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STRONG NORM ERROR BOUNDS FOR QUASILINEAR WAVE
EQUATIONS UNDER WEAK CFL-TYPE CONDITIONS

BENJAMIN DORICH

ABSTRACT. In the present paper we consider a class of quasilinear wave equa-
tions on a smooth, bounded domain. We discretize it in space with isopara-
metric finite elements, and apply a semi-implicit Euler and midpoint rule as
well as the exponential Euler method to obtain three fully discrete schemes.
We derive rigorous error bounds of optimal order for the semi-discretization
in space and the fully discrete methods in norms which are stronger than the
classical H' x L? energy norm under weak CFL-type conditions.

1. INTRODUCTION

In the present paper we consider the quasilinear wave equation
(1.1) AMu(t, x))Ouu(t, x) = Au(t, z) + g(t, z, u(t, x), Owu(t, z)),

for t € [0,T], x € Q C RY, N = 1,2,3. We assume the domain € to be bounded
with a sufficiently regular boundary, and impose homogeneous Dirichlet boundary
conditions. We discretize (1.1) in space using isoparametric finite elements, and
employ for the time discretization a semi-implicit Euler and midpoint rule as well
as an exponential Euler method. We derive error bounds in norms stronger than
the standard energy H' x L?-norm.

The first wellposedness results for a large class of quasilinear wave type equation
was given by Kato in [23,24]. This approach was refined in [9] for the problem
(1.1) to account for the state-dependent norms necessary in the analysis. A typical
example in nonlinear acoustics is the model A(u) = 1 — ™ for some m € N. Hence,
in order to ensure A(u) > 0, a key ingredient in the proof is to establish pointwise
bounds on u (as well as Q;u), often via Sobolev’s embedding H? — L*. To
inherit this property in the spatial discretization, we need pointwise bounds on the
numerical approximations in the error analysis. However, since the finite element
space is not H?-conforming, we cannot follow the above approach.

So far in the literature, bounds in H' x L? are shown by inverse estimates which
yield a factor h=? for some 8 > 1 with the spatial mesh width h. This induces
unsatisfactory CFL-type conditions and excludes linear finite elements. In contrast
to this, we adapt the idea from the wellposedness and perform the error analysis
not in the energy space H' x L?, but employ a discrete version of the H2-norm. A
discrete variant of Sobolev’s embedding and a suitably defined solution space for
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the numerical approximation allow us to remove lower bounds on the polynomial
degree of the finite element space and significantly improve the CFL-type condition
compared to the literature. For the temporal step size 7 and the spatial mesh width
h, we show convergence in N = 2 under the restriction 7 < h*, for any « > 0, and
in N = 3 we have 7 < h'/2+ for the first-order methods in time and 7 < h'/4+
for the second-order method. In addition, we fully remove the CFL-type condition
for N =1.

The strategy of the semi discrete proof relies on a bootstrap argument. We set
up a suitable solution space for the numerical approximation, and show that the
initial value lies in this. Instead of the usual choice of interpolated initial values, we
have to use a Ritz map for which we provide a computable alternative of the correct
order. Since we are working with a finite dimensional subspace, this directly yields
local wellposedness up to some time ¢; > 0. On this possibly short time interval,
we prove convergence in the stronger norm, and use this to extend ¢; beyond T
and to close the argument. For the fully discrete error bounds, this approach is
generalized using an induction argument.

We give a brief overview of the literature on the numerical treatment of quasi-
linear wave equations. In the pioneering works [8, 22,25, 33], existence of solutions
to quasilinear and nonlinear evolution equations is established, and one can find
approximation rates of the implicit and semi-implicit Euler method. Within an
(extended) Kato framework, optimal order for these methods was achieved in [20]
and rigorous error bounds for the time discretization by higher-order Runge-Kutta
methods are derived in [21,26].

Concerning the spatial discretization, the results in [19] yields optimal order of
convergence for the equation (1.1), however only for polynomials of degree greater
than two. For the strongly damped Westervelt equation, continuous and discontin-
uous Galerkin methods were analyzed in [1,31]. Very recently, mixed finite elements
for the Kuznetsov and Westervelt equations were studied in [30].

In [28], error bounds for two variant of the midpoint rule are derived of optimal
order, but only for polynomials of degree greater than two and under a stronger
CFL-type condition compared to our results. In the case of one-dimensional wave
equation subject to periodic boundary conditions, full discretization error bounds
are established in [17]. A sophisticated energy technique combined with the proper-
ties of the spectral discretization yields convergence without a CFL-type condition.

For a slightly different quasilinear wave equation, optimal error bounds in L? for
continuous finite elements were considered in the literature. One-step methods of
different order are analyzed in [2,3,15], and two-step methods are considered in [4].
For a class of linearly implicit single-step schemes as well as a linearly and a fully
implicit two-step scheme, optimal error bounds are derived in [29]. However, all of
these results require a CFL-type condition at least as strong as 7 < h, and do not
allow for linear finite elements. We expect that our technique can be generalized
to these problems, but this will be part of future research.

The paper is organized as follows: We describe in Section 2 the analytical frame-
worl and the space discretization by isoparametric Lagrange finite element, present
the schemes and state our main results. The proof of the spatial convergence rates
is given in Section 3, where we first reduce the main result to error bounds in a
stronger energy norm which is established afterwards. In Section 4, we extend this
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technique to the fully discrete case for the three presented methods. Certain sta-
bility estimates and the bounds on the defects are given in Section 5, and some
postponed results are shown in Appendices A to C.

Notation. In the rest of the paper we use the notation
asb,

if there is a constant C' > 0 independent of the spatial parameter A and the time
step size 7 such that a < Cb. For the sake of readability, we introduce the notation
t" = n1 and

" = z(t")
for an arbitrary time-dependent, continuous object x(t). If it is clear from the
context, we write L? instead of LP(2) or LP(,).

2. GENERAL SETTING

For a bounded domain Q@ ¢ RV, N = 1,2, 3, with boundary 9Q € C*!, s € N,
we study the quaslinear wave equation (1.1) with homogeneous Dirichlet boundary
conditions, and initial values

u(0) = u°, dru(0) = 2°.

We note that the operator —A is positive and self-adjoint on L?(2), and we define
the spaces H = L*(Q2) and V = H}(Q). Throughout the paper we impose the
following conditions on the function A and g. Additional requirements are stated
in our main results.

Assumption 2.1.  ()\;) The function \: R — R satisfies A € C*(R, R).
(A2) There is some radius Too > 0 such that there is a constant ¢y = cx(Too) > 0
such that

ex < MNa), |z € T

(91) The function g: [0,T]x QxRxR — R satisfies g € C?([0, T] x QxRx R, R).
(g2) Forxz € 00 and y = z =0 it holds g(t,z,y,z) = 0.

The conditions (A1), (g1) are structural assumptions which allow us to show
crucial stability estimates. The lower bound in (A\2) prevents the degeneracy of
(1.1). The main effort in the discretization and error analysis is to ensure that this
condition is inherited. We note that condition (g2) implies in particular that for
u,v € V one has g(t,u,v) € V, and that all conditions are already required for the
wellposedness. We recall an example for the quasilinear problem (1.1) given in [9)].

