model, leading to eigth new
products and 16 products in total.

MetricM3.1.2 indicates that newly valid products are always inconsistent
(i.e., the implementation of the valid products does not match the implemen-
tation of the respective ground truth products). To restore consistency in the
respective products, metric M3.1.3 indicates that, in most cases, only one
product must be repaired.

Finally, metricM3.1.4 indicates that for all revisions, the approach hinted at at
least the number of actually causing features and feature interactions. While
the inconsistency was caused in most cases by a missing feature implementa-
tion and rarely by a missing feature interaction implementation (compared
to the implementation of the respective ground truth products), the approach
additionally provided hints for all newly valid feature combinations. For in-
stance, in the second revision, the �ve hints involved two hints for the newly
added features Label and Sort as well as three hints for the newly possible
feature combinations {Root,Label}, {Root,Sort}, and {Label,Sort}.

197



13. Evaluation of the Uni�ed Approach

13.3.4. Discussion

From the computed metrics for the MobileMedia case study, several insights
can be derived to answer the questions and discuss the evaluation results.

Q 3.1.1: How many products become valid after each feature model change?

The feature model evolves incrementally and constantly in every revision.
Per revision, one optional feature is added to the feature model, doubling
the number of valid product from the previous revision. Additionally, in the
second revision, also a mandatory feature is added as a child of the Root

feature, which is therefore also a core feature (i.e., selected in every valid
con�guration). While this does not a�ect the number of valid con�gurations,
it a�ects all valid con�gurations such that all previously valid con�gurations
must now additionally contain the new core feature Label.

Q 3.1.2: Which fraction of the newly valid products is inconsistent?

The fraction of the newly valid products that are inconsistent is always at 100%.
Speci�cally, all newly valid con�gurations are missing the implementation
of the newly added optional feature. Consequently, every new product has
become inconsistent when compared to the ground truth implementation of
the respective product. Note that, in every revision, also other changes were
performed that were not related to a change in the feature model and thus
were not relevant for this type of inconsistency.

Q 3.1.3: What is the proportion of the manually repaired products to restore
consistency in all other a�ected products?

The evaluation results indicate a synergy between view-based development
and developing variable systems based on products as supported by the uni�ed
approach. Since all inconsistent products have the same cause (i.e., the newly
added feature) and the new features are optional and independent of the other
features (i.e., no dependencies or interactions), they can be implemented in
one product and propagated as is to other products. For instance, adding the
implementation for the feature SMS only requires to change one product and
internalize the changes via 𝑖𝐶 once, to let all other products with that feature
bene�t from it. This e�ect increases with the number of products.
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Q 3.1.4: How many of the causing features or feature interactions were hinted
at by the uni�ed approach?

The approach always correctly provides a hint for the newly added feature(s)
and new pair-wise feature combinations that needed to be implemented in the
respective revision. Additionally, it also provides surplus hints at new feature
combinations that did not need to be implemented. Interestingly, a case
occurred when a feature interaction was hinted at whose implementation
was delayed to a later revision. For instance, the combination Favourite

and Sort became valid in the third revision, while its implementation was
added later in the fourth revision. Thus, their combination either led to an
(undesired) feature interaction or a desired interaction was missing, which
was realized by the developers in the following revision.

To summarize, the con�gurable space of MobileMedia increased constantly by
means of added optional features. In most cases, the missing implementation
of the respective feature led to an inconsistency. The approach provides hints
of all newly added features and new valid pair-wise feature combinations to
make the user aware of possible inconsistencies caused by a missing feature
implementation or potentially undesired feature interactions.

13.4. Product to Feature Model Consistency

This section presents the evaluation for the Inconsistency Type 5 (product to
feature model consistency, as described in Section 8.6.2).

13.4.1. Questions and Metrics

Following the overall goal of functional suitability, three questions are asked.
The �rst question concerns the MobileMedia data set:

Q 3.2.1 How many constraints are added to the feature model per revision?

This question can be answered based on metric M3.2.1:
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Let 𝐶𝑇 +𝑟 = (𝑇𝐶𝑟 \ 𝑇𝐶𝑟−1) ∪ (𝐶𝑇𝐶𝑟 \ 𝐶𝑇𝐶𝑟−1) be the set of newly added
tree constraints and cross-tree constraints at revision 𝑟 .

M3.2.1 = |𝐶𝑇 +𝑟 | is the number of tree constraints and cross-tree constraints
that were added at revision 𝑟 .

To understand whether constraints added in the problem space also exist in
the implementation, the second question asks:

Q 3.2.2 How many of these constraints are re�ected in the implementation?

This question can be answered based on metric M3.2.2:

Let 𝐶𝑇 +
𝐼 ,𝑟

= 𝐶𝑇 +𝑟 ∩ 𝐶𝑇𝐼 ,𝑟 be the set of newly added tree and cross-tree
constraints that are re�ected in the implementation of the products at
revision 𝑟 .

M3.2.2 = |𝐶𝑇 +
𝐼 ,𝑟
| is the number of newly added tree and cross-tree con-

straints that are re�ected in the implementation at revision 𝑟 .

Finally, the functional suitability of the uni�ed approach is examined:

Q 3.2.3 How many of these constraints can be automatically suggested?

This question can be answered based on metric M3.2.3:

Let 𝐶𝑇𝐴,𝑟 be the set of constraints that are suggested by the approach after
all executions of 𝑖𝐶 at revision 𝑟 .

M3.2.3 = |𝐶𝑇 +
𝐼 ,𝑟
∩𝐶𝑇𝐴,𝑟 | is the number of newly added constraints that are

re�ected in the implementation (𝐶𝑇 +
𝐼 ,𝑟
) and automatically suggested by the

approach (𝐶𝑇𝐴,𝑟 ).

13.4.2. Evaluation Process

Figure 13.4 shows a UML activity diagram of the applied evaluation process.
For every revision of MobileMedia, a product is externalized via 𝑒𝑃 which
provides a product at a selected system revision along with a selected feature
revision per feature. Based on the ground truth product at the succeeding
system revision, the externalized product is evolved and changes are internal-
ized back via 𝑖𝐶 into the uni�ed system, providing the expression that was
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Type 5 evaluation process
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Figure 13.4.: UML activity diagram of the evaluation process for product to feature model
consistency (Inconsistency Type 5).

manually identi�ed from the evolution history of the MobileMedia data set.
After every internalization operation of changes, the approach performs a
dependency analysis of the solution space. In case constraints are identi�ed
that are not re�ected on the problem space between features, the domain is
externalized via 𝑒𝐷 at the succeeding system revision and repair the feature
model by adding the missing constraints to it. Finally, the changed feature
model is internalized via 𝑖𝐷 and the repaired feature model is compared
with the ground truth feature model of the succeeding system revision. The
complete process is performed for each revision of MobileMedia.
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13.4.3. Results

Table 13.4 shows the results of the evaluation for Inconsistency Type 5. Each
cell shows the results for one particular metric (M.3.2.1–M3.2.3) (columns)
per revision (rows).

MetricM3.2.1 indicates that at least one constraint is added in every revision.
In the �rst revision, the Root feature is added to the feature model that must
always be selected in any valid con�guration. In the second revision, two
constraints are added to the feature model: Label is added as mandatory
feature and Sort is added as optional feature. In the following three revisions,
every added feature (i.e., Favourite, Copy, SMS) is optional.

Out of the added constraints to the feature model (i.e., the problem space),
metricM3.2.2 answers how many of these are actually re�ected in the imple-
mentation (i.e., the solution space). Therefore, the annotated implementation
of the data set was manually inspected at every revision. Note that depen-
dencies of the data set are not exhaustively analyzed manually, but instead a
dependency between features is considered present if at least one dependency
between their implementing artifacts could be detected.

In the �rst revision, the Root feature has been added. As it is the only feature
at this revision, there are no dependencies to other features yet. In the second
revision, the features Label and Sort are added as children of the Root feature
and thus depend on it. This dependencies are re�ected in the implementation,
since several elements of the Sort and Label features are contained in, or
refer to elements of the Root feature. The Sort feature is added as optional
in the feature model which could be con�rmed in the implementation as no
element of any other feature is contained in, or referring to any element of
the Sort feature. Although the Label feature was documented as mandatory
child of Root in the feature model, no dependency was found of the Root

feature’s implementation to the implementation of the Label feature in this
revision. Since an optional child feature represents a dependency of the
child to the parent feature (instead of additionally a dependency of the parent
feature to the child feature, which would represent a mandatory child feature),
this case was counted as 1.5 out of 2 re�ected constraints. Interestingly, in
the following third revision, elements of the Root feature indeed referred to
elements that were added when the Label feature was added, which thereby
also become mandatory in the implementation. However, this is a special
case: the implementation of the Label feature could not be distinguished
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Table 13.4.:MobileMedia evaluation results for Type 5.

Rev.

Metrics
M3.2.1 M3.2.2 M3.2.3

1 1 (+Root) 1/1 1/1 (100%)
2 2 (+mand. Label, +opt. Sort) 1.5/2 1.5/1.5 (100%)
3 1 (+optional Favourite) 1.5/1* 1.5/1.5 (100%)
4 1 (+optional Copy) 1/1 1/1 (100%)
5 1 (+optional SMS) 2/1** 2/2 (100%)

* Core⇒ Label (Label becomes mandatory in solution space one revision later wrt. the problem
space)

** SMS⇒ Copy (solution space dependency is not re�ected in ground truth problem space)

from the Root feature’s implementation in subsequent revisions as it is not
annotated in the implementation of MobileMedia. In the fourth revision, the
Copy feature can be con�rmed to be an optional child of the Root feature. In
the �fth revision, the SMS feature is added as optional child of Root. However,
additionally, the SMS feature also requires the Copy feature, since a statement
in the SMS implementation calls a method in the Copy implementation.

