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Renewables introduce new weather-induced patterns and risks for market participants

active in the energy commodity sector. We present a flexible framework for power spot

prices that is capable of incorporating a weather model for the joint distribution of local

weather conditions. This not only allows us to make use of a long history of local

weather data in the calibration procedure but also makes it possible to assess how

changes in the renewable generation portfolio impact the characteristics of future

wholesale spot prices. Empirical tests demonstrate the model’s capability to reproduce

salient features of market variables. We furthermore show why our model offers unique

benefits for market players compared to existing approaches.
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1 Introduction

State-of-the-art energy commodity models rely on well-established reduced-form approaches

from the őxed-income literature. However, the transition to a low-carbon economy gives

birth to renewable-dominant electricity markets and weather risk advances to a major risk

factor. Meteorological studies provide concise and reliable information on weather data

and have put forth powerful tools for modeling and understanding weather dynamics. Our

contribution is to combine these insights and develop a new electricity price model that uses

local weather conditions and the spatial distribution of renewable assets to model dynamics

in wholesale electricity prices.

There are two main ingredients in the model. First, we rely on a suitable approach to model

electricity prices. Instead of using reduced-form approaches that refrain from explicitly

modeling fundamental supply and demand factors we take advantage of hybrid structural

models. They allow us to incorporate the drivers of the supply side and consequently permit

power prices to directly depend on weather conditions. Second, we model the temporal as

well as spatial distribution of wind speed and solar irradiation, map these local weather

conditions to electricity production, and incorporate the renewable electricity supply in our

hybrid structural model. We show that this two-step speciőcation has clear advantages in

times of deep structural changes, which potentially render most parts of the historical price

data obsolete.

The major strength of our stochastic price model is its ability to guide investment deci-

sions, the assessment of hedging strategies, or policy decisions in a rapidly changing market

environment. A natural őrst application is to study the quantitative impact of the local

distribution of renewable generation capacities on the risk characteristics of power prices.

Such an analysis should not only provide important insights on the potential future impact of

the fast growing amount of renewable generation technology from a regulatory point of view

but might be of interest for many other stakeholders in the electricity sector from owners

of conventional power plants to potential investors in wind parks or solar farms at different

locations.

Generally, stochastic price models allow market participants to calculate risk measures, to

price certain risks and assets, or to deduct reasonable hedging strategies. By now, power

prices require different modeling techniques than other energy commodities such as crude oil

or natural gas for which established reduced-form approaches from the őxed-income litera-

ture have been shown to work quite satisfactory (e.g. Trolle and Schwartz (2009), Brooks

2



and Prokopczuk (2013), or Hain et al. (2018)). First, electricity markets are usually much

more local in nature due to the fact that storing the commodity is mostly impossible and

thus, power has to be produced to match local demand exactly in every instant. Paired

with mostly price-inelastic demand this makes wholesale prices very sensitive to shocks in

fundamentals such as unexpected weather changes or supply disruptions. These character-

istics have prompted researchers to look into pricing models that consider the interaction of

major supply- and demand factors and wholesale prices (e.g. Barlow (2002) or Howison and

Coulon (2009)).

Second, once we add renewables to the equation things become even more complicated.

Electricity generation from wind and solar power is itself highly sensitive to local weather

conditions. Additionally and in strong contrast to conventional power plants, the spatial

distribution of installed renewable capacity has a considerable impact on the characteristics

of market-wide renewable power production. Compare, for example, a scenario in which all

available renewable capacity is clustered within one single location with a more diversiőed

scheme. Conditional on the joint distribution of local weather variables production in the

former case is potentially much more volatile. This special łlocalnessž-characteristic of wind

and solar power complicates projections with regard to how wholesale prices react to capacity

additions at different locations. And with renewable generation becoming more and more

economically feasible, its share to total power production will almost surely continue to rise.

Our ŕexible approach is able to deal with the above challenges. Given that energy systems

worldwide are entering and proceeding a phase of transformation, our approach may prove

its beneőts in a variety of electricity markets around the world. In this paper we detail the

implementations for the German market: Germany has grown and continues to be one of the

leaders of power generation out of renewable energy sources among large industrial nations

(EurObserv’ER (2019)), its electricity market currently has one of the largest share of wind

and solar power (International Renewable Energy Agency (2018)), and Germany has set very

ambitious targets to further cut emissions drastically. So there is still much change ahead.