Example 2.2. Let K € C*(R,R) with 1 + K’(0) > 0 and consider the problem
8tt(u + K(U)) = Au,
for example with the Kerr model K(z) = az3 for a € R. If we rewrite it in the
form (1.1), we obtain
Mz)=1+K'(z),  g(t,z,u,0) = —K"(u)?,

which satisfy Assumption 2.1. Denoting the fractional powers of the Laplacian by
Hy = D((fA)k/ 2), under suitable smallness assumptions on the initial values, the
existence of a solution

u € C([0,T],Hs) N CL([0,T], Hz) N C%([0,T], H1)
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is shown in [9, Thm. 4.1]. O

Equivalently to (1.1), we consider the quasilinear wave equation in first-order
formulation

21 Aly®)owy(t) = Ay(t) + G(t,y(1),  te[0,T],  y= (a@) ’

with initial value y(0) = »° in the product space X =V x H, and

= () 0= (0 ) 4= (35 cen= (o)

Remark 2.3. The assumption on the regularity of the boundary is not essential in
the error analysis, which also works on a convex, polygonal domain. Hence, one
could apply a conforming finite element method. However, since the wellposedness
of quasilinear equations requires a regular boundary, we will work in the noncon-
forming framework in the following.

Space discretization. We study the nonconforming space discretization of (2.1)
based on isoparametric finite elements. For further details on this approach, we
refer to [13,14]. In particular, we introduce a shape-regular and quasi-uniform
triangulation 7j, consisting of isoparametric elements of degree & € N and let
0Q € C*t11 The computational domain Q, is given by

Q) = U K ~Q,
KeTh

where the subscript h denotes the maximal diameter of all elements K € T;,. Based
on the transformations Fx mapping the reference element K to K € T, we intro-
duce the finite element space of degree k

Wi, = {p € Co() | olx = Po (Fx)~! with ¢ € P¥(K) for all K € Ty}

Here, Pk(IA( ) consists of all polynomials on K of degree at most k. The discrete
approximation spaces are given by

Hy = (W, (- | ')L2(Qh))’ Vi = (Wh, (- | ')Hf}(ﬂh))v

and we set Xy = Vj, x Hy,.
Following the detailed construction in [14, Sec. 5], we introduce the lift operator
Ly : Hy, — H. In particular, for p € [1,00] there are constants c,, Cp > 0 with

(22a) o llenlliea,) < 1Lnenllrr@) < Cpllenllie,) > on € LP (),
(22b) ¢ ||<IDhHW1xP(Qh,) < ||£h90h||W1,p(Q) <Cp ||SDhHW1m(Qh) v P € Wl’p(Qh)v

cf. [14, Prop. 5.8]. By construction, the boundary nodes of ;, lie on 9 and zero
boundary conditions are preserved by Ly, see [14, Sec. 8.5]. Further by [13, Sec. 4],
the lift preserves values at the nodes, i.e., in particular

(2.3) InLron = on, ©n €V,

where we denote the nodal interpolation operator by I, : Co(€2) — V}, and, enriching
the space W}, by basis functions corresponding to the boundary nodes, its extension
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I¢: C(2) — C(Q,). Further, we define the adjoint lift operators £*: H — H,
and LY*: V =V}, by

(2.4a) (¢ | 1/’h)Hh = (o | Latn)y o€ H, Yy € Hy,

(2.4b) (L 1 ¥n)y, = (@ | Latn)y ¢ €V, by, € Vi.

We note that in the conforming case £Z* and L£}* coincide with the L2- and the
Ritz projection, respectively.

For up,v, € Vi, we define the discrete operator Ap(up): Hp, — Hjp and the
discrete right-hand side g, by

(2.5)  M(un)en = In(A(Lrun)Lren),  gn(t,un,vn) = Ing(t, Loun, Lyvy),

respectively, and its first-order counterparts

(2.6) wyn= (Z:) ;o Anlyn) = (151 )\h(ouh)> o Gnltyn) = (gh(t, Sh,vh)) .

Moreover, as Ij is a nodal interpolation operator, the inverse operators satisfy

) i L (1o
An(un) 1<Ph=Ih(>‘(£h“h) 1£h%)’ Anlyn)™" = (0 )\h(uh)%).

Finally, we introduce the operators A : V, — Hj, and Ay : X — X}, given by

0 Id
27 = (Anen | ¥n)g, = (en | ¥n)y, ,  An= (Ah O) s PhYh € V.

Note that Ay is symmetric and Ay, is skew-symmetric with respect to Hy and X,
respectively, but they are not uniformly bounded with respect to h. The spatially
discrete quasilinear wave equation in first-order formulation then reads

(2.8) An(yn)Oeyn(t) = Apyn(t) + Gu(t, yn), t 0,77,

with the initial value y5(0) = y9.

1. Choice of the initial value. As already mentioned, an appropriately chosen
initial value is a key ingredient in the subsequent error analysis. An ideal initial
value would include the adjoint lift operator £} * defined in (2.4b). However, in
order to compute this operator, integrals over the exact domain ) have to be
evaluated.

We thus propose an alternative that involves to use a finite element space of
degree k' > k + 1 denoted by Vh over the computational domain Qh Further, let
Ly, and I, be the corresponding lift and interpolation operators. Then, for u € H 2,
we define the modified Ritz map Rhu via

~ ~ ——1
(2.9) (Rhu | <Ph) = (Ihu | Ln, ﬁhsﬂh)~ ; on € Vh.
Vh Vh
We use this operator together with the interpolation to define the initial value by

0 5.0
o_ (up\ _ (Ruu
a0 = (%) = (1)

In Appendix A, we prove the following approximation property and discuss the
computation of Ry,.
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Proposition 2.4. For v’ € H**2(Q) NV, the difference of the adjoint lift L) *
defined in (2.4b) and Ry, in (2.9) satisfies the bound

180" = Bat® 12 + B[S0 (L3 0" = Bin?) CR lu

Iz < %l e

where the constant C' is independent of h.

We emphasize that the precise construction of the initial value is not important
in the error analysis, but only the bounds obtained in Proposition 2.4. Hence, if we
can compute the adjoint lift exactly, which is the Ritz projection in the conforming
case, then one can also choose u?L = E}L/*uo. However, we cannot make the standard
choice u?l = I,u®, since this would imply the statement of Proposition 2.4 only with
k instead of k + 1.

2.2. Main result for the semi-discretization in space. Before we state our
main error bounds we chose some exponent p*, depending on the dimension N =
1,2,3, as

<oo, N=1,
(2.11) N<p'{<oo, N=2,
<6, N=3.

This choice in particular implies the Sobolev embeddings
(2.12) H' < ¥ and  H?— WP — [

Our first main result gives an error bound on the spatially discrete solution
defined in (2.8), and the proof is given in Section 3. Recall the fractional powers of
the Dirichlet Laplacian Hj, :== D((—A)*/2).

Theorem 2.5. Let 00 € Ck+1.1 gnd Assumption 2.1 hold. Further, let the solu-
tion u satisfy

u e C([0,T],Hs N H**3(Q)) N C2([0,T],V n WkEFLo(Q)),

(2.13) Au) € C([0,T], WH12(Q)),  g(t,u, dpu) € C([0,T], H*(Q)),

and choose the initial value (2.10). Then, there is hg > 0 such that for all h < hy,
it holds for t € [0, T

lu(t) = Lrun(®) .00 @y + 185u(t) = Loon(®)] g1 () < Ch*,
with a constant C > 0 which is independent of h.

Using (2.12), the theorem implies convergence in the maximum norm for u;, and
in LP" for vy, and is in particular applicable to linear finite elements. We note that
the results from the literature so far had the limitation & > 2.