Finally, metricM3.2.3 shows that the uni�ed approach could automatically
and correctly identify and add all dependencies among features to the feature
model that also exist in the implementation.

13.4.4. Discussion

From the computed metrics for the MobileMedia case study, several insights
can be derived to answer the questions and discuss the evaluation results.

Q 3.2.1: How many constraints are added to the feature model per revision?

Per revision, at least one new feature and corresponding constraint is added
to the feature model. All new features are children of either the Root feature
or another core feature. Moreover, all features except for Label are optional,
and there are no constraints between any of the features other than their
dependency to the Root feature. Thus, the implementations of the optional
features must also be independent of each other. Furthermore, elements in
their implementation may only be contained in, or refer to elements of the
implementation of the Root feature or the mandatory Label feature. Other-
wise, products with an invalid implementation could be externalized. An
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exception is the Label feature. Since it is also a core feature, all other features,
including the Root feature, may depend on it.

Q 3.2.2: How many of these constraints are re�ected in the implementation?

Interestingly, the actual implementation does not always correspond to the
documentation of the evolved feature model. For instance, in revision two,
the Label feature is initially optional in the solution space and becomes
mandatory one revision after it was documented as mandatory in the problem
space. While this does not cause an inconsistency, it might be unnecessarily
restrictive. Moreover, in revision �ve, the implementation of the optional
SMS feature requires the implementation of the optional Copy feature. This
is interesting, as it is not re�ected in the ground truth feature model which
is therefore inconsistent with the ground truth implementation. Thus, it
is possible to externalize four products with compilation errors, since they
comprise the SMS feature but not the Copy feature.

Q 3.2.3: How many of these constraints can be automatically suggested?

Based on the dependency analysis between features in the solution space, the
uni�ed approach is able to detect all dependencies, lift them to the problem
space, and automatically add them to the feature model in case they are not
re�ected in the problem space. This was not only su�cient to automatically
add all constraints present in the ground truth feature model, but also to
add an additional constraint that was wrongfully missing in the ground
truth feature model. The results indicate that the approach is able to reduce
manual e�ort for developers and also to reduce the chance of human error.
Please note that, in most cases, more than one valid repair exists and that
the approach chooses one such valid repair. Which repair is suggested and
applied automatically depends on the order in which mappings are processed
and can thus vary.

13.5. Product Consistency

This section presents the evaluation for the Inconsistency Type 6 (product
consistency, as described in Section 8.6.3).
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13.5.1. Questions and Metrics

Following the overall goal of functional suitability, several questions are asked.
Since this inconsistency type particularly addresses inconsistencies that can
occur between di�erent types of artifacts, the �rst question asks:

Q 3.3.1 How many products become inconsistent after evolving one artifact
type of a variable system via uni�ed view-based operations (a) without
consistency preservation and (b) with consistency preservation?

The question Q 3.3.1a can be answered based on metricM3.3.1a:

𝐷𝑟,𝑐 is the set of di�erences between the original ground truth UML model
of the product with con�guration 𝑐 at revision 𝑟 and the product with
con�guration 𝑐 at revision 𝑟 − 1.

M3.3.1a = |{𝑃𝑐 | 𝐷𝑟,𝑐 > 0}| is the number of products for which there is at
least one di�erence after evolution without consistency preservation (i.e.,
only considering the ground truth products).

The question Q 3.3.1b can be answered based on metric M3.3.1b:

𝐷̂𝑟,𝑐 is the set of di�erences between the original ground truth UML model
of the product with con�guration 𝑐 and the product generated by the
uni�ed approach via the 𝑒𝑃 operation with con�guration 𝑐 at revision 𝑟 .

M3.3.1b = |{𝑃𝑐 | 𝐷̂𝑟,𝑐 > 0}| is the number of products for which there is at
least one remaining di�erence to the ground truth product after evolution
with consistency preservation.

The second question is concerned with the e�ort for repairing inconsistent
products and how much of it can be reduced by the uni�ed approach.

Q 3.3.2 How many of the necessary changes to repair an inconsistent prod-
uct could be performed automatically?

The questionQ 3.3.2 can be answered based onmetricM3.3.2a andM3.3.2b:
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M3.3.2a = |𝐷𝑟,𝑐 \ 𝐷̂𝑟,𝑐 | is the number of necessary changes that could be
performed automatically.

M3.3.2b = |𝐷𝑟,𝑐 | is the number of necessary changes.

13.5.2. Evaluation Process

Figure 13.5 shows a UML activity diagram of the applied evaluation process.
In every revision of ArgoUML-SPL and MobileMedia, both product lines
are gradually constructed, starting from a single product only consisting of
the core features. The product space is iteratively increased by applying 𝑒𝑃
and adding each new feature and respective feature interaction based on the
ground truth product at the succeeding system revision only to a single artifact
model (Java) of a single product each. After every change, the consequential
changes of Vitruvius are executed to preserve consistency in the UMLmodel.
Finally, changes that have been applied based on the ground truth product
are integrated into the uni�ed system via 𝑖𝐶 . For each revision 𝑟 , the set of
di�erences 𝐷̂𝑟,𝑐 is computed between the original ground truth UML model of
each respective product with con�guration 𝑐 , extracted by Vitruvius directly
from the Java source code generated from theArgoUML-SPL andMobileMedia
at revision 𝑟 , and the UMLmodel constructed by the externalization operation
𝑒𝑃 of the uni�ed approach. To put the results into perspective, also the set of
di�erences𝐷𝑟,𝑐 is computed between the original UML model of each product
with con�guration 𝑐 at revision 𝑟−1 and 𝑟 . This re�ects the e�ort that would be
needed to manually evolve each UMLmodel from revision 𝑟−1 to revision 𝑟 .

13.5.3. Results

Table 13.5 shows the evaluation results for the ArgoUML-SPL, and Table 13.6
shows the evaluation results for MobileMedia. Each cell shows the num-
ber of automatically performed changes (M3.3.2a) out of the total number
of changes (M3.3.2b) per con�guration (rows) and revision (columns) in
the form𝑀3.3.2𝑎/𝑀3.3.2𝑏. The last row shows the number of inconsistent
products without consistency preservation (M3.3.1a) and with consistency
preservation (M3.3.1b) in the form 𝑀3.3.1𝑎/𝑀3.3.1𝑏. Con�gurations that
either have not existed yet or do not exist anymore in the respective revision
are represented by an empty cell with a dash.
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Type 6 evaluation process
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Figure 13.5.:UML activity diagram of the evaluation process for product consistency (Inconsis-
tency Type 6).

Metric𝑀3.3.1𝑎 shows that, without automated consistency preservation, in
seven of nine revisions of ArgoUML-SPL and in all �ve revisions of Mobile-
Media, the UML model of at least one product became inconsistent with its
Java model. With automated consistency preservation, the Java and UML
models of all products in all revisions of both case study systems could always
be kept consistent.
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Table 13.5.:ArgoUML-SPL evaluation results for Type 6.

Con�guration

Revision

0 1 2 3 4 5 6 7 8 9

{ Core, Class } 0/0 26/26 0/0 18/18 0/0 0/0 4/4 0/0 3/3 0/0
{ Core, Class, Cognitive } 0/0 26/26 0/0 18/18 5/5 3/3 4/4 0/0 3/3 0/0
{ Core, Class, Logging } 0/0 26/26 0/0 18/18 0/0 0/0 4/4 0/0 3/3 4/4
{ Core, Class, Activity } 0/0 26/26 0/0 18/18 0/0 0/0 4/4 0/0 3/3 0/0

M
3
.
3
.
2
a
/
M
3
.
3
.
2
b

{ All } 0/0 26/26 0/0 18/18 5/5 3/3 4/4 0/0 3/3 4/4

M3.3.1a/M3.3.1b 0/0 5/0 0/0 5/0 2/0 2/0 5/0 0/0 5/0 2/0

Table 13.6.:MobileMedia evaluation results for Type 6.

Con�guration

Revision

0 1 2 3 4 5

∅ 0/0 - - - - -
{ Core } - 630/630 - - - -
{ Core, Label } - - 150/150 12/12 306/306 0/0
{ Core, Label, Sort } - - 171/171 12/12 326/326 0/0
{ Core, Label, Fav. } - - - 25/25 306/306 0/0
{ Core, Label, Sort, Fav. } - - - 25/25 326/326 0/0
{ Core, Label, Copy } - - - - 341/341 7/7
{ Core, Label, Sort, Copy } - - - - 361/361 7/7
{ Core, Label, Fav., Copy } - - - - 341/341 7/7
{ Core, Label, Sort, Fav., Copy } - - - - 361/361 7/7
{ Core, Label, Copy, SMS } - - - - - 230/230
{ Core, Label, Fav., Copy, SMS } - - - - - 230/230
{ Core, Label, Sort, Fav., Copy, SMS } - - - - - 230/230

M
3
.
3
.
2
a
/
M
3
.
3
.
2
b

{ Core, Label, Sort, Copy, SMS } - - - - - 230/230

M3.3.1a/M3.3.1b 0/0 1/0 2/0 4/0 8/0 8/0

For all products in all revisions of both case study systems, it holds that
M3.3.2a = M3.3.2b, indicating that all changes were successfully propagated
to all a�ected products during view-based development and that the UML
model was kept consistent with the Java model fully automatically. The value
of𝑀3.3.2𝑏 indicates how many changes were needed to automatically prop-
agate changes during externalization. For example, in ArgoUML-SPL, the
product with con�guration {𝐶𝑜𝑟𝑒,𝐶𝑙𝑎𝑠𝑠, 𝐿𝑜𝑔𝑔𝑖𝑛𝑔} in revision three yielded
a total of 18 changes, such as the addition of a method, the change of the
visibility or input parameters of a method, to the previous revision of the
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UML model of the same product. None of them remained after the auto-
mated change propagation, i.e., all 18 changes could be propagated fully
automatically to the UML model after editing the Java model. In contrast
to ArgoUML-SPL, MobileMedia is developed from scratch and evolves in
larger increments as new features are still added in every revision. Conse-
quently, the number of products increases per revision while in ArgoUML
it remains identical. Notably in ArgoUML-SPL, changes whose expression
involved more than one feature, i.e., a feature interaction, were always very
�ne-grained and, thus, did not a�ect the UML models.