First and foremost, our research contributes to the őeld of electricity price modeling by

proposing a methodology capable of incorporating renewables. While several approaches

incorporate renewables as exogenous variables for modeling wholesale power spot prices

(e.g. Cludius et al. (2014), Kallabis et al. (2016), or Lehna et al. (2021)) studies that

explicitly model the stochasticity from renewable generation and incorporate it within a

power price modeling framework are rather scarce. Keles et al. (2013) use a regression-based

approach to incorporate global wind power generation within a regime-switching model for

3



electricity spot prices. Perhaps closest to our approach is the residual demand framework

by Wagner (2014), which considers weather-driven demand and both market-wide wind and

solar power production. Since direct modeling of wind and solar power completely ignores

the spatial distribution and dynamic variations thereof, the residual demand framework

of Wagner (2014) cannot distinguish between the potentially different impact of capacity

additions at distinct locations. We therefore choose to model the local constituents forming

the market-wide renewable generation. Intuitively, this can be seen as applying the basic idea

behind structural price models for electricity markets recursively by additionally modeling

the driving forces behind local renewable production which in turn drive wholesale electricity

prices – an approach which we label the łSecond-Layer Hybrid Structural modelž (SLHS

model in short). A major advantage of our SLHS modeling approach is the disentangling of

the various drivers of wholesale electricity prices (demand, installed capacity, wind speed,

solar irradiation) making it possible to calibrate part of our model to a rich history of weather

data (over 28 years of local hourly weather variables). This is advantageous because there is

only a relatively short history of renewable generation available and the potential impact of

changes in the spatial distribution is captured naturally in our case while existing approaches

can at best account for an absolute increase in installed capacity and might be misleading if

the spatial distribution changes once again. Empirical tests furthermore demonstrate that

our methodology is well capable of reproducing salient features in the time series of renewable

production and wholesale day-ahead spot prices in Germany.

Our work is also related to the strand of literature analyzing the impact of renewable gen-

eration on wholesale electricity prices. Early work mostly considers how the average price

level is affected (e.g. Jacobsen and Zvingilaite (2010) or Paraschiv et al. (2014)) whereas

in following studies additional focus is put on price volatility as well (e.g. Jónsson et al.

(2010), Ketterer (2014), or Wozabal et al. (2016)). All of the above studies rely on historical

observations of aggregate renewable generation and spot prices entirely. However, as pointed

out above, we cannot be sure how an increase of renewable capacity at different locations

translates into the volatility of wholesale electricity prices. Our model could therefore help

in fostering the understanding of this largely unexplored characteristic and may be used as

a smart extrapolation tool to assess such impacts quantitatively.

Finally, our study is linked to the literature dealing with the assessment of site potential

when faced with the difficult decision of choosing an optimal location for new physical assets.

While Ritter et al. (2015) and Pieralli et al. (2015) outline potential issues with using idealized

production curves for assessing wind power production potential, Grothe and Müsgens (2013)

and Ritter and Deckert (2017) discuss spatial differences of revenues from wind parks. All of
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the above studies remain silent with regard to the associated revenue uncertainty of speciőc

sites. Also, as these studies rely on historical bootstrapping methods they are not well

suited to validate how alterations to the renewable generation portfolio (or other important

market variables) translate into the risk characteristics of different sites. In contrast, our

methodology could help investors to form a better understanding of potential risks and

returns associated with renewable energy projects without being purely backward-looking.

The structure of the subsequent sections is as follows. Section 2 introduces our general

modeling framework, whereas section 3 gives details on how our approach allows us to

incorporate a model for the joint distribution of weather variables. Section 4 then looks at

other model components on the demand and supply side while section 5 discusses possible

model extensions. Section 6 entails an analysis of the model’s capability of reproducing

salient features of important market variables and furthermore contains examples of how

market participants can beneőt from using our model. Section 7 concludes.

2 A Residual Demand Approach with Local Information

This section entails a detailed discussion of our chosen modeling framework. We brieŕy

discuss how our model connects with various existing streams of modeling approaches and

then show why and how we seek to introduce local information with regard to weather

conditions and installed capacity into the framework. Due to the wide variety of modeling

approaches, we focus on an aggregated overview of the literature and refer to Weron and

Ziel (2019), Lago et al. (2021) and Lehna et al. (2021) for detailed comparative studies.