2.3. Main results for full discretization. We further discuss the convergence
of three different fully discrete schemes. We recall that by 7 > 0 we denote the
time step size and define for n = 0,..., N the times t" = nr, with T = N7. The
proofs of the convergence results are given in Section 4.
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Semi-implicit Fuler method. For a variant of the implicit Euler method, we intro-
duce the discrete derivative

(2.14) Oray = 1(a" —a""), n=1,  drap:=aq,
and consider as in [8,20] the semi-implicit Euler method
(2.15) An(y)Oryn ™t = Ay ™+ GR(t" ), n 20,

by freezing the nonlinear parts at the numerical approximation in the last step.
The computation of the next approximation thus only requires the solution of a
linear system. For the analysis we impose the following weak CFL-type condition

(2.16) T < chN/PHeo

with p* from (2.11) and some arbitrary ey > 0. This yields the following convergence
result.

Theorem 2.6. Let 92 € C*T11 and Assumption 2.1 hold. Further, let the solu-
tion u in addition to (2.13) satisfy

u e C*([0,T], L*(Q)),
and choose the initial value (2.10). Then, under the condition (2.16) there are
ho, o > 0 such that for all h < hg and T < 71, it holds for 0 < t" <T
(™) = Lauilly.or @y + 10:u") = Lrvill g gy < O (1 +1°)
with a constant C > 0 which is independent of h and 7.
We emphasize that the CFL-type condition in (2.16) is essentially no restriction
for N = 2 since p* can be chosen arbitrarily large due to (2.11). For N = 3, the

CFL roughly yields 7 < h'/2t¢. However, even for k = 1, the error behaves as
T+ h, and one would choose 7 ~ h anyway.

Semi-implicit midpoint rule. As a second-order in time method, we consider a vari-
ant of the midpoint rule proposed in [26]

(2.17a) A 2)0y" T = Apy™ 2 4 Gu(t "), n>1,
with average yZH/ ? and extrapolation 5, 1/2 given by
(2.17b) yp P = Lyt ), gty = Syp - Lynl

The first approximation 3! is computed with the Euler method (2.15), and as before,
in every time step only a linear system has to be solved. For the analysis of the
second-order method, we can weaken the CFL-type condition compared to (2.16)
and require only

(2.18) T < chN/#P Feo,
Theorem 2.7. Let 90 € C*T11 and Assumption 2.1 hold. Further, let the solu-
tion u in addition to (2.13) satisfy

u € C*([0,T),Hs) N C3([0,T], Ha2) N C*([0, T, L*()),

and choose the initial value (2.10). Then, under the condition (2.18) there are
ho, o > 0 such that for all h < hg and 7 < 1, it holds for 0 < t" <T

Jalt™) = Lrtp ey + 100t = L2071 gy < C72 + B),
where C' is independent of h.
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Since, there is again essentially no CFL-type condition for N = 2, we only discuss
the case N = 3. We require 7 < h'/4*¢ whereas in [28] and [29] not only k > 2
but also

TS Ri/4te or 7 < R3/2te,

respectively, has to be imposed.

Ezponential Fuler method. We turn to the exponential method which employs the
variation-of-constants formula and an exact evaluation of the matrix exponential
applied to a vector. For the approximation y; ~ y(t"), we use the shorthand
notation A} = Ay (y?) " 'Aj and consider the method which was proposed in [10]

yp T = ey o (AR, ()G (" ui)
= yh + o1 (TAL) (Ahyi + AL () GR (" u7))
with the analytic function ¢4 (z) = fol e*” ds. We obtain the following error bound.

Theorem 2.8. Let 90 € C*t11 and Assumption 2.1 hold. Further, let the solu-
tion u satisfy (2.13), and choose the initial value (2.10). Then, under the condition
(2.16) there are hg,79 > 0 such that for all h < hy and 7 < 79, it holds for
0<t"<T

Fa(t™) — £l ey + 100(E™) = L0f sy < C7 + BE).
where C' is independent of h and T.

We note that the CFL-type condition is the same as in the error bound of the
semi-implicit Euler in Theorem 2.6. A natural question is to ask if one can generalize
these results to a second-order exponential integrator, for example the exponential
midpoint rule proposed in [10]. Using the notation in (2.17b), we define

AT = A G2 A
and consider the scheme
Yt = eTA’;;“/"’yZ n T@(TAZHN)A;l(y’h"+1/2)Gh(t"+1/2,g]h"+1/2)
=y “‘TS"(TAZH/Q)(AZH/QZJZ —|—A;l(y’h”“/g)Gh(t”“/Q,yfh"+1/2)).

We expect that the techniques established for the proofs of Theorem 2.6 and
Theorem 2.8, combined with the techniques in [10], allow for a convergence result
as in Theorem 2.7 under the weaker CFL-type condition (2.18). However, we will
not investigate this in the present paper.

2.4. Additional results for isoparametric finite elements. In this section, we
provide further estimates on the spatially discrete objects which are used through-
out the paper.

As shown in [14, Thm. 5.9], we have for the nodal interpolation operator for
m € {0,1}, 1 < p < oo, and 1 < /¢ < k the estimates

(219) 10 = LaID)¢lwma) SHT T @lweringy .  © € WHHP(Q).

Further, by [7, Thm. 3.1.6] £ = 0 is allowed for N < p < oo. Another crucial
property of the interpolation concerns the stability when applied to the product of
functions. We give a proof in Appendix B.
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Lemma 2.9. Let ¢, € Vi, § > 0, and p € WHNTI(Q). Then,

||Ih(90£h¢h)”m <C ||90||W1=N+6 ||1/JhHL2 )
1n (0 Loton) | g < Cllellyprnss [Ynll g s

where the constant C' > 0 is independent of h.

Concerning the adjoint lifts defined in (2.4), we show in Appendix B the following
bounds for 1 < /¢ <k

(2.20a) 1280l S Ielliey - o€ L2(9),

(2.20D) 1(In = L3¢l 7, S R ol ey » pe HT(Q)NV.
An interpolation argument between [14, Lem. 3.8] and [11, Thm. 2.5], yields
(2'21) H(Id - Lhﬁ}:*)<p||wl,p(g) 5 hz H‘:OHWIH—LP(Q) ) p e He+1(Q) N Va

for 2 < p < o0, 0 </l < k. We will further make use of the inverse estimates, cf.
[6, Thm. 4.5.11] or [27, Lem. 5.6],

(2.22) lenlly, < Ch 7 llenllzaany s lenllpa < CRYNP g,

for 1 <p<q< .

Finally, we introduce the first-order lift operator Lp: WP (Q),)2 — WHP(Q)2,
¢ =0,1, 2 < p < oo, the adjoint lift £L},: X — X, and the reference operator
Jp: V xV = X} defined by

_(Ln O . (LY 0 (LY 0
(223) L:h - ( 0 Eh) ’ ‘c’h - ( 0 ‘ChH* ) Jh — 0 [’}T/* )
which are bounded uniformly in & due to (2.2), (2.20), and (2.21). From the proof
of [18, Lem. 4.7], we then obtain the identity
(2.24) Apdy = LA,

which is used several times in the proofs.

3. ERROR ANALYSIS FOR THE SPACE DISCRETIZATION
In this section, we give the proof of Theorem 2.5. We decompose the error into

y(t) — Lryn(t) = (Id — LpJn)y(t) + Lo (Jny(t) — ya(t))
tey, (t) + Eheh(t),

where the projection error ey, is easily bounded using (2.21). The first part of
the proof consists in reducing the bound on |lep |10+ g1 to an estimate in the
stronger norm induced by [|Ap-[|x, , and not in the standard Xj-norm.