13.5.4. Discussion

The evaluation shows promising results for the functional suitability of the
uni�ed approach. It provides initial evidence for the synergy between view-
based development of variable systems and automated view-based consistency
preservation. From the computed metrics for the real-world case studies
ArgoUML-SPL and MobileMedia, several insights can be derived to answer
the questions and discuss the evaluation results.

Q 3.3.1a: How many products become inconsistent after evolving one artifact
type of a variable system via uni�ed view-based operations without consistency
preservation?

Without automated consistency preservation, over all nine revisions with
�ve products each in ArgoUML-SPL, the UML models of 26 products became
inconsistent with the Java model and required to be �xed manually. For
MobileMedia, over all �ve revisions and 27 products, the UML models of 23
products became inconsistent with the Java model. Thus, roughly half of the
products of ArgoUML-SPL and almost all of the products of MobileMedia
became inconsistent.

Q 3.3.1b: How many products become inconsistent after evolving one artifact
type of a variable system via uni�ed view-based operations with consistency
preservation?

With automated consistency preservation, none of inconsistent products
required manual repair. All changes in the Java models could automatically
and correctly be propagated to the UML models of all a�ected products.
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Q 3.3.2: How many of the necessary changes to repair an inconsistent product
could be performed automatically?

Any change performed in one artifact model of a speci�c product is automat-
ically propagated to other depending models and products. The proportion
of the number of automatically performed repair operations𝑀3.3.2𝑎 to the
number of overall operations𝑀3.3.2𝑏 necessary to repair a product is in all
cases 100%. The developer neither needs to maintain mappings nor manage
dependencies and redundancies across di�erent types of artifacts manually,
which is highly error-prone [180]. Finally, the results indicate that the ap-
proach is suitable for dealing with changes of variability in space, e.g., the
addition of new features or feature interactions, variability in time, e.g., mod-
i�cations of existing features and the addition of new feature revisions and
system revisions, and heterogeneous types of artifacts.

13.6. Implementation

The uni�ed approach was implemented in Java using the Eclipse Modeling
Framework (EMF) [225]. Thus, the concrete metamodel is realized as an
Ecore model. To parse Java source code and represent it as Ecore model,
the Java Model Parser and Printer (JaMoPP) was employed [92].5 Minor
non-intrusive adaptions to the ArgoUML-SPL source code were necessary
to be able to successfully parse it with JaMoPP, e.g., adding imports of static
�elds or methods to ensure that Ecore proxy objects could be resolved. Since
the uni�ed approach relies on deltas as variability mechanism, EMFCompare6
was used to di� successive revisions of Java model instances of products
and compute edit scripts between them. Additionally, EMFCompare was em-
ployed to compute the di�erences between UML model instances of products,
and thus, determining the evaluation metrics. Finally, the uni�ed approach is
integrated with Vitruvius [116], as described in Section 8.2.2. Speci�cally, its
incremental consistency preservation capabilities are utilized for propagating
changes between di�erent artifact models of a product, i.e., Java and UML
as well as between di�erent products.

5 https://github.com/DevBoost/JaMoPP
6 https://www.eclipse.org/emf/compare/
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13.7. Threats to Validity

13.7. Threats to Validity

This section describes threats to the validity and how they were mitigated.

Internal Validity. Threats to internal validity target the real-world case
study ArgoUML-SPL. While ArgoUML kept evolving, the ArgoUML-SPL has
not been co-evolved and remained in its inital revision. To make reliable
claims about the approach and its suitability to support the evolution of
a variable system, ArgoUML-SPL was manually evolved by retroactively
replaying, i.e., comparing and merging, the revision history of ArgoUML
on the ArgoUML-SPL. This threat was mitigated by closely inspecting the
merged changes and careful documentation, providing an artifact to be further
validated and applied.7

Construct Validity. In contrast to ArgoUML-SPL, a documentation of the
feature model evolution is provided [71]. To increase construct validity, I
veri�ed dependencies between features (documented in the feature model’s
evolution) by additionally analyzing the provided implementation of Mobile-
Media, which is re�ected by Metric M3.2.2. A threat to construct validity is
that the dependency analysis was performed manually, which was, however,
inevitable since state of the art does not provide techniques to extract a fea-
ture model fully automatically from arbitrary implementation artifacts [123].
Closest work is provided by Nadi et al. [165] to extract con�guration con-
straints from C code. Moreover, Mendonça et al. [158] present an approach for
reverse engineering feature models based on a multi-objective optimization
algorithm, which however assumes solution space dependencies between
features as input for the optimization.

External Validity. Since the uni�ed approach was applied to a single case
study for inconsistency Type 2 and 5 and to two case studies for inconsistency
Type 6 involving Java and UML, the results may be not easily generalizable
to other data sets and artifact models, which threatens the external validity.
Therefore, I am currently applying the approach to other real-world case stud-
ies, e.g., in the automotive domain. Moreover, one might question whether the
used data set is representative, as it only contains a relatively small number
of features. Since the ArgoUML-SPL is a real-world system that has been

7 https://github.com/SofiaAnanieva/argouml-spl-evolved
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widely adopted by the SPL community and is commonly applied as benchmark
system, this case study strengthens the comparability of this work.

13.8. Limitations and Future Work

This section comprises a discussion of the limitations of the uni�ed approach
as well as future work to address these.

The uni�ed conceptual model was re�ned to support feature modeling, which
is a de-facto standard for variability modeling in research and industry [117,
194, 50, 107]. Although other types of variability models are not explicitly
supported, feature models can be automatically transformed into other forms
of variability models [66]. However, this would require an additional trans-
formation step. As another limitation of the approach, it currently does not
support extensions to feature modeling such as cardinalities to specify the
number of clones for a given feature [193, 52], or attributes to include more
information about features [107, 29, 32]. Future work could address these
shortcomings by extending the concrete metamodel of the uni�ed approach
shown in Figure 8.2 accordingly.

The uni�ed conceptual model (C1) and uni�ed operations (C2) were con-
ceived to support distributed development. In case of the uni�ed conceptual
model, this is represented by the relation of a uni�ed system to multiple other
uni�ed systems. In case of the uni�ed operations, the operations 𝑒𝑈𝑆 and
𝑖𝑈𝑆 allow for cloning of a uni�ed system and internalizing changes back into
the original uni�ed system. However, the uni�ed approach (C5) is limited
to local operations and, thus, does currently not support distributed devel-
opment. This is considered a limitation of the implementation and not of
the conceptual basis of the approach as it builds on prior contributions that
explicitly support distributed development.

As explained in Section 6.2.1, operations could be classi�ed according to the
edit modality (i.e., direct or view-based editing) and development paradigm
(i.e., product-oriented or platform-oriented development). The uni�ed ap-
proach employs view-based editing and supports platform-oriented develop-
ment. While they have their distinct advantages, this choice also comes with
limitations of the approach that are discussed in the following. The uni�ed
approach is limited to uni�ed operations that support view-based editing and
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platform-oriented development (i.e., 𝑒𝑃 , 𝑖𝐶 , 𝑒𝐷 , 𝑖𝐷). Thus, it promotes the
evolution of a variable system via views that represent a particular product
of the variable system hiding the variability mechanism from the user as
proposed by the upcoming research area of VarCS (see De�nition 2.2). This
enables a high degree of automation for evolving variable systems (e.g., the
automated creation of feature revisions and system revisions, the computation
of mappings, and automated consistency preservation), which provides great
aid for developers as it reduces cognitive complexity [214, 141]. However,
the uni�ed approach inherits the limitation of view-based development via
product views by which it is challenging to arbitrarily modify mappings
between fragments and features without modifying the fragments, since they
are computed fully automatically and cannot be edited directly. An idea and
future work to address this limitation is to combine both edit modalities to
leverage bene�ts of both, as described in Section 12.7. However, the challenge
would be to provide an editable view that includes mappings, since they
require to be displayed di�erently for every type of artifact.

Moreover, the uni�ed approach is limited to uni�ed operations that support
platform-oriented development. Consequently, changes cannot be integrated
conveniently by simply providing the changed product, but requires the so-
lution space engineer to manually provide a Boolean expression which com-
prises the features and feature interactions that are a�ected by the changes
upon the operation 𝑖𝐶 . An idea and future work to address this limitation
is to support an arbitrary alternation between both paradigms to leverage
bene�ts of both. However, product-oriented edits do not provide �ne-grained
mappings that are necessary for platform-oriented editing. Thus, the uni-
�ed approach would require to additionally employ further techniques such
as feature trace recording [39] or feature location [199, 20] to automatically
extract �ne-grained mappings during product-oriented development.