2.1 Hybrid Structural Price Modeling

State-of-the-art modeling approaches for electricity prices can broadly be separated into

three categories. In the őrst category are approaches which heavily borrow from reduced-

form models from equity- or interest-rate markets, sometimes also referred to as quantitative

or stochastic approaches. Early studies use low-dimensional stochastic processes to capture

patterns such as mean-reversion and seasonality (Lucia and Schwartz (2002)). In order to

capture pronounced price spikes, unmatched in other commodity markets, Deng (2000),

Cartea and Figueroa (2005), Geman and Roncoroni (2006), Seifert and Uhrig-Homburg

(2007), or Hambly et al. (2009) consider variations of jump processes. Although these models

generally share nice properties such as closed-form pricing formulas for derivatives, they are
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often difficult to use in the rapidly changing electricity markets as their input contains

only observed price data. For instance, changes in fundamentals (e.g. new large consumers

(demand-side) or producers (new wind capacity)) can render historical price data completely

useless in extreme cases. Also, since the liquidity of option contracts on power exchanges is

usually very thin there is generally no reliable forward-looking information with regard to

higher-moment price risk to look at in order to re-calibrate a reduced-form model.1

The second category consists of so-called structural models, sometimes referred to as funda-

mental models. In these approaches wholesale market clearing prices result from a problem

in which demand must be satisőed under certain side restrictions such as transmission con-

straints (Eydeland and Wolyniec (2003)). The approach requires very detailed information

on technical peculiarities of power plants or environmental constraints of the whole power

market in question (fundamental input). A signiőcant drawback is the fact that such models

generally only make predictions on expected price levels and do not allow inference on higher

moment price risks. This disqualiőes them as a viable tool for risk management purposes

such as hedging. The modeling and prediction of these fundamental inputs use diverse statis-

tical or deep learning techniques, while still side restrictions and the functional associations

of the fundamental input are central.

The third and recently fast growing category is composed by machine learning and advanced

statistical techniques where neither stochastic processes as in reduced-form models nor func-

tional associations between used exogenous variables as in structural models are the deőning

characteristics. Prominent approaches from advanced statistical modeling are models using

the least absolute shrinkage and selection operator (LASSO) or the Lasso Estimated Au-

toregressive (LEAR) models (e.g. Uniejewski et al. (2016)). Considering machine learning,

Recurrent Neuronal Networks (RNN), Nonlinear Autoregressive Neural Networks (NARX-

NN), Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) or Convolutional

Neural Networks (CNN) are used (e.g. Lago et al. (2018)). Based on their ŕexibility with

regard to non-linearities, high computational complexity and sensitivity to starting values,

these approaches are rather used for technically constrained, short-term forecasts than for

mid-term investment and hedging decisions (Weron and Ziel (2019)). In comparison how-

ever, structural models still reveal more fundamentally how factors drive market price. We

therefore take statistically modeling techniques into account, but suggest an approach based

on an overall structural relationship.

1Although future contracts tend to be very liquid in European power markets, they usually carry not
much information with regard to volatility risk.
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Hybrid structural models lie somewhere in between the reduced form and structural mod-

els – basically resulting from a trade-off between analytical tractability and the degree of

granularity with which speciőc market characteristics are captured.2 As opposed to reduced-

form approaches that try to grasp how prices move this model class looks beyond prices and

asks why prices move in the őrst place (Eydeland and Wolyniec (2003)). Key fundamental

factors driving prices consist of market-wide demand or supply-side variables related to the

cost or availability of generation capacities. For instance, a more volatile demand process

usually results in larger swings in wholesale spot prices. In electricity markets dominated

by renewable generation, such as Norway, Spain, or Germany, weather variables can play a

major role for the characteristics of available power generation over time. The stochasticity

of such factors can then be captured by well-established reduced-form modeling approaches

of the őnancial literature. Existing hybrid structural models range from slightly altered

reduced-form models (e.g. Eydeland and Wolyniec (2003) or Cartea et al. (2009)) to more

involved modeling frameworks varying in the number of fundamental factors considered and

the kind of information being used for calibration (e.g. Burger et al. (2003), Howison and

Coulon (2009), Aid et al. (2013), Füss et al. (2015), or Ziel and Steinert (2016)). Never-

theless, studies taking renewable generation into account are still scarce. Keles et al. (2013)

propose a methodology to incorporate wind power and solar generation in a reduced-form

model whereas Cludius et al. (2014) include these as an exogenous variable in a structural

model. Lehna et al. (2021) use weather data as a proxy for renewable energies and an exter-

nal regressor. Wagner (2014) develops a residual demand framework and explicitly models

the uncertainty of solar and wind generation as additional fundamental factors. Note how-

ever, that the above approaches neglect the spatial distribution of the renewable generation

portfolio completely.