The second part consists in establishing the stronger norm bound on [[Azen|| 5,
in Section 3.2. We note that a key idea is to set up an appropriate solution space
for the numerical approximation, see (3.3) below, which allows for an appropriate
formulation of the error equation. We give a detailed explanation in Remark 3.6.
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3.1. Reduction to stronger norm estimates. For p* defined in (2.11), we chose
some fixed § > 0 such that

1 1
<

1 —
(3.1) N4+6 ~ p*’

N =

a radius ro < Too from Assumption 2.1, and another radius . > 0, such that
(32) lullpoe(poey S Too, and ma‘X{Hu||L°°(W1vN+5) , ||atu||L°°(W1vN+5)} < 370
where ||z« x) = maxp 7 [|z(t)[| x. We denote by ¢} the time with

ty, =sup{t € [0,T] | sup [[Lrun(s)|| e <Too and
s€0,t]

sup || Lnun(s)lynes s sup [1Lpvn(s)llyrves <o}
s€[0,t] s€[0,t]

(3.3)

We assume for a moment that the set is not empty and hence ¢ > 0, see Propo-
sition 3.5. The following result is a direct consequence of Lemma 2.9 and the key
ingredient to ensure wellposedness of the discrete equation. In addition, it enables
us to employ energy techniques in the error analysis.

Lemma 3.1. Let Assumption 2.1 hold. We have fort € [0,¢}], 1 < p < oo, and
7 =0,1 the bounds

07 X\ (un)enll 0 < Callonlle s |08 M (un () onll L, < O llenlle

[ A un@)enl g < Callenllgr s [Anun®) ™ enll g1 < Cxllenllz

with a constant Cy > 0 depending only on X, its derivatives and Too,7l,, but is
independent of h and tj .

Proof. We use the definition of A in (2.5), to conclude the assertion from Assump-
tion 2.1, Lemma 2.9, and (3.3). O

Making extensive use of Lemma 3.1, we show via energy techniques in Section 3.2
the following error bound on

. 9 . 5 \1/2
(3.4) (HAh(L‘X ult) = un() || 2a + || £V * Opult) —vh(t)Hm) = [|Anen(®)],
Note that initially the result is only valid as long as the bounds in (3.3) hold.
Proposition 3.2. Under the assumptions of Theorem 2.5, it holds for 0 <t <t}
k
[Anen(®)], < O
where C' is independent of h and tj .

From this bound, we are able to extract convergence as well as to extend the final
time ¢; beyond T for sufficiently small h. Concerning uy, we show in the following
lemma how to obtain convergence in the maximum norm and first-order Sobolev
norms, but postpone the proof to Appendix C. Further, we may directly deduce
the bounds on uy, in (3.3). Note that this lemma can be seen as a discrete analogue
to (2.12), and is an improved variant of the results in [5,12]. Similar bounds were
already shown in [16, Thm. 1.12] and [32, Thm. 3].
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Lemma 3.3. Let p* be given by (2.11). Then, there is a constant C independent
of h such that

1onll oy + Il oy < C 18080l L2,
for all vy, € V3.

A further ingredient in the proof of the main result is to employ the H'-bound
on vy, in Proposition 3.2 to derive boundedness in L> and W5"*9 and thus extend
the final time ¢}.

Lemma 3.4. Let 5, € Vi, and ¢ € WFHL2(Q) NV, and assume that
Vi k
Then, we have for p* defined in (2.11) and & chosen in (3.1)
[1Lnenll ooy < el o) + ChF=Nr,
[Lnenllwvesqy < ll@llwrasao) + ChE=N",
with a constant C independent of h.

Since k > 1, the choice in (2.11) enables to us to deduce the desired bounds (3.3)
in L and W4 N+ from approximation properties in H', and hence allows us to
extend the final time ¢} .

Proof of Lemma 3.4. For v, € V}, we combine the inverse estimate (2.22) and the
Sobolev embedding H'(€,) < L?" (), and conclude by (3.1)

(3.6a) 9nl oo () < CBNP7 Wnll Lor () < CRTNP" 1400l g1
(3.6b)  [vnllyrns,) < CRN/ N+ =N/ 19l 10, < Ch=NP ¥nll g e

with a constant C' independent of h. For the desired bound, we expand with the
adjoint lift £* and obtain by (2.21)

Inpnll Lo () < ol oo () + [l — ﬁhﬁf‘{*<ﬁ|‘Lm(Q) + | Lnlh e — Eh@h”Lw(Q)
< el g (o) + Ch¥ lellweriooo) +C Hﬁ,‘f*ap - S"hHLoo(Qh) .

Since L} *p — ¢n € Vi, the first assertion then follows from (3.6a) together with
(3.5). The second estimate is derived fully analogously. a

Hence, once we have shown Proposition 3.2, we can give the proof of our first
main result.

Proof of Theorem 2.5. Inserting the adjoint lift, we obtain for ¢ € [0, ¢}] with (2.21),
(3.4), and Lemma 3.3 the bound

lu(t) — LoDl < [ 0d = LaLE)ul0) [ 1,0+ ClAnen(t)llx, < Ch*.
and similarly

10¢u(t) = Laon ()]l g2 < [|(1d = Lo Ly ")) ;o + C | Anen(®)lly, < CR*,
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with a constant C independent of h and t¢;. Hence, it remains to show t; = T.
Combining the bounds in Proposition 3.2 and Lemma 3.3, we show by (3.2) for h
sufficiently small that

ILnun (@) Lo 0y < (i)l o ) + OB < Too
[Lnun(th) Iy ves ) < i)l sve ) + Ch* <rl,
as well as with Proposition 3.2 and Lemma 3.4
H‘Chvh(t;kL)HleNJrE(Q) = ||8tu(t2)||W1vN+5(Q) + ORI < Tho-

Thus, the continuity of the discrete solution y;, and the equivalence of all norms in
finite dimensional spaces yields ¢; > T'. In particular, the statement of Theorem 2.5
is true for ¢ € [0, T]. O

3.2. Proof of Proposition 3.2. The rest of this section is devoted to the proof of
Proposition 3.2. The first step is to show that the set defined in (3.3) is not empty.

Proposition 3.5. The initial error satisfies
[Anen(0)llx, < CR¥,
where C' is independent of h. In particular, it holds 0 < t; <T.

Proof. The bound directly follows from the choice (2.10), the interpolation proper-
ties in (2.19), and the bounds in Proposition 2.4. To show that ¢} > 0, we proceed
as in the proof of Theorem 2.5 with ¢ = 0 instead of ¢ = ¢} . O

With the aid of Lemma 3.1, we are able to define with Ap(yp) from (2.6) the
state-dependent inner products

(on [ Yn)a, + = An(yn(®))on | ¥n)x, » t €[0,t3], n, Yn € Xh.
The corresponding norm is equivalent to the norm of X, i.e., we have
(3.7) can llenllx, < llenlla, + < Cnllenllx, » t € [0,t1], on € X,
with the constants from Lemma 3.1.
Error equation. We study the bound on the discrete error e; and derive an

evolution equation for it. Inserting the projected solution Jyy of (2.1) in (2.8), we
obtain

An(yn(8)) Jn0y(t) = AnJny(t) + Gult, Jay) + (An(yn(t)) — An(Jny(1))) Jndry(t)
+ 0p(t)
with defect
5n(t) = (An(Jny(t))Jn — JnA(y(t)))dry(t)
+ (JhA = ApJn)y(t) + (JnG(t,y) — Gu(t, Jny)).