A debatable limitation of the uni�ed approach is its application to legacy
systems, such as the Linux kernel [233]. The approach is applicable in a
green�eld scenario where the underlying data structure is populated with
constructs, i.e., features, mappings, fragments, feature revisions and system
revisions, incrementally as the system evolves. As described in Section 1.1,
legacy systems using current tool support require sophisticated approaches
to retroactively extract or mine information, such as the evolution of features
(that is explicitly modeled by the uni�ed approach). To apply the uni�ed
approach to an existing variable system (e.g., using a preprocessor in combi-
nation with Git as is the case for the Linux kernel), several possibilities can be
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considered as future work: the migration of legacy systems could, on the one
hand, be performed by automatically replaying annotated version histories to
automatically compute feature-to-fragments mappings [195], or, on the other
hand, by reverse engineering a product line from a set of products [155, 128].

Moreover, the evaluation considers the propagation of changes frommodels of
lower abstraction (Java) to models of higher abstraction (UML). Thus, the con-
sistency preservation mechanisms of Vitruvius can restore consistency fully
automatically. The opposite direction is more challenging and requires user
interaction in cases where multiple valid repair options exist. As Vitruvius
already supports semi-automatic repairs, such scenarios open up potential for
future work. Speci�cally, the user decisions should also be stored and mapped
to features so that they can be replayed during product externalization.

A current limitation of the uni�ed approach in this regard is, that it is not
possible to freely change the direction of consistency preservation. Once an
artifact has been chosen for applying original changes to (e.g., Java) further
original changes cannot be applied to another artifact type created by change
propagation (e.g., UML). This is caused by the fact that consequential changes
may di�er across products, and elements created by consequential changes
cannot be guaranteed to receive the same unique identi�ers in every product
as, in contrast to original changes, consequential changes are not stored in
the uni�ed system. Thus, it is not easily possible to have original changes
refer to elements created by consequential changes.

Another conceptual limitation of the uni�ed approach and important future
work is the ability to better deal with varying insertion positions of elements
that depend on the context in which they are inserted, as other features may
have added or removed surrounding elements: deltas that are recorded in a
product view and applied in another product may insert the elements not
at the right position, as the insertion position of elements depends on the
con�guration of the product in which they are inserted. As a consequence,
the insertion position used by delta operations cannot be determined by
a constant index. Instead, a (partial) order relation among them and all
their surrounding elements is needed to determine the appropriate insertion
position in each con�guration. This is a special case of feature interaction
where not new elements must be inserted into a product’s implementation
to address it, but where the order among existing elements that map to the
interacting features must be determined.
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Figure 13.6.:Contribution of Chapter 13 of the thesis.

Regarding the consistency preservation of Type 2, the current implementation
only considers feature combinations where all features in a combination
are positive (i.e., selected). However, albeit much less common, there can
also be feature combinations where one or more features are negative (i.e.,
deselected), as also the absence of a feature (i.e., a feature being deselected in
a con�guration) can cause an interaction with other features. Note that such
a case did not occur in the data sets used in the case studies.

Finally, the evaluation of the uni�ed approach is a preliminary proof of
concept. It requires further evidence to be gathered by additional real-world
case studies comprising artifact types from engineering disciplines other than
software engineering.

13.9. Summary and Conclusion

This chapter presented an evaluation of the functional suitability of the uni�ed
approach. First, two real-world case studies were presented, the well-known
ArgoUML-SPL [49] and the MobileMedia [71]. Since the ArgoUML-SPL
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has not been co-evolved and remained in its inital revision while the ori-
gin ArgoUML kept evolving, the ArgoUML-SPL was evolved by replaying
the original changes from the ArgoUML. Thus, a data set is provided that
also represents the �nal contribution of this thesis (C6). For every consid-
ered inconsistency type (i.e., Inconsistency Type 2 (feature model to product
consistency, see Section 8.6.1), Type 5 (product to feature model consistency,
see Section 8.6.2), and Type 6 (product consistency, see Section 8.6.3), an eval-
uation was presented following the GQM method [27]. The results showed
that all three inconsistency types occur during the evolution of the real-world
case study systems and that the uni�ed approach is capable of detecting and
repairing these, ranging from hints to the developer to fully automated con-
sistency preservation. Nonetheless, there are several limitations of the uni�ed
approach, such as the arbitrary modi�cation of mappings or its application
to legacy systems. To sum up, the evaluation showed promising results for
the functional suitability of the uni�ed approach and provides initial evi-
dence for the synergy between view-based development of variable systems
and automated view-based consistency preservation for variability-related
inconsistencies caused or repaired in the solution space.

Figure 13.6 shows an overview of the contributions of the thesis and highlights
the contribution of this chapter (C6) in grey.
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14. RelatedWork

This chapter builds on publications at VaMoS [6], VariVolution [9], SPLC [3, 7],
and Empirical Software Engineering [5].

This chapter presents related work for each of the major contributions of this
thesis: the uni�ed conceptual model (see Chapter 5), the uni�ed operations
(see Chapter 6), and the uni�ed approach (see Chapter 8).

Section 14.1 comprises related work to the uni�ed conceptual model. Sec-
tion 14.2 encompasses a discussion of work related to the uni�ed operations.
Related work to the uni�ed approach in Section 14.3 closes this chapter.

14.1. Unified Conceptual Model

Conceptual models were initially proposed in several areas of computer
science to model conceptualizations of a domain used for purposes of under-
standing, communication and problem solving [42, 88]. Conceptual models
represent mental representations comprised of concepts and relationships
between them, while clarifying the meaning of various, usually ambiguous
terms. In both the SPLE and SCM community, much research has focused
on concepts and terminology, resulting in various conceptualizations of the
respective research area. In this section, conceptual models of both commu-
nities as well as related surveys of variability in space and time are discussed,
and related with this research.

ConceptualModels for Variability in Space. Research in software product-
line engineering (SPLE) proposes several modeling concepts and taxonomies
to describe and specify concepts of variability in space, such as variation points
or variants [69, 191, 12, 178]. Despite these e�orts, varying terminologies
have evolved. For instance, the term variant can constitute a product (e.g.,
in the tool ECCO (see Table 11.1)), a con�guration (e.g., in the tool FeatureIDE
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(see Table 11.1)), or an option of a variation point in the orthogonal variability
model [191]. In SPLE, a prominent way of specifying terminology and pro-
viding conceptual models for the domain is variability modeling [191, 12, 51,
206, 167]. Although several types of variability models exist, concepts of vari-
ability in space along with its varying terminology have never been uni�ed.
Further limitations of existing models are that they are speci�c to certain tools
or that they only consider concepts from the solution space or the problem
space. The presented uni�ed conceptual model tackles these problems from
a wider perspective by considering the uni�cation of concepts and relations
from both the SPLE and SCM research areas. The uni�ed conceptual model
describes systems with variability in space and time in both the problem
space and solution space while employing names that are neither associated
with SPLE nor SCM terminology nor have ambiguous de�nitions.

Conceptual Models for Variability in Time. Likewise to SPLE, research
in software con�guration management (SCM) proposes conceptual models,
taxonomies and terminology to describe and specify concepts of variability
in time, such as revisions or changes [109, 201, 145, 190, 151]. Prominent
conceptual models in SCM are arguably version models for managing changes
within directories or �les that describe several concepts for version control,
such as the supported graph topology or the objects to be versioned. Conradi
and Westfechtel [48] study several approaches from SCM and show that
di�erent version models, versioning paradigms and concepts are employed
with a varying terminology, conceptual di�erences and whether they stem
from the product space (i.e., the solution space in SPLE [7]) or the version
space (i.e., the problem space in SPLE [7]). The authors propose an overview
of version models while de�ning and relating fundamental concepts. An
obvious conceptual di�erence compared to SPLE is the semantics of the term
version. While in SPLE it is commonly used to describe the state of a system
that supersedes the previous state, in SCM a version describes an abstract
concept that is specialized by either a revision (i.e., a version that is intended
to supersede its predecessor) or a variant (i.e., versions that are intended to
coexist). While this pioneer work already relates terms and concepts, both
research areas were not far developed and some of the modern concepts (such
as Feature Revisions) could not be considered.

Related Surveys of Variability in Space and Time. As described above,
Conradi and Westfechtel [48] classify multiple approaches used for version
control and relate fundamental concepts and terminology. Consecutively,
Westfechtel et al. [241, 47] propose the Uniform Version Model (UVM) along
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with its underlying layered architecture which is considered the closest re-
search to the uni�ed conceptual model. Likewise to the conceptual model
which does not prescribe a particular variability model but basic concepts
for any variability model (i.e., Options and Constraints), the UVM is also
independent from particular version models as it employs a common base
consisting of version rules (i.e., Constraints) to allow for realizing di�erent
version models. Also, both models are designed to support di�erent dimen-
sions of evolution (i.e., variability in space and time) and any structure of
Fragments (i.e., tree-based or graph-based). In contrast to the uni�ed concep-
tual model, the authors describe the UVM to be built only on a small number
of selected concepts while employing implementation speci�cs like deltas or
propositional logic to manage variability.

Schwägerl [212] builds upon the UVM and contributes an extension that
constitutes a conceptual framework for the integration of SPLE and SCM
based on MDSD. In contrast to the uni�ed conceptual model, several de-
sign decisions are made while developing the conceptual framework, such
as employing symmetric deltas and, in case of concurrent modi�cations, a
three-way merge support for model-driven software product lines. Based on
the conceptual framework, Schwägerl proposes the tool SuperMod, which was
part of the study to derive the uni�ed conceptual model that is independent of
realization by abstracting from implementation details of a certain tool. Lins-
bauer et al. [141] classify and compare several VarCS (see De�nition 2.2) and
present core concepts, such as Revisions or variable Entities (i.e., Features).
Several variation control systems of the study were also included in the uni-
�cation. Thus, tools were analyzed that have been published more recently
(i.e., VTS, SuperMod, and ECCO).