As hybrid structural models seem to be best suited to match our purposes we pursue a

residual demand approach similar to Wagner (2014) in which renewable electricity production

is fed into the system with priority. The basic intuition behind such a model lies in the fact

that conventional generators satisfy the corresponding (inelastic) demand in hour t which has

been adjusted by the uncertain amount of renewable generation ret in the system.3 Figure 1

shows the relationship between spot prices during peak and offpeak hours with both demand

2As combinations of different layers and algorithms in machine learning approaches or in general combi-
nations between the different modeling categories are referred to as hybrid models, we speciőcally use the
term hybrid structural model.

3Because the feed-in of wind/solar is basically free of marginal cost, we assume their generation bids to
be accepted on the wholesale market independent from wholesale market prices (which is true, unless very
negative prices occur). Please also note that we use load and demand synonymously, following Kiesel and
Kusterman (2016).
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dt as well as residual demand d̂t = dt−ret. As expected, the őgures show that given a level of

raw demand dt there is still considerable variation in wholesale spot prices st. This variation

(along the y-axis) is clearly reduced if we instead consider residual demand d̂t. Also note

that for offpeak hours there are many cases of very low and even negative spot prices whereas

demand was not even exceptionally low. A direct comparison with the residual demand -

spot price relationship shows that these low prices were in fact caused by exceptionally large

production levels from renewables. This shows that in a market with a signiőcant presence

of renewables such as Germany a modeling approach for wholesale electricity prices should

account for the stochasticity from renewables. This leads us to the őrst building block of

the modeling framework.

Model Component 2.1 The model for hourly wholesale day-ahead spot prices st is

st = ft(d̂t) + σt (1)

d̂t = dt − ret (2)

where

ft corresponds to the supply curve function, and

σt is a residual volatility process.

The supply function ft thus maps the current inelastic demand to a respective hourly day-

ahead spot price st. This curve basically results from an auction which orders the generators

according to their bids. Generators offer their generating capacities at marginal costs and

market-wide inelastic residual demand d̂t determines the intersection with the supply curve

and with it the resulting market clearing price. σt is an error term accounting for randomness

unexplained by the structural modeling framework such as capacity outages or transmission

issues.

2.2 Hybrid Structural Price Modeling

Why is localizing the renewable generation important? In a rapidly changing market envi-

ronment market participants need to be capable of assessing the impact of capacity additions

at some given location. Existing approaches may run into difficulties if there has not been

any installed renewable capacity at the given location before or a historical track record of

(local) renewable production is not available, which is usually the norm. Deducing the im-
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Figure 1: Empirical relationship between demand, residual demand, and spot

prices

The őgure depicts the relationship between demand and spot prices (top two őgures) as well
as between residual demand and spot prices for peak and offpeak hours from 01 January
2017 to 31 December 2018. Peakload hours correspond to all hours within 8 am and 8 pm
from Monday to Friday whereas offpeak hours correspond to the remaining ones.

pact from the historical (aggregate) renewable generation process can thus be fatally ŕawed

(out-of-sample problem). Alterations to the renewable portfolio might also introduce diffi-

culties if one tries to calibrate a model that solely considers the aggregate generation of the

renewable technology. Fitting a single stochastic process to the aggregate wind (solar) power

generation then might at least necessitate time-dependent parameters to accommodate for

any changes happening over time (in-sample problem). To resolve these problems we do not

model the aggregate generation of a speciőc renewable technology directly but rather focus

on its local constituents. This results in the following description of the second main model

component:

Model Component 2.2 The model for the hourly renewable generation process ret is

ret =
∑

u∈U

reut (3)

reut =
∑

k∈K

gu,k(yu,kt ) (4)

where
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K is the set of different locations covering the market area,

U corresponds to the set of different renewable technologies in the market,

reut is the technology specific aggregated generation,

gu,k is the production curve mapping weather conditions to output (in MWh), and

yu,kt is the location- (k) and technology-specific (u) weather variable.