This leads us to the error equation
(3.9) An(yn())0ren(t) = Apen(t) + Tp(t) + dn(t),
where the stability term is given by
(3.10) Th(t) = (Gi(t, Jay(t)) — Gt yn (1)) + (An(yn () — An(Jny(1))) JnOwy(t).

(3.8)
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Remark 3.6. Let us explain the main differences to the error analysis presented by
Maier and Hochbruck [19, 28] and Makridakis [29]. In [19,28], instead of Ap(yp)
they use Ay (Iy) which has the properties from Lemma 3.1. However, to bound
the stability term, inverse inequalities are used which induce restrictions on the
polynomial degree and also the CFL-type condition. Our technique is more related
to [29], where bounds on ||up||y1. replace (3.3).

However, in both approaches the error analysis is performed in H' x L2?. They
thus have to impose stronger CFL-type conditions to close the argument. O

We introduce the state-dependent operator
An(t) = An(yn(t))An
and define the modified error as
en(t) = Ap(t)en(t).

Differentiating the term Ay (yr(t))er(t) and using (3.9), leads to the following mod-
ified error equation

An(yn())0een(t) = Apen(t) — (OeAn(yn(t)))en(t)
+ ApAn(yn(t) T H(TR(t) + 6n(1)).

We state two results on the stability term and the defect, and postpone their proofs
to Section 5.

(3.11)

Lemma 3.7. For 0 <t <t} it holds
[ARTR(B)] x, < CllAnen(®)lx,
with a constant C' independent of h and tj .

Similarly, we show the optimal consistency error of the defect in the stronger
norm.

Lemma 3.8. For 0 <t <t} it holds
IARSK(t) ]|, < CHF
with a constant C independent of h and tj .

In addition, we note that by (2.6) and Lemma 3.1 there is a constant C' inde-
pendent of h and ¢}, such that for all x;, € X}, it holds

(3.12) [ARAR(yn (1)l x, < CllAnznllx, , 0<t<t,.

With these two lemmas and the bound on the initial error in Proposition 3.5, we
conclude the remaining estimate.

Proof of Proposition 3.2. We first compute
B0 en®I, . = (Ohnn(®))en(®) | 2n(0) 5 +2 (Anwn()AEn(t) | (D), -

Inserting the error equation (3.11), we use the skew-symmetry of Aj and combine
the bounds in (3.12) and Lemmas 3.1, 3.7, and 3.8 to obtain

O llen®)}, . < Clen®)l3, . + Ch*".

The application of a Gronwall lemma together with Proposition 3.5 and (3.7) then
yields the assertion. ([
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4. ERROR ANALYSIS FOR THE FULL DISCRETIZATION

We carry over the results and techniques established in the last section to the
fully discrete schemes. We work with a discrete analogous of (3.3) given by a final
time step n* which allows us to perform the next time step to t" *1, that is

4y 7
kféa”).(nmax{HﬁhUEHWLNJra ) |£hvfli||w1,N+5 ) ||‘Cha7'ulfi|‘wl,N+6} < r;o}

In particular, we will establish n* > N —1. Note that by (2.14) formally, we have to
show that n* > 1 for the last term in (4.1), which can be interpreted as providing
both the base cases n = 0,1 in the induction. However, the case n = 0 is already
covered by Proposition 3.2, such that the set in (4.1) is not empty and it holds
n* > 0.

Further note that similar to Lemma 3.1 we conclude from the bounds in (4.1)
that for 0 <n <n*, 1 <p<oo,and j=0,1 it holds

4.2)  ||o2Mnup)en]l L, < Cxllgnlle s 02 (u) " onll L < Cx llenllpn s

and the bounds in Lemma 3.1 in the H'-norm remain valid.

Throughout this section, we employ several times the estimate from Lemma 3.3,
and also a straightforward extension of Lemma 3.4 including the temporal conver-
gence rate.

Lemma 4.1. Let o € V, and ¢ € WETL(Q) NV, and assume that for some
¢ e {1,2} it holds

Vi ) &
1£Y 0 = onll s 0,y < C 75+ B5).
Then, we have
1£0@nll ey < Nl oo () + CRTNP (74 + BF),
H‘Ch(‘oh||VV1=N+5(Q) < H%D||W1,N+5(Q) + Ch_N/p* (7-[ + hk)7
with a constant C independent of h and .

4.1. Euler. First note that for the Euler method (2.15), we have by construction
8Tuﬁ = vﬁ such that it is sufficient to check the first three conditions. As above, we
define the discrete error by e} = J,y(t") —yj and aim to show as in Proposition 3.2
the following bound.

Proposition 4.2. Under the assumptions of Theorem 2.6, for 0 < n < n* +1 it
holds the bound

[Aneii]ly, < C(r+n%),
where C' is independent of h, T and n*.

As in the spatially discrete case, this estimate allows us to immediately conclude
our main result.

Proof of Theorem 2.6. We proceed along the lines of the proof of Theorem 2.5 to
conclude the convergence up to t" *1. In addition, Lemma 3.3 and the CFL-type
condition (2.16) together with Lemma 4.1 for ¢ = 1 further allow us to proof
n* > N — 1 for h, 7 sufficiently small, and the assertion is shown for all n. O
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The rest of this section is devoted to the proof of Proposition 4.2. In order to
derive the error equation, we insert the projected exact solution Jyy of (2.1) in the
scheme (2.15) and derive

An(i) In0ry(t" 1) = ApJuy (™) + Ga(t", Juy(t™))
+ (An(yr) = An(Jny(t™)) Jndry(t"+) + St
with defect opt! = 5,’;"& + 5?'& given by
(4.32)  Oph = (JnA — Apdn)y(t" ) + LG (" y(t")) — Gu(t", Jay(t")
+ (An(Tny(t™)In — JnA(y(t"))) O-y(t" ),
(4.3b) 07w = InAy(t")0-y (") — JuA(y(t")) Oy (")
+ WG (") = WG, y ("))
This yields the discrete error equation
(4.4) An(yp)orep ™ = Apep ™ + T + 65,
where the stability term is given by
(45) T = (Gt Tny(t")) = Gult" yn)) + (An(u) — A (Tay(t™)) Tudy(t™+).

In order to obtain a recursion for e}fl, we recall the state-dependent operator and

define the corresponding resolvent

n ny\— n -1
(4.6) AT = A (y) A, Rpu, = (I —TA}) .
A simple calculation shows that for the inner product,
(en | ¥n), = (An(yp)en | ¥n)x, » ©n, Y € Xn,

which satisfies by (4.1) the same bounds as in (3.7), we obtain
IREuwnenll, < llenl,
and rewrite (4.4) as
entt = Reunel + TReunAn(yp) " (Th + 051 ).
Since A’ commutes with Rg, ,, we obtain
ALt = Rpy nAlel + TRuun Al Ay (y) " (T + 655)

which has to be resolved. Proceeding as in Lemma 3.7, and noting that for any
norm it holds

(4.7) 10-y(t")] < max [|dy(B)]],
teftn—1,tn]

we have for 0 < n < n* the stability bound
AT x, < CllAnerlx,
h h

with a constant C independent of h, 7 and n*. Similarly, we show the optimal
consistency error of the defect in the stronger norm, see Section 5 for the proof.