Mahmood et al. [152] propose the virtual platform, a method for incrementally
transitioning from clone-and-own to software con�guration with an inte-
grated platform. The proposed method builds on earlier work that introduces
governance levels ranging from clone-and-own [61] to a fully integrated
platform [11]. In this work, the authors propose conceptual structures and
operators that relate to the uni�cation e�ort. Similar to the process for con-
ceiving the uni�ed conceptual model and its concepts and relations, the au-
thors survey the literature and propose concepts and relations to support both
strategies. While some concepts for variability in space and/or time overlap
(e.g., Features and Revisions), others are less generic by specifying i) fea-
ture modeling (whereas the conceptual model employs the concepts Feature
Option and Constraint to allow for arbitrary types of variability models), ii)
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a tree structure (whereas the Fragments in the uni�ed conceptual model can
be organized as a graph that is a generalization of a tree structure), and iii)
presence conditions to be used for Mappings (whereas the form of a Mapping
is not speci�ed in the uni�ed conceptual model). While this research aimed
for appropriate uni�cation based on the elicited tools, the concepts of the vir-
tual platform were selected by the authors to support development activities
targeting clone management and the transition to an integrated platform.

Finally, there is research that analyzes and compares approaches and tools
for SPLE or SCM [189, 185, 26, 201, 77]. In contrast to the uni�ed conceptual
model, these works do not focus on unifying the concepts and relations of
the identi�ed tools, but on classifying and comparing them.

14.2. Unified Operations

Rubin et al.[198, 200] analyze three industrial case studies following the clone-
and-own practice. The authors propose a cloned product line management
framework that comprises seven conceptual operators to i) support the transi-
tion from cloned products to a product line and ii) maintain the existing clones
in a more e�cient manner. For instance, the authors propose an operator �nd
Features that returns a set of features of a particular product, the operator
interact? that determines interactions between an arbitrary number of feature
implementations based on features while specifying the form of interactions
to be checked, and the operator merge that combines several systems into a
single system based on artifacts that are considered similar and a speci�cation
for resolving interactions between input functionalities. While this work
relates to the uni�ed operations by means of the high abstraction level of the
operators and discussing sequences of their application, the pragmatics of the
operations di�er, leading to a di�erent set of operations. The authors propose
operators for managing cloned variants whereas uni�ed operations target
the wider perspective of supporting the evolution of a system that copes with
variability in space and time based on a reusable platform (i.e., the Unified
System). Moreover, sources of data di�er. While the uni�ed operations are
conceived based on an expert survey starting from concrete individual tool
operations, the proposed conceptual operators were derived from observing
three industrial organizations and subsequently applying the conceptual oper-
ators to concrete development activities. Finally, the cloned product line man-
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agement framework does neither explicitly consider pre and post-conditions
of operations nor view-based operations and their degree of automation.

As described in Section 14.1, Mahmood et al. [152] propose the virtual plat-
form, a method for continuously recording meta-data (e.g., mappings between
features and their locations or clone traces among artifacts) during clone-
and-own [61] to incrementally transition to software con�guration with a
reusable platform. The proposed work builds on earlier work that introduces
governance levels representing a spectrum between ad hoc clone-and-own
and a fully integrated platform [11]. In this work, the authors propose con-
ceptual structures that form the basis of operators for the virtual platform
that relates to the uni�cation e�ort. Besides similarities and di�erences of the
employed concepts to those of the uni�ed conceptual model (see Section 14.1),
the authors propose two categories of operators: traditional asset-oriented
such as Add Asset or Map Asset To Feature to manage assets (i.e., Fragments)
and feature-oriented such as Add Feature or Propagate To Feature devoted to
features and their locations in assets. Since the proposed operators build on
the conceptual operators proposed by Rubin et al. [200], again the purpose
of the operations is signi�cantly di�erent from the purpose of the uni�ed
operations to support the evolution of a variable system presuming a reusable
platform. Nonetheless, it can be argued that the uni�ed operations are also
capable of supporting clone traces as the virtual platform via the uni�ed oper-
ation externalize Unified System that is mapped to the clone operation of
Git. Indeed, it would be interesting to include the virtual platform as another
tool in the set of studied tools for the uni�ed conceptual model and the uni�ed
operations to consider an even broader set of evolution purposes.

Further related work is conducted by Hinterreiter et al. [99, 98]. The au-
thors propose local and distributed operations for feature-oriented develop-
ment [99]. Local operations only a�ect one platform such as Commit Features
while distributed operations involvemultiple platforms, such asClone Features.
Since this work is based on the tool ECCO that was part of the considered set
of tools for conceiving the uni�ed operations, the operations proposed by the
authors are covered by the uni�cation. The authors also compare approaches
dealing with temporal feature modeling (TFM) for capturing the evolution
of a feature model by its change history or the planning of future releases,
and propose common operations for temporal feature modeling (i.e., the TFM
API ) [98]. Such operations comprise, for instance, the creation of a feature or
the modi�cation of a feature group type. Highly similar to the process of devis-
ing the uni�ed operations, the authors conceive the API by analyzing a set of
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tools while aiming for, as the authors call it, harmonization. While the purpose
of harmonization can be considered similar to the purpose of uni�cation, it
only takes into account the coverage (i.e., whether the TFMAPI covers all oper-
ations of the respective tools, yet does not provide more operations than that)
and not the granularity (i.e., whether a harmonized operation targets one par-
ticular concern). While this work partially considers the same tools (i.e., Dar-
winSPL, DeltaEcore and FeatureIDE), it particularly targets feature modeling.

Further research is closely related with the uni�ed operations: Projectional
editing [240] is proposed for SPLE to reduce the complexity when developing
a variable system by introducing (partial) views on variable systems which
is essentially the same as view-based editing. Since projectional editing is
the foundation of VTS, this edit modality is incorporated in the uni�cation,
speci�cally the operation Externalize Uni�ed System that provides a partial
view on the Unified System. Also closely related is the study of variation
control systems performed by Linsbauer et al. [141]. The authors identify
two general types of operations, namely Internalization operations to modify
a variable system and Externalization operations that create output from it.
While these general types were used to scope the uni�ed operations and align
terminology, they were also considerably extended. For example, by explicitly
specifying the input and output of the operations and distinguishing between
di�erent internalization operations such as Internalize Changes, Internalize
Product or Internalize Domain.

Finally, Westfechtel et al. [241] introduce the uniform version management.
As described in Section 14.1, the uniform version model (UVM) comprises
and relates concepts of variability in space and time and proposes view-
based operations as common for SCM. While the operations are not speci�ed
thoroughly, the rather recent tool SuperMod builds on the UVM and is part
of the set of tools studied in this thesis. As a consequence, the proposed
operations are considered for the uni�cation.

14.3. Unified Approach

The uni�ed approach supports the consistent, view-based development and
evolution of variable systems composed of heterogeneous artifacts which is
a relevant and challenging problem. In the following, related work to the
uni�ed approach is presented.
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Consistency-Aware Variability Management

One of the closest research is conducted by Nieke et al. [169, 174, 175, 100,
171, 173, 176, 170]. The authors present several contributions to support
the consistent evolution of an SPL. First, by supporting the creation and
re-planning of feature model evolution plans [100, 176]. As a starting point,
the authors propose a temporal feature model (TFM) that describes the evo-
lution of a feature model at di�erent points in time. A central concept of a
TFM is the temporal element that constitutes the basis for storing a feature
model timeline along with a temporal validity that de�nes a time interval
in which a temporal element is valid. Each element of the feature model
specializes the temporal element and thus allows for specifying its temporal
validity. Based on the literature, the authors propose a set of basic user-level
operators for feature models, such as Create Feature or Change Group Type
of features. The re-planning of a feature model evolution plan and thus an
application of respective operators may lead to violations of its structural
consistency, speci�ed by means of well-formedness rules of the TFM (e.g.,
a feature group must consist of at least two features or feature names must
be unique at each point in time). To preserve the consistency, the authors
reason on the impact of evolution operations and model these as structural
operational semantics (SOS) rules that describe pre-conditions along with
a transition from one state to another if and only if all pre-conditions are
satis�ed. By analyzing the entire evolution timeline of a TFM, the proposed
approach additionally detects semantical inconsistencies (e.g., dead or false
optional features) and provides an explanation for the time the inconsistency
was introduced while also identifying the causing evolution operators [173].
To enable evolution planning for artifacts other than feature models, the au-
thors propose to augment existing metamodels with the concept of temporal
elements to store and plan evolution similar to a TFM [171]. Finally, changes
in the feature model or mappings between features and their realization may
invalidate previously valid con�gurations. To this end, the authors propose
an approach for guiding the evolution of con�gurations while preserving the
behavior of a product [174, 175]. For example, in cases where features are
merged, a con�guration is computed that maintains the product behavior by
automatically transitioning it to a con�guration with the same set of artifacts
based on mappings. The authors formalize a set of con�guration update
operations, such as the Replace operation to update the mapping between a
feature and its artifacts. Domain engineers can use these operations to de�ne
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guidance upon which application engineers are able to automatically update
con�gurations. All described concepts and methods are implemented in the
tool suite DarwinSPL [170].
The research is closely related to the uni�ed approach. A signi�cant similarity
is the support for the consistent evolution of variable systems by means of
automated consistency preservation. Contrary, inconsistencies are handled
that are caused or repaired in the problem space (i.e., TFM and con�gurations),
while the uni�ed approach addresses inconsistencies that are caused or re-
paired in the solution space (i.e., between heterogeneous artifacts of a product
as well as between di�erent products). Thus, this research can be considered
as complementary to ours. Considering concepts and operations dealing with
variability in space and time, the uni�ed approach builds on the described
research since the tool DarwinSPL is considered in the uni�cation. For exam-
ple, a temporal validity represents a System Revision while the operation
get Copy Of Valid Model of DarwinSPL represents the Externalize Domain
operation. To this end, the described research provides feature model speci�c
concepts and operations whereas the uni�ed approach builds on a uni�ed
basis consisting of both System Revisions and Feature Revisions.