The approach thus incorporates the modeling of the distribution of local weather conditions

and their corresponding mapping gu,k to local and with it market-wide generation of a

certain renewable technology. In other words, we recursively adopt the basic idea behind

hybrid structural modeling approaches on a łdeeperž layer of model structure by asking łwhat

drives the drivers of wholesale market prices?ž. We therefore label the approach łSecond-

Layer Hybrid Structural modelł (SLHS model). Thus, instead of modeling the resulting

process of renewable generation of various technologies directly, we instead choose to model

the underlying drivers of renewable generation, the weather, and use suitable transformations

to map from local weather conditions to aggregate output. Below we show how to estimate

these mapping functions from local weather conditions. This allows us to incorporate a long

history of weather data.4

3 Making Weather Data Useful: Modeling Details and

Estimation Strategy

Our model philosophy hinges on the idea of a "smart disentanglement" of major contributors

of electricity production from renewable energy sources. These consist of local weather

conditions on the one hand and the amount of local renewable generation technology on the

other hand. Ongoing research in the őeld of meteorology has broadened our possibility to

better understand the dynamics of key weather variables. Most importantly, one can resort

to publicly available comprehensive databases covering highly detailed weather information.

Similarly, information with regard to the geographical location of renewable power plants

across market areas is usually publicly available with reasonable temporal frequency as well.

Figure 2 showcases publicly available market-wide renewable production data for wind (top)

and solar (bottom) for the case of the German power market from 2015 to 2018. Clearly, time

series properties are very different for the two technologies considered which proves us right

to model power production from wind and solar separately. It is also apparent that renewable

4In Appendix A an overview of the different data used in each model component is displayed.
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Figure 2: Market-wide renewable production in Germany

The őgure shows market-wide renewable generation for wind power (top) as well as solar
power (bottom) from 01 January 2015 to 31 December 2018.

production has experienced considerable growth over the last few years indicated by a clear

trend in average yearly production volumes. The question is now why one should refrain

from modeling these aggregates directly. First, one is left with a relatively short period of

data to calibrate model parameters. Second, such a modeling approach is completely blind

for any spatial variations in the renewable generation portfolio, potentially necessitating

time-dependent parameters. And third, one basically skips a large amount of weather data

which could otherwise be of use in the calibration procedure.

In order to bypass these issues and to make use of weather data with high spatial resolution,

this section showcases our new empirically-driven approach to estimate the mapping function

gu,k(.) from aggregated production data and corresponding weather variables.

3.1 Weather Data

Obtaining a time series of wind speed and solar irradiation with a sufficiently high spatial

as well as temporal resolution is usually very difficult. For once, meteorological stations

tend to be situated near airports and thus one is usually left with large gaps in geographical
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coverage (Rose and Apt (2015)). We therefore opt for reanalysis data that are based on a

mix of meteorological observations as well as model-based interpolations in space and time

offering a rich history (usually up to several decades) and very high spatial granularity.5

For our analysis we use a historical time series of solar irradiation as well as wind speed at

120 m above ground supplied by Anemos (2019). The data is generated through downscaling

of reanalysis data from the NASA program Modern-Era Retrospective Analysis for Research

and Applications (MERRA) applying the PSU/NCAR (2019). It offers a temporal resolution

of 10 minutes (spanning from 1990 to 2018) and a spatial resolution of 20 km x 20 km.6 We

divide the German market area into a grid of 100 km × 100 km areas resulting in K = 38

weather cells (see Figure 3) for which we compute hourly averages. Our choice of the spatial

resolution is mostly motivated by the fact that we want to limit the computational burden

in the estimation and scenario generation of our weather model with numerous trajectories

later on. Furthermore, several production relevant data is anyway only available on a balance

zone level. The choice of the temporal resolution appears reasonable, as most other variables

of interest (e.g. demand or day-ahead spot prices) are of hourly frequency as well. Note that

our weather grid also entails two offshore regions in the North Sea as well as the Baltic

allowing the incorporation of wind power generation at offshore sites.

Figure 3: Weather cells of the German market area

The őgure shows the used grid of weather cells that covers the German market area.

5Although Rose and Apt (2015) have expressed some concerns and demonstrated the presence of a small
bias for reanalysis data in the US we have yet to őnd any better alternative that allows for such high
granularity, both in the temporal as well as in the spatial dimension.