Lemma 4.3. For 0 <n <n* it holds

1An0%: | x, < C(r + 1Y)

with a constant C independent of h, T and n*.
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Hence, we have already established the estimate
(4.8) Az er 1, < AR eqll, + O 1Aneklly, + O (r + h¥),
and the last step towards the main result is to change the norms.
Lemma 4.4. For 1 <n <n* it holds for all p, € V}
|A%enll, < (1+Cr) A nll,

with a constant C independent of h, T and n*.

Proof. Expanding the norm as
n 2 ny—
A% @nll, = (Anen | Any) " Anen) .,
n— 2 n\—
= HAh lgph”nfl +7 (Ah@h l 67'Ah(yh) 1Ah§0h)xh

and using (4.2) several times, gives the assertion. O

With this we are able to proof the estimate on AheZ‘H.

Proof of Proposition 4.2. We first consider the case n* = 0. Hence, (4.8) withn =0
directly yields the assertion without the use of Lemma 4.4 and hence without any
bound on 8Tu’g. With this, we established n* > 1.

In the case n* > 1, we employ Lemma 4.4 in (4.8) and make use of the norm
equivalences to obtain

[AGer [, < 1+ Cr) || AL eh]],_, + Cr (7 + h").
Resolving the recursion and using Proposition 3.5 yields the result. (]

4.2. Midpoint. The proof is very similar to the Euler method and hence, we only
sketch the relevant details. First note that by construction in (2.17) it holds

(4.9) O = S(wf + i),

such that the last bound in (4.1) does not have to be shown separately. Again, we
aim at the following bound.

Proposition 4.5. Under the assumptions of Theorem 2.7, for 0 <n < n* +1 it
holds the bound

[Aneillx, < C (> +h"),
where C' is independent of h, T and n*.

Combining Lemma 4.1 with the weaker CFL-type condition (2.18) yields the
convergence result.

Proof of Theorem 2.7. As in the proof of Theorem 2.6, the convergence follows
directly. To show that n* > N —1, we employ Lemma 4.1 with £ = 2 together with
the CFL-type condition (2.18). O

Hence, it remains to show Proposition 4.5. As for the Euler method, we derive
the following error equation

(4.10) An (") 0,eitt = Apel T2 4 T 4 g7t
with a stability term similar to the one in (4.5) satisfying

(4.11) 1AL Ly, < C(IAneillx, + [[Aner ™),
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and a composed defect 037! = 6711 + 6711, The first component is basically the

same as 62”34 (4.3b), and the second satisfies

O = TnAG )0y (") — I Ay (" 2) Dy (72
(4.12) + Ay (") = Sy ) +y (),
RG24 Y2)) g G2 i),
such that we derive in Section 5 the desired order of convergence.
Lemma 4.6. For 0 <n <n* it holds
14n03 1y, < C(* + 1)
with a constant C independent of h, T and n*.

We solve for e}™! in the error equation (4.10) and define for the solution-

dependent operator A’ nH/2 6 R(7"T1/2)=1A), the maps

+1/2 -
Rj:,n+1/2 =1=+ % 7}1 / 5 Rm,n+1/2 = R_}n+1/2R+7n+1/2-
A simple calculation shows that for the inner product

(en | V) py1e = (A @) | wh)xh, ©On, Y1 € Xn,

we have
||R:,1n+1/2<10h“n+1/2 < H‘Ph||n+1/2 ) ||Rm,n+1/2§0h||n+1/2 = ||(ph||n+1/2 .

Rewriting (4.10) and multiplying by A;;H/ % we obtain

(4.13) ATI;+1/262+1 =Ry, n+1/2An+1/262
T TR™ 1 +1/2An+1/2Ah<gn+1/2)—1(FZ + 517\?1).

Finally, we have as in Lemma 4.4 the following bound when changing the norm.

Lemma 4.7. For 1 <n <n* it holds

HAZH/Q

<(1+4+C7) HAZA/Q(ph

Ph

n+1/2 n—1/2

with a constant C independent of h, T and n*.

Proof. First note that

A

Mo~ < S l10rubll o + 5 10m03 ™ ] e

107 (S, — 3y~
as well as by (4.9)

30

Sk e = 1k + 50k + k)

This allows us to proceed as in Lemma 4.4 and to bound 97 A, (5"+1/?), 5 = 0,1,
and the inverse A (y"+1/2)~1 O

We are then able to conclude the error bound for the midpoint rule.
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Proof of Proposition 4.5. Using error equation (4.13), we employ Lemmas 4.6 and 4.7
and (4.11) to obtain
‘|A71+1/262+1|‘n+1/2 <1+ C’T)HA’};*I/%ZH?%UZ
+Cr([[Anerlly, + [Aner ™ x,) + C (7 + h*).

With the bound on Aje) from Proposition 3.5 and using the fact the first step is
given by the Euler method, we obtain with Proposition 4.2
1Aneilly, < C7(r+n5),

which yields with a Gronwall lemma the assertion. O

4.3. Exponential Euler. For the exponential method, we apply a similar ap-
proach and derive the necessary bound in the stronger energy norm. However,
there is no direct relation to the discrete derivatives of the error. In this case, we
have to proof an additional error estimate.

Proposition 4.8. Under the assumptions of Theorem 2.8, for 0 < n < n* 41
there hold the bounds

[Aneillx, < C(r+h"),
and for 1 <n <n*+1

|0-erl 5, < C(7+RY),
where C' is independent of h, T and n*.

Once this is established, the last main result directly follows.

Proof of Theorem 2.8. In order to conclude the convergence rates, we only employ
the first estimate in Proposition 4.8. To show n* > N — 1, again the first estimate
allows us to guarantee the first three bounds in (4.1). The bound on L;d,uf
follows from the second estimate in Proposition 4.8 combined with Lemma 4.1 and
the CFL-type condition (2.16). O

The rest of this section is devoted to the proof of Proposition 4.8. We introduce
the auxiliary approximation g™ (t"™ + s) for s € [0, 7] as the solution of

(4.14) An(yn)og" (t" +s) = Apg™ (t" + ) + Gu(t",yp), §"(t") =y,

and thus satisfies g™ (t"+7) = yZ‘H. In order to derive the error equation, we insert
the projected exact solution in (4.14)

An(yn) InOey(t" + 8) = ApJpy(t™ + s) + GR(t", Jpy(t™))
+ (An(yi) = An(Jny(t™)) Jndey(t™ + 5) + Stg (8" + s),
with defect opim, = 5ZjE1ch + 5?&& given by
S e (1" 4 5) = (JnA — ApJn)y(t" + s) + JuG(", y(t")) — Gr(t", Jny(t"))
+ (An(Jny (™)) In — InA(y(t"))) Dy (t™ + s),
S e (8" + 8) = JnA(y(t")Oy(t" + 5) — TnM(y(t" + 5)Opy(t" + s)
F WG + s, y(E" + 8)) — JuG(E", y(t™)).
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Similarly, we define the auxiliary error by
EN(t" + 8) = Jpy(t" +5) — g (t" +5), ER{t") =ep, Er(t"+71) =€p
This yields the discrete error equation for s € [0, 7]
(4.15) An(ym)Oer(t™ + s) = A& (t™ + s) + TR(t" + s) + opts (™ + 5),
with stability term
Ch(t"+s) = (Gr(t", Jny(t") = Gn(t", yn)) + (An(yh ) = An(Jny (1)) Jndry (1" +s)).