Research by Feichtinger et al. [65] relates to the handling of variability-
related Inconsistency Type 5 (product to feature model consistency). Based on
a static code analysis and feature-to-artifact mappings, the proposed approach
lifts dependencies to feature level. The computed feature dependencies are
aggregated to create a dependency evolution matrix that summarizes the
relationships between features. Represented as links between features in the
feature model, dependencies are visualized to developers to support �xing
potential inconsistencies. The approach proposed by the authors and the
uni�ed approach share the same pragmatics of lifting dependencies between
features found on implementation level to the domain abstraction level of
the SPL for supporting a consistent evolution of the solution space and the
problem space. In contrast, the uni�ed approach analyzes dependencies be-
tween deltas (representing the entire product line) instead of performing a
static code analysis of individual products. Moreover, the uni�ed approach
also analyzes dependencies between features in the feature model (using
SAT) and thus gains knowledge about existing dependencies in the problem
space which allows for automatically repairing inconsistencies by adding the
missing constraints, respectively. However, the uni�ed approach only per-
forms a dependency analysis between deltas based on references to determine
requiring or excluding deltas, while the static code analysis also considers
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control and data dependencies. The combination of such analyses of the
solution space with the analysis of the uni�ed approach of the problem space
along with automated repair can be considered as complementary.

Unified Variability Management

Seidl et al. [220, 216] research integrated management of variability in space
and time based on delta modeling. To be able to apply their approach to
di�erent types of artifacts, support for automatically deriving delta languages
for metamodels is provided. The authors point out that, while delta modeling
can be used to realize both variability in space and time by adding, mod-
ifying or removing fragments, the purpose of delta modules can di�er. A
con�guration delta module changes functionality of a product by enabling
or disabling functionality associated with a feature while maintaining the
identity of modi�ed artifacts. An evolution delta module updates a feature in
order to meet new requirements or �x defects. Modifying identi�ers or refac-
torings (that are explicitly not supposed to change the functionality) are thus
considered evolution operations. Furthermore, the authors propose Hyper
Feature Models (HFMs) [218] that extend regular feature models by Feature

Revisions as an explicit construct. DeltaEcore [219] realizes the described
integrated management and can be used in conjunction with HFMs. Since
this tool was considered in the uni�cation, the uni�ed approach builds on
its concepts and additionally employs System Revisions and the respective
enables relation between Feature Revisions and System Revisions. Iden-
tically to DeltaEcore, Constraints in the uni�ed conceptual model can be
de�ned on Feature Options (i.e., Features and Feature Revisions). As the
authors state, a new Feature Revision should only be created in case the so-
lution space of the respective feature changes (e.g., due to bug �xes) while in
case there are no e�ects on possible combinations with revisions of other fea-
tures, changes to one feature do not necessarily have to yield a new Feature

Revision. Changes of a feature in the problem space, such as the modi�ca-
tion of an optional feature to a mandatory one, is explicitly not considered a
Feature Revision but an evolution of the feature model (i.e., to be captured
by a System Revision). This consideration is very similar to the semantics
of both revision types in this thesis. Likewise, changes in the problem space
only yield a new System Revision that represents a new revision of the
domain. If changes are performed on the solution space and internalized
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via Internalizes Changes, only the feature(s) speci�ed in the manually pro-
vided input expression (comprising feature or feature interactions a�ected
by the performed changes) obtain a new Feature Revision. However, a new
Feature Revision is always created without considering the semantics of a
change. While the approach proposed by the authors expects the user to di-
rectly edit the Unified System (e.g., manually create Delta Modules, Feature
Revisions and Mappings between them), the uni�ed approach is fully view-
based and supports the evolution of a variable system exclusively via the
modi�cation of a particular product (see Section 8.3). This is an essential
di�erence to this related work. Since the user is not supposed to provide delta
modules and mappings manually but instead performs changes on a product
which are recorded and mappings are computed fully automatically, no delta
languages are needed. This also makes the use of application conditions
between delta modules and a topological sorting, as performed in DeltaEcore
during product externalization, super�uous, since the internalization order of
changes (and thus the created mappings) re�ects the order in which they must
be applied during externalization. Thus, externalizing a product is achieved
with less e�ort, demonstrating the synergy between variability management
and view-based development. While the uni�ed approach currently does
not di�erentiate between evolution and con�guration delta modules, this
could be enabled by further re�ning Delta Modules as Fragments into both
delta module types and providing more sophisticated di�ng techniques and
heuristics to determine the pragmatics of changes.

Lity et al. [143, 142] propose higher-order delta modeling, a formalism and
extension to delta modeling for supporting the evolution of a delta-oriented
SPL. Just as deltas transform models, higher-order deltas transform deltas.
Thereby, a delta model (that speci�es an entire SPL at one point in time) can
be evolved to its new revision. Thus, higher-order deltas represent evolu-
tion steps describing the di�erences between system revisions of the SPL. A
higher-order delta model encompasses higher-order deltas and represents
the entire evolution history of an SPL. As a consequence, higher-order deltas
enable a change impact analysis of the evolution of products. Both the
uni�ed approach and higher-order delta modeling support the integrated
and explicit modeling of variability in space and time. Also, the uni�ed
approach employs delta modeling for evolving and deriving products and
thus managing both variability dimensions by the same means. In contrast,
higher-order deltas are used to evolve an SPL (thus capturing the di�erences
between System Revisions) and not its individual features (and its Feature
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Revisions). Therefore, the authors mention as future work the integration of
higher-order deltas with hyper feature modeling [218] (which is essentially
the problem space of DeltaEcore and thus supports Feature Revisions). Since
DeltaEcore was considered in the uni�cation, the uni�ed conceptual model
would also be well suited for combination with higher-order deltas by using
them as re�nement of the Fragment concept. Consequently, an option of the
uni�ed approach is to not only use deltas as Fragments but also in addition
higher-order deltas as Fragments.

Schulze [210] proposes an approach for automatically transitioning from
variants of software components (created via clone-and-own) to a reusable
software platform. The approach is tailored to the automotive domain and
supports compliance with norms such as CMMI [184] and ISO26262 [97].
The performed research proposes sophisticated similarity analyses to identify
di�erent types of clones (e.g., exact clones that comprise identical fragments
or semantic clones that behave identically but di�er with respect to their struc-
ture). Similarity analyses are performed on the architecture, interfaces, test
cases and behavior speci�cation for extracting a software product line, and
are part of the proposed Similarity Analysis (SimA) framework. The research
integrates into an existing tool landscape and employs an industrial tool for
variability management. While this research is similar to work proposed
by Rubin et al. [200, 198] and Mahmood et al. [152] as described above, it
also comprises several commonalities to the uni�ed approach. The main
commonality of both approaches constitutes the development paradigm: both
approaches promote reactive development based on product views. Thus,
evolving a variable system bene�ts from the convenience of clone-and-own
while employing a reusable platform common for SPLE to systematically
manage products. The main di�erence of both approaches lies in their dif-
ferent pragmatics (i.e., transition from clone-and-own to a reusable platform
vs. consistent evolution support for a system already employing a reusable
platform) and thus in the di�erent supported operations, processes and anal-
yses. For example, this concerns the semantics of integrating changes into
the variable system. While the uni�ed approach supports the integration of
changes via Internalize Changes, the approach proposed by Schulze follows
an incremental reactive paradigm to enable an automated migration to a soft-
ware product line. This essentially conforms to the product-oriented uni�ed
operation Internalize Product combined with feature localization. Moreover,
the author utilizes an industrial tool for variability management that supports
Feature Revisions, and additionally references an SVN repository that pro-
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vides System Revisions for solution space artifacts such as Simulink models
or code. Consequently, both approaches support variability in space and
time while only the uni�ed approach provides explicit constructs to relate
instances of both revision types within a single tool.

View-Based Management and Heterogeneous Artifacts

Atkinson et al. [22] propose Orthographic Software Modeling (OSM), an ap-
proach for view-based software development (see Section 2.6.1). OSM lays the
foundation for several principles of the Vitruvius approach that is integrated
with the uni�ed approach to preserve consistency between heterogeneous ar-
tifacts (see Section 2.6.2). Among other concepts, the OSM approach proposes
a dimension-based view navigation, a scheme for navigating along di�erent
perspectives of the system. A dimension represents a property of a system’s
description, such as its composition (e.g., the (de)composition of components
into sub-components) or its abstraction level (e.g., the platform independent
model (PIM) or implementation (e.g., Java)). The number of dimensions induce
a multi-dimensional cube, while every dimension exposes several options. As
a consequence, a cell in the multi-dimensional cube represents a view on the
system. Moreover, and thus related to the research of this thesis, variants of
the system are proposed as a further dimension. However, it can be argued
that, to represent variability in space, a dimension for variants would not scale
well and a dimension for features should be used. Furthermore, the authors
do not consider variability in time. I propose to consider system revisions
as an additional dimension and feature revisions as yet another dimension. It
should also be considered that a dimension in the cube for revisions would not
be able to express branches and merges (i.e., a revision graph) but only a linear
sequence of revisions. Finally, the authors propose a projective approach
for the creation and management of views that are created on demand from
the system, and that a developer might be allowed to add, rename, or delete
elements from the system via views, for instance, to create new variants. This
could be considered as pioneer work towards projectional editing [240] of
product lines as performed by VarCS [141] (see De�nition 2.2).

Finally, a plethora of work and research is performed outside the SPLE com-
munity in the area of checking and preserving consistency between hetero-
geneous artifacts of the solution space (not considering variability at all) [24,
55, 118, 150, 122, 242, 227, 226, 96]. Meanwhile, numerous approaches have
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been proposed for variability-related inconsistency detection and repair as
describe in Chapter 7, also targeting consistency preservation of the solution
space by propagating changes across products. However, existing approaches
to preserve consistency between di�erent types of artifacts are not utilized in
SPLE research yet. With the research presented in this thesis, the gap between
existing approaches explicitly proposed for consistency preservation between
heterogeneous artifacts and variability-related inconsistencies that can occur
in the solution space is bridged by embedding the consistency preserving
mechanisms of Vitruvius in the evolution process of a variable system.
Speci�cally, consistency preservation is performed i) during the externaliza-
tion of a product such that all its artifact types are constructed consistently,
and ii) whenever an artifact type of the product is modi�ed by the developer,
changes are propagated to other dependent artifact types of that product.
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This thesis presented contributions to enable consistent management of
systems that are subject to variability in space and time and composed of
heterogeneous artifacts. This chapter concludes the thesis starting with pre-
senting the contributions and re�ecting the insights. Section 15.1 comprises
a summarized answer to every research question. Section 15.2 presents the
relevance of the contributions for practitioners. Finally, future work that
builds upon the contributions closes the chapter in Section 15.3.

15.1. Summary

In the following, results are summarized with respect to the questions (see Sec-
tion 1.2).

The �rst research question focused on the uni�cation of existing approaches
that cope with variability in space, time, and both to provide a common
foundation. Based on the sub-questions, the results are summarized.

RQ 1.1: Uni�ed Concepts of Variability in Space and Time

Systems evolve rapidly and exist in many variations to address di�erent
requirements, leading to subsequent revisions (variability in time) and con-
current product variants (variability in space). During the last years, the
uni�cation of variability in space and time has gained momentum. While
managing both variability dimensions has been considered in both SPLE and
SCM research areas, the isolation of both engineering disciplines has led to a
plethora of research, approaches and tools [220, 219, 214, 170, 141, 126, 140,
172]. Thus, various concepts exist to deal with variability in space and time,
hampering the understanding of concepts and impeding the design of novel
approaches to unify variability in space and time. Starting from discussions
at a dedicated Dagstuhl seminar [34], the initial conceptual model was con-
ceived that documented concepts of both variability dimensions from both
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disciplines, yet did not unify them [9]. Thus, the initial conceptual model was
systematically re�ned based on ten elicited tools into the uni�ed conceptual
model that appropriately uni�es existing research while closing identi�ed
gaps in state of the art [7, 5]. The uni�ed conceptual model is the �rst contri-
bution of this thesis (see Chapter 5). Additionally, ten well-formedness rules
are proposed that specify the static semantics of the conceptual model. In
the evaluation, the model’s granularity and coverage of concepts and rela-
tions were evaluated with respect to the selected tools, and two re�nement
processes of the uni�ed conceptual model were demonstrated to show its
applicability. The evaluation results showed that the model appropriately
covers all concepts and relations of the considered tools. It can play a de-
scriptive role by describing state of the art concepts and relations for dealing
with variability in space, time and both, and can also be used to build novel
approaches to cope with variability in space and time, speci�cally for explic-
itly dealing with Feature Revisions and System Revisions simultaneously
(as none of the considered tools currently support). In sum, the conceptual
model �lls a gap that has been the focus of recent research. It increases the
understanding of concepts for variability in space and time, enables scoping
and comparing research, and provides guidance to design novel approaches
for managing both variability dimensions.

RQ 1.2: Uni�ed Operations for Variability in Space and Time

Providing a conceptual base for coping with both variability dimensions does
not su�ce to support the evolution of a variable system. Tools for coping
with variability in space, time, or both employ operations following di�erent
paradigms, modalities and even propose opposing pre-conditions. Thus, a
common understanding of operations is still missing for establishing a body of
knowledge on uni�ed management of variability in space and time. Following
the same uni�cation process as for the uni�ed conceptual model, a diverse set
of contemporary tools was analyzed while expert surveys were conducted to
ensure that current, detailed, and reliable information on a tool’s functionality
was obtained. The goal was to understand the respective tools’ operations,
their inputs, outputs, pre and post-conditions and semantics for supporting
either or both variability dimensions, and conceive operations for coping with
variability in space and time based on the abstract concepts of the uni�ed
conceptual model. Edit modalities (i.e., editing the Unified System directly
or via views) and development paradigms (i.e., platform-oriented or product-
oriented) were identi�ed as useful means to compare tools. Based on the
insights and following the design principle of separation of concerns (i.e., one
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operation per concern) uni�ed operations were conceived that constitute the
second contribution of this thesis (see Chapter 6) [6]. The uni�ed operations
comprise 21 direct editing operations (one add, update, delete operation per
concept of the uni�ed conceptual model), seven view-based operations and
four predicates used as pre and post-conditions of the view-based operations.
Analogously to the evaluation of the uni�ed conceptual model, the granularity
and coverage of the uni�ed operations was evaluated. Speci�cally, whether
an operation addresses more than one concern or one concern only partially
(a�ecting the granularity of the uni�ed operation regarding the studied tools),
and whether the operations do not address concerns of considered tools or
addressed concerns are not covered by any tool (a�ecting the coverage of the
uni�ed operations). Additionally, their application was demonstrated based
on variability scenarios from literature. The evaluation results showed that
the uni�ed operations cover all concerns of the considered tools and can also
be used to realize the scenarios while explicitly supporting the management
of Feature Revisions and System Revisions simultaneously. None of the
considered tools employ all of the uni�ed operations nor support both revision
types. The advantages and shortcomings of the uni�ed view-based operations,
such as the high degree of automation and their limited capabilities for editing
Mappings, were discussed. Finally, open challenges were identi�ed that en-
compass the combination of i) edit modalities and ii) development paradigms.
Building on the uni�ed conceptual model, the uni�ed operations provide fur-
ther means to support researchers and practitioners inmanaging both variabil-
ity dimensions, to scope and compare their work as well as to analyze the com-
patibility of tools based on the inputs, outputs, and semantics of operations.

RQ 1.3: Quanti�cation of Uni�cation

Evaluating the appropriateness of an abstraction for a diverse set of tools is
di�cult as the abstraction is supposed to describe a common mental model
that suits the mental model encoded in each analyzed tool. In this research,
the appropriateness of a uni�cation is quanti�ed based on the granularity
and coverage of the elements of an abstraction with respect to the elements
of the considered tools. Speci�cally, elements of the abstraction should
i) neither be unnecessarily �ne-grained (i.e., too speci�c) nor unnecessarily
coarse-grained (i.e., too generic), and ii) cover all elements of considered tools
while not comprising unnecessary elements (i.e., not employed by any tool).
Guizzardi et al. [90] research means to assess the granularity and coverage of
an abstraction. The authors introduce the properties laconic, lucid, complete,
and sound to evaluate the appropriateness of modeling languages. Although
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the same properties are used in this work, their framework is augmented in
several ways and metrics for quantifying the appropriateness of a uni�cation
are proposed. The metrics for uni�cation constitute the third contribution
of this thesis (see Section 10.2) [7, 5]. They were applied to quantify the
appropriateness of the uni�ed conceptual model and the uni�ed operations
with respect to the selected set of tools. Additionally, their application is
explained and illustrated in Section 11.5 by computing the metrics for two
exemplary tools that re�ne the uni�ed conceptual model. The proposed
metrics for uni�cation are envisioned to be useful in di�erent application
areas, such as for evaluating taxonomies in software engineering [108] or for
the assessment of data integration and consolidation approaches [106].

RQ 2.1: Variability-Related Inconsistency Types

Providing concepts and operations based on state of the art for coping with
both variability dimensions does not su�ce to holistically support the evolu-
tion of a variable system. During development and maintenance of a variable
system composed of heterogeneous artifacts, inconsistencies can easily be in-
troduced. In contrast to single-product systems, variable systems are subject
to a plethora of inconsistencies that vary for the problem space, the solution
space, and when both spaces are involved. Thus, notions of consistency in
SPLE are manifold. To obtain a body of knowledge regarding variability-
related inconsistency types, their causes, e�ects and possible repair options
and organize the research landscape in this �eld, the results of a literature sur-
vey have been generalized, mapped to a classi�cation schema, and gaps in the
schema have been �lled. A classi�cation of variability-related inconsistency
types is proposed according to the problem space and the solution space, and
whether the cause or repair of an inconsistency is performed in a product or in
the variable system. In total, six product-level inconsistency types (i.e., caused
or repaired in a product), six system-level inconsistency types (i.e., caused or
repaired in the variable system), and two cross-system inconsistency typeswere
identi�ed, constituting the fourth contribution of this thesis (see Chapter 7).
The main observations revealed a varying amount of research regarding the
problem space and the solution space. While several approaches propose
explanations of inconsistencies or even fully-automated repair options, this
particularly addresses the problem space. Consistency preservation involving
the solution space is addressed signi�cantly less, especially when it comes
to heterogeneous artifacts and distributed development.