Using the variation-of-constants formula with the state-dependent operator defined
in (4.6), we obtain from (4.15)

S

ER(t" + 5) = e Ahel + / el AL (y?) 71 (Tr(t" +0) + SpE (" + o)) do.
0

To obtain the error bounds stated in Proposition 4.8, we need the following two

estimates which follow along the lines of Lemmas 3.7 and 4.3: For 0 < n < n* it
holds

(4.16a) sup. [ARTR (" + 5l x, < CllAnerlx,
(4.16Db) zl[ép] |Andptaa (" + S)Hxh < C(r+h"),

with a constant C' independent of h, 7 and n*. This allows us to conclude the
bounds in the two stronger norms.

Proof of Proposition 4.8. We proceed as in the proof of Proposition 4.2 in order to
obtain the bound on A&} in the form

(4.17) sup ||[Axép(t" +S)HXh <C(r+h"),
s€[0,7]

which implies the first statement in the proposition. For the discrete derivative of
the error we employ (4.7), (4.15), and (4.16) to conclude

||(9.,-€Z||Xh < szl[g)‘r]Hatéz(tn + S)HXh

+ CllAnerllx, +C(r+ )

< C sup ]HAhéZ(t" + s)HXh

s€lo,7
< C(r+h"),

where we used (4.17) in the last step. O

5. ESTIMATES FOR STABILITY TERMS AND DEFECTS

This section is devoted to the proofs of the postponed stability and consistency
estimate from Sections 3 and 4.
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5.1. Stability. In the following, we give a detailed proof for the stability term
given in (3.10). We emphasize that the corresponding bounds used in Section 4,
are derived fully analogously, and we thus refrain from giving the details here.

Proof of Lemma 3.7. We consider the two contributions of I'j, in (3.10) separately.
(a) We first note by (2.5) and (2.6) that

Tug(t, LY u, Ly LY *0yu) — Tng(t, Loun, £
Ah(Gh(taJhy)Gh(t,yh))—(hg( hn U Snbn 6“) ng(t, Lrun h”h))_

Without loss of generality, we show the assertion only for g(¢,u, dyu) = g(dyu), and
obtain

| A (Gh(t, Jny) — Gi(t,yn)) HXh
= | Ing(Lh L} *Opu) — Ing(Laon)]|y,

1
— |1 / 9 (G LhLY D+ (L — o) Lavn) do (Lall *Dpu — Lrvn) |y,
0

1

<| / 9 (LALY O+ (1= 0)Lavn) dor| s nss || £ LY Do = Luvny,
0

where we used Lemma 2.9 for the last estimate. The latter term is estimated with
(3.4) by Apep, in the Xp-norm. For the integral part, we use the stability of £, £} *
in (2.21) with £ = 0 to bound it by a constant depending on the W *9_norms of
Oru and vy,. Hence, the bounds in (3.3) yield the stability for Gy,.

(b) Next, we consider by (2.5) and (2.6)

Ao (An (g 8)) — A () Fe(E) = (@((A(chcm 0A<zhuh>)£5*afu)> |

and estimate with the stability of the interpolation (2.19) the algebra property of
WLN+3 " and the stability of £)* in (2.21)

[ An (Mn (Tny(t) = An(yn () Jndy(®)]| .,
< C|(MLRLY 1) = ML) ||y s 1E1 02|y s
<C HE,‘{*U — uhHWLN*‘S HatQUHW1,N+5 ;

with a constant depending on the W N*%_-norms of u and uy. Using Lemma 3.3
and (3.4), the first term is bounded by Apey in the Xp,-norm. O

5.2. Defects. We first estimate the spatial defect (3.8) which will reappear in a
modified form in the defects of the full discretization.

Proof of Lemma 3.8. (a) We compute with (2.23) and (2.24)

()" - cf*)m)
0

and, inserting the interpolation, estimate with (2.19), (2.20), (2.21), and (2.22),
[An (TnA = Andn)y(®)]|, < CH* | Aul s -

Ah (JhA - Ath)y(t) = Ah (Jh - L‘,Z)Ay(t) = (
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(b) As above, we only consider the case g(t,u,0u) = ¢g(0;u) and obtain with
(2.5) and (2.6)

Vi _ Vx
An(JnG(t,y) — Gilt, Juy)) = <‘Ch 9(0) — DhglLaly 6’“)).

From this, we conclude with (2.19) and (2.21)
| AL (JuG(t,y) — Gr(t, Jny)) HX}L
<||(cy - Ih)g(atu)HVh + || 1ng(0yw) — Ing(La L) *Ou
< OR* [lg(@w)ll s + €' (1d = LL3) ety o
< O(lg@w)ll prass + 10eull s o) B,

which gives the desired convergence rate.
(¢) We compute with (2.5) and (2.6)

V x 2 _ Vi V92
An(RAG) = () )y = (47T = CERET O8] ),

such that again (2.19) and (2.21) yield the estimate
| An (JnA(y) — Ah(Jhy)Jh)atyHXh
<|lcy - Ih))\(u)aquVh + C || A(w)0fu — NLp LY, *u)Lr L) 0}
< C(H)‘(U)”leﬂ,oo ) { atQuHWkJrl,w) hk7
and the stability is established. O

v,

”HWLOO

For the fully discrete defects, we rely on further Lipschitz bounds of the nonlin-
earities A and G which we collect in the next lemma. Since, we work in a first-order
framework we denote in the following for any function x € X, the projection onto
the first and second component by x1 or xs, respectively.

Lemma 5.1. Let x,y,z € X, and let Assumption 2.1 hold.
(a) If 1,91, 20 € WH(Q), then

[A(A() = AW) 2] x < Cllzr = yill o)

where the constant depends on the W1 -norms of x1,y1, 22.
(b) If‘rl7x27y1ay2 S Wl,OO(Q)7 then

|A(G(t, z) — G(S,Z/))HX <C(t— s+ |z — Yillgr o) + o2 — y2||H1(Q))
where the constant depends on the WH®-norms of x1, 2,91, Y2.

Proof. We expand the difference in part (a) as
[A (A=) = )zl = [ (A1) = M)zl

1
_ H/o N(ows+ (1= oy1)) (@1 — y1)2| 0

sup ||\ (01 + (1= oy0) |y 121 = v1ll g 22l e
o€l0,1]

N

and the assumptions in the lemma yield the bound. The very same computation
yields the second estimate (b). O

Thus, the defect of the Euler method can be bounded in a straightforward way.
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Proof of Lemma 4.3. We recall the splitting df " = 615} + 071 of the defect in
(4.3), and note that by proof of Lemma 3.8 it holds

14807 Bl x, < CR*.

We treat the two parts in (4.3b) separately. The second term involving G is bounded
using (2.24) and Lemma 5.1. Further, we expand

AR I Ay (™) 0yt — ApJpA(y(t" )0y (t" )
=LA (A(y(t") — A(y(t"))) eyt ) + LLAAN(Y(E™)) (Ory(t™ ) — Dy (t™ 1)),

such that Lemma 5.1 is employed on the first part. For the second part, note that
by the fundamental theorem of calculus we obtain in any norm

[0:2(t" 1) = 9z(t™ )] < T sup ||07z(t" + s)
2 s€[0,7]

)

and the claim follows. O

Similarly, we bound the defect of the midpoint rule in (4.12), and as above we

do not have to treat the spatial part 62”1(/[1

Proof of Lemma 4.6. We first note that from Taylor expansions and the Peano
kernel theorem, we conclude in any norm the bounds

[ V)

T

||8Tz(t"+1) — 6tz(t"+1/2)H < — sup H@f’z(t” + S)H ,
24 s€[0,7]
2
Hz(t""‘l/z) =3z + 2(tM)]| < TZ sup [|07z(t" + s)| ,
s€[0,7]

3 2
oe72) = (3em) = 3o )| < =g sup [0 + )]

Combining this with Lemma 5.1 and the proof of Lemma 4.3 yields the desired
bounds on the defect. O
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APPENDIX A. MODIFIED RITZ MAP

In this section, we discuss the approximation property of ﬁh as well as its com-
putation. Note that the same reasoning is valid in the conforming case.

Proof of Proposition 2.4. We use the definitions in (2.4b) and (2.9) to compute
~ ~ 1
\(EX*U — Rpu | @h)v ‘ = ’(U \ Eh‘Ph)V = (Inu| Ly Eh‘Ph)f/h‘
h
< ’(u ~ Lnlyu | £h§0h)v‘
—— ~ -1
+ ’(ﬁhfhu | Lngn)y, — (Tnu | L ﬁhsﬁh)r/h
= A1+ As.

We employ the stability of the lift in (2.2) and the interpolation property in (2.19)
to obtain

k
Ay S ||UHHk-+2(Q) ||<Pthh .
The geometric estimate in [14, Lem. 8.24] together with (2.2) allows us to bound
k417 a1 k
Ao SHHY Dyl 1€ Lagnlly, S A ull e oy lonllys, »
and the claim follows. Further, we use the definition of Ay, in (2.7) and the inverse
estimate (2.22)
2 _
[Anunlzz = = (un | Anun)y, <llunlly, 18nunlly, S0~ unlly, Al
and obtain the second bound with one power less in h. O
In order to compute (2.9), we have to solve a linear system with the stiffness
matrix corresponding to the bilinear form (- | -)y, and right-hand side ¢,. For a
basis p;, i = 1,..., L, of V}, the entries are given by
~ ~ 1
(gu)z = (Ihu | Eh £hg0i)~
Gomg through the construction explained in [13, Sec. 4.1.2-4.2], one observes that

Qi = Eh Ehcpl € Vh, however ¢; is not a nodal basis function. Since also Ihu S Vh,
one only needs to modify the routines which are used to assemble the stiffness matrix
corresponding to (- | )y, .

APPENDIX B. INTERPOLATION AND ADJOINT LIFT
In this appendix, we provide the proof of Lemma 2.9 and (2.20). The following
estimate appears to be standard, but since we could not find a reference in the
literature, we provide its proof here.

Lemma B.1. Form = 0,1, there is a constant Cp, > 0 independent of h such that
1n(Enson - £an)lymsqe,) < Cm 1€non - Lxtnllym )
for all op,¥p € Vy,.

Proof. Writing L, I, = Id+ (LI, —1d), by (2.2) it is sufficient to show the assertion
for LI, — Id instead of Ij. Passing to the reference cell K, we only consider the
case m = 1. We define the map

1d s (Por(K), ) = (Pe(®), |l )
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which is a bounded linear operator with a constant C', such that for any ¢ € sz(f( )
H(Id - Ih)‘ﬁ“[p(f() <C |90|H1(f() .
Then, employing [14, Lem. 4.12] yields the result on an arbitrary cell K. [
With this, we directly conclude the desired stability estimate.

Proof of Lemma 2.9. By the nodal interpolation property (2.3) and Lemma B.1,
we obtain

0 (e - Lavn)lly, = I Tn(Ladne - Latn)lly, < CILu Iz - Lrenlly, -

Using Sobolev’s embedding and the stability of the interpolation from (2.19), we
further estimate

1LnIie - Lrpnlly, < ClLuIEellwrnss lenlly, < Cllellyrnss lenlly, -
By the same reasoning, we obtain the bound in the L?-norm. O

Proof of (2.20). The stability of £I* directly follows from the definition (2.4) and
the stability of the lift £;, in (2.2). For the error bound, we first observe

1@ = £, = sup (Tn = L5702 1) 2o,
H'l/)hHHh=1
= sup (((/thh —Id)¢ | Latn) 20
on g, =1

+ (Ine | ¥n) p2(q,) — (Lnlne | £h¢h)L2(Q))'

For the first term we apply (2.19), and for the difference we use [14, Lem. 8.24] to
obtain

||(Ih - EhH*)S@HHh S Rt ||<P||He+1(9) +ht ||LhIh‘P||L2(Uh)
with the boundary layer Uy, == {« € Q | dist(z,9Q) < h}. Below, we show
(B.1) ||£hIh<P||Loo(Uh) < Ch HIMP”Wl,oo(Qh)
and use this together with vol(Uj)Y/? < h'/2 to estimate
||£h1h80||L2(Uh) S h'/? ||£hIh<P||Loo(Uh) S h*/? ||Ih<PHW11°°(Qh,) Sh ||Ihg0||W1'6(Qh,) )

where we used the inverse inequality (2.22) in the last step. The stability of the
interpolation (2.19) and the Sobolev embedding yield

||£hIh<PHL2(Uh) Sh HSOHH?(Q) )

and thus the assertion. To show (B.1), we pick some xg € U, and yg € 9 with
|zo — yo| < h such that

(Lalnp)(yo) =0,  |[(Lrlne)(o)|l = 1LhInell poo () -

Then we use the fundamental theorem of calculus to see
|(Lrlne)(@o)| = [(Lrlng)(zo) — (Lrlne)(yo)l

oy / (VLTng) (s + (1 — 8)o) (o — o) ds|

< NLuInellyr. ) lzo — vol,

which gives the assertion. ([l
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APPENDIX C. DISCRETE SOBOLEV EMBEDDING

The proof is adapted from the conforming case presented in [5, Lem. 4.1], but
is able to cover a larger range of exponents. Similar results including the discrete
differential operator Ay, are shown in [16, Thm. 1.12] and [32, Thm. 3].

Proof of Lemma 3.3. First, we define the inverse Sy of Ay, form (2.7) by
(Snen | Yn)y, == (on | ¥r) g, »  Pn,Yn € Vi,
and its continuous conterpart S = A~! satisfying
Seld)y=—(eld)y, @yeV.

We further define the modified solution operator §h = ﬁX*Sﬁh, and write S;, =
Sh + (Sp — Sp). For the first term, we use the stability of the Ritz map in wie”

from (2.21) with £ =0 and (2.12) to obtain
||‘§h<ph||W1’P*(Qh) S H5£h90h||ww*(ﬂ) S ||S‘Ch<'0h||H2(Q) < HSOhHIﬂ(Q,L)'

It remains to bound the difference, stemming from the nonconformity, by the inverse
estimate (2.22)

thgah - Sh(thWI,p* (@) < ChN/p*_N/QHSvh(Ph - ShQOhHVh

<Ch™' sup (§h90h — Sheon | W)V

lnlly, =1

=Ch™" sup  ((¢n | ¥n)g, — (Lason | Laton) g )-

lonlly, =1
We use [14, Lem. 8.24] to obtain
|(en | ¥n) g, — (Lasn | Loon) | S hllenllpe 1enlly, »
which yields
1Shenll oo () + 1Sk eRIlw10m () < Cllenllz,)
and hence the assertion. [l
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