RQ 2.2: Augmentation of Uni�ed Operations with Consistency

Building on the gained knowledge of concepts and operations coping with
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variability in space and time alongwith variability-related inconsistency types
identi�ed in state of the art, the uni�ed approach was devised that constitutes
the �fth contribution [3] (see Chapter 8). The uni�ed conceptual model and
uni�ed operations were re�ned by means of supporting feature modeling
and employing deltas as variability mechanism. The uni�ed approach repre-
sents a VarCS (see De�nition 2.2) and thus encourages speci�c modalities for
evolving a variable system. Speci�cally, the employed variability mechanism
is used internally and is hidden from the developer, eliminating the need to di-
rectly edit Mappings which is cognitively highly demanding [214, 141]. Thus,
the uni�ed approach allows to evolve the variable system based on product
views that �lter irrelevant details such as variable artifacts. As a consequence,
it provides (uni�ed) view-based operations that allow for a high degree of
automation such as computing Mappings or creating System Revisions and
Feature Revisions upon the internalization of changes. As a consequence,
the uni�ed approach encourages the development of a variable system con-
veniently by means of a clone-and-own strategy by evolving products, while
it internally employs a reusable platform and a variability mechanism that
is hidden from the developer. Moreover, for each product-level inconsistency
type, the causing operation, the a�ected artifact, respective repair operations
and the artifact in which the repair should be performed were identi�ed. In
addition to narrowing the �eld of focus to inconsistencies caused or repaired
in a product, the uni�ed approach o�ers consistency preservation to deal with
a selected subset of inconsistencies that are caused or repaired in the solution
space of a product. This comprised three inconsistency types: i) feature model
to product consistency (i.e., in case the feature model is changed such that it
allows for new products, the approach provides hints to the developer about
new features or new valid feature combinations whose implementation might
be missing upon the externalization of an a�ected product), ii) product to
feature model consistency (i.e., in case a product’s implementation is changed,
the uni�ed approach lifts new dependencies from the solution space to the
feature model in the problem space by automatically adding the missing
constraints), and iii) product consistency (the propagation of changes across
heterogeneous artifacts in the solution space, such as Java or UML models,
as well as across di�erent products). Enabling product consistency leverages
the consistency preserving mechanisms of the Vitruvius approach, leading
to the �nal research question.

RQ 2.3: Vitruvius for Variability-Aware Consistency Preservation

A plethora of work and research is performed outside the SPLE community in
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the area of checking and preserving consistency between heterogeneous arti-
facts of the solution space (not considering variability at all) while numerous
approaches have been proposed for variability-related inconsistency detec-
tion and repair (see Chapter 7). However, existing approaches to preserve
consistency between di�erent types of solution space artifacts are hardly
considered in SPLE research yet. To this end, Vitruvius is an approach
for view-based development that supports (semi-) automated consistency
preservation between heterogeneous types of artifacts based on manually pre-
de�ned consistency preservation rules between two metamodels [116]. With
this research, the gap between consistency preservation across heterogeneous
artifacts and variability-related inconsistencies is bridged that can occur in
the solution space: Consistency preserving mechanisms of Vitruvius are
embedded in the uni�ed approach, enabling product consistency: during the
externalization of a product, its solution space artifacts (e.g., Java and UML
models) are constructed consistently by propagating changes across the de-
pendent artifact models, and ii) whenever an artifact model of the product is
modi�ed by a developer, changes are propagated to other dependent artifact
models of that product and added to the uni�ed system to allow for propaga-
tion to other products. In turn, the uni�ed approach extends Vitruvius with
concepts of the problem space to enable uni�ed variability management.
The uni�ed approach was implemented as VaVe 2.0 tool and evaluated based
on two real-world case study systems ArgoUML-SPL und MobileMedia to
gather evidence on its functional suitability (see Chapter 13). Since the
ArgoUML-SPL has not been co-evolved and remained in its inital revision,
while the original ArgoUML kept evolving, the ArgoUML-SPL was retroac-
tively evolved by manually replaying the original changes from the ArgoUML.
The publicly provided data set constitutes the sixth contribution of this the-
sis. The evaluation results showed that the uni�ed approach is capable of
detecting and repairing variability-related solution space inconsistency types.
As a consequence, the evaluation provides evidence for the synergy between
view-based development of variable systems, as encouraged by VarCS, and
automated view-based consistency preservation of variability-related incon-
sistencies. To sum up, the uni�ed approach o�ers consistency preservation to
deal with inconsistency types that are either caused or repaired in the solution
space during view-based evolution of systems comprised of heterogeneous
artifact types while uniformly coping with variability in space and time. Thus,
it supports consistent uni�ed management of variable systems, which was
the goal of this thesis.
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15.2. Relevance for Industrial Applications

The research presented in this thesis has relevance for many application areas
and practices of software engineering, considering software is becoming
continuously prevalent in almost all areas of life.

Areas of Application. Besides its relevance for variable software systems,
consistency-aware view-based management of systems coping with vari-
ability in space and time composed of heterogeneous artifacts is considered
in several areas of application in industry. In the following, selected ap-
plication areas are presented. On the one hand, it can be highly useful in
automotive systems engineering that has to deal with a high diversity of pos-
sible car variants that, in addition, exist in various generations and comprise
heterogeneous artifact types describing di�erent domains (i.e., mechanical
engineering, electrical engineering and software engineering). The complex-
ity of automotive systems is rapidly increasing, revealing a growing need for
reusability and traceability of existing functionality across the entire product
landscape [38, 180]. On the other hand, the presented research is also rele-
vant in industrial plant engineering that customizes and constructs a plant’s
software from reusable modules such as standard machines and automation
components including heterogeneous artifact types describing di�erent do-
mains [8, 4, 68, 222, 67]. Finally, the conducted research has relevance in
machine manufacturing for con�guration of machinery [74].

Software Over The Air Updates. The digital twin is a term frequently used
in the context of digitization and represents a research area that is becoming
increasingly important [166]. It was initially introduced as an “integrated
multi-physics, multi-scale, probabilistic simulation of a vehicle or system that
uses the best available physical models, sensor updates, �eet history, etc., to
mirror the life of its �ying twin” [221, p. 11]. Such a virtual environment that
allows for realistic simulations is often used in the context of production
and automotive industry [36]. For instance, a digital twin can describe a
con�gured variant of an individual car before it is being built. Particularly
in the context of Software Over The Air (SOTA) updates in the automotive
industry [89], a digital twin could be used to assess the compatibility of a
new feature revision (e.g., to eliminate a bug) to products comprising dif-
ferent revisions of features. Moreover, with the introduced regulations of
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UNECE1, providing evidence that a car can perform software updates safely
and securely while keeping a revision history of all software components will
be mandatory for all manufacturers. The uni�ed conceptual model can be
considered a potential starting point for the software update management by
explicitly modeling system revisions, feature revisions and their relations.

Feature-Oriented Agile Software Development. Agile software devel-
opment constitutes a software engineering practice based on iterative and
incremental development. Practices commonly employed during agile de-
velopment are, for example, DevOps, continuous integration, or continuous
deployment. Augmenting changes performed on a product variant with the
information which feature or feature interaction is a�ected allows for new
future possibilities during agile development. For example, it could be used
for access control such that developers can only modify features they are
allowed to change, or to reject changes if they a�ect features that were not
intended to be modi�ed by the developer (i.e., the speci�ed expression in the
Internalize Changes operation deviates from the actually changed features).

15.3. Future Work

This thesis proposed an approach for uni�ed consistent management of
variable systems composed of heterogeneous artifacts. Beyond the scope of
the thesis and based on the presented contributions, it opens up potential for
future work that is summarized in this section for each main contribution.

Uni�ed Conceptual Model. The uni�ed conceptual model (see Chapter 5)
has been designed based on a diverse set of tools from the SPLE and SCM
engineering disciplines. As described in Section 11.9, potential future work
on the uni�ed conceptual model encompasses its application to a set of real-
world case studies from engineering disciplines other than SPLE and SCM
to identify limitations or shortcomings of the model. This would expand the
application area of the uni�ed conceptual model beyond the current state of
the art in SPLE and SCM.

Uni�ed Operations. Gained insights during the construction of the uni�ed
operations (see Chapter 6) allowed to identify open challenges in state of the

1 https://wiki.unece.org/pages/viewpage.action?pageId=60362218
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art that open up future research avenues, as described in Section 12.7. On the
one hand, this constitutes the combination of development paradigms (i.e.,
platform-oriented and product-oriented development). While the goal would
be to allow for arbitrary alternation between both paradigms to leverage
bene�ts of both (which is currently not supported by any tool), product-
oriented edits do not provide �ne-grained mappings that are necessary for
platform-oriented editing. Thus, additional techniques such as feature location
would be required. Further future work constitutes the combination of edit
modalities (i.e., direct and view-based editing). While the goal would be to
combine both edit modalities to leverage bene�ts of both, the challenge is to
provide an editable view that includes mappings, which need to be displayed
di�erently for every type of artifact. While the combination of both edit
paradigms is supported by VTS, it only supports text as artifact type.

Uni�ed Approach. The uni�ed approach (see Chapter 8) paves the way
for future works as discussed in Section 13.8. Since it builds on the uni�ed
view-based operations, it inherits the limitation for editing mappings. As a
consequence, the combination of edit modalities, as described above, also rep-
resents future work for the uni�ed approach. Moreover, the uni�ed approach
is currently only applicable in a green�eld scenario where the underlying
data structure is populated incrementally as the system evolves. Thus, it
would be interesting to consider an automated migration of legacy systems
for applying the approach to existing variable systems. Possible migration
options comprise the replay of annotated version histories to automatically
compute feature-to-fragment mappings [195], or reverse engineering a prod-
uct line from a set of products [155, 128]. Moreover, in this research, the
consistency preservation mechanisms of Vitruvius are used to preserve
consistency fully automatically. However, user decisions may be necessary
in case several valid repair options exist. Thus, future work comprises the
consideration of user decisions to replay them during product externalization.
Last but not least, the evaluation can be extended by applying the uni�ed
approach to additional real-world case studies comprising artifact types from
other engineering disciplines.
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