6A detailed comparison between the model’s irradiation data and measurements from weather stations is
done by Schermeyer et al. (2014).
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3.2 The Renewable Generation Portfolio and Production Curves

The missing link to incorporate the large panel data set of weather variables into our model-

ing framework now lies in the speciőcation and estimation of the production curve functions

gu,k(.). One approach is to set these functions exogenously by making use of production

curves. However, such published relationships usually only hold under idealized conditions

and numerous studies document substantial bias and deviations from empirical production

curves published by manufacturers (e.g. Pieralli et al. (2015) or Ritter et al. (2015)). Fur-

thermore, using such power curves would furthermore require the consideration of wind

direction and angle of solar irradiation which would add another layer of complexity to our

weather modeling framework.7 As a result, we opt for a more empirically-driven approach

by looking at observable aggregates of renewable generation across several weather cells. We

then use these aggregates to calibrate a representative production curve gu,k(.) for the re-

spective candidate weather cells by using the times series of suitably weighted local weather

conditions as input variables. Before going into the details of how the production curves

are estimated, however, we discuss two key ingredients in our calibration procedure: (1) the

dynamics of the spatial conőguration of the renewable generation portfolio and (2) the time

series of observable aggregates of renewable generation:

(1) Capturing developments in the spatial conőguration of renewable power plants over time

is an integral part of our modeling approach. EnergyMap (2016) and Bundesnetzagentur

(2019a) track the exact amount and geographical locations of renewable generation capacities

on a monthly basis. Since there are approx. 2 million renewable energy plants in Germany

Bundesnetzagentur (2021), we have to simplify this diversity and aggregate the installed

capacity. We allocate the capacity of wind and solar generators to one of our K = 38

weather cells according to monthly values from EnergyMap (2016) and Bundesnetzagentur

(2019a). To arrive at hourly values we then linearly interpolate between adjacent annually

values for installed capacity.8 For simplicity, we furthermore refrain from accounting for any

renewable generation located in Austria as the amount of renewable capacities is very small

compared to Germany.9 This results in a multivariate hourly time series of installed wind

7We actually tested a simpliőed approach using power curves of turbines most often sold and installed in
the German market area. However, as expected we ended up with a substantial positive bias in generated
output when comparing model-implied with observed values.

8Due to the fact that the extraction of geographical locations from EnergyMap (2016) and Bundesnetza-
gentur (2019a) is relatively time consuming, we started off with a yearly updated dataset for each technology
and use linear interpolation in between adjectent years. This should capture potential rapid growth happen-
ing throughout the year for the most part.

9Note that the German and Austrian power grid actually belonged to one common market area together
with Luxembourg until October 2018.
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and solar power from 01 January 2017 to 31 December 2018 for each of our weather cells.

(2) Ideally, one would like to use a time series of renewable generation for every location

considered to estimate a corresponding production curve. Unfortunately, such data does not

exist for most markets and the German one is no exception in this regard.10 What we do

observe is the aggregate renewable generation for four so-called łbalancing-areas" though.

There are four of such areas which, taken together, form the complete German market area

and which incorporate all 38 weather cells in our modeling framework. Figure 4 shows these

four balancing-areas. Data is provided by ENTSO-E (2022) and leads to hourly wind and

power generation for each of these four balancing-areas from 01 January 2017 to 31 December

2018.11

Figure 4: Balancing-areas in the German power market

The őgure visualizes the separation of the German market area into four distinct balanc-
ing areas (source: Netzentwicklungsplan (2022)): 50Hertz, TenneT, Amprion, as well as
TransnetBW.

To őnally estimate representative production curves for the renewable power plants we have

to incorporate local weather data. We consequently make use of a panel set of hourly wind

10Note that there are studies making use of proprietary data sets for speciőc wind parks (e.g. Ritter et al.
(2015)). Nevertheless, even if we had access to several of such data sets this would not be sufficient for our
purpose as we require information regarding generated power from wind and solar for each of our weather
cells which are unlikely to exist.

11Note that we expect to incur some error by allocating renewable generation assets to the nearest weather
cell in terms of geographical distance as this does not guarantee that it matches with the affiliation to a
respective balancing area.
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speed and solar irradiation for each of the k ∈ K weather cells for the respective time frame.

In order to estimate a representative curve for each balancing area we have to specify how

the set of input variables (weather) is aggregated when held against the output variable

(aggregate renewable production). A straightforward approach could consist in averaging

respective weather variables included.

However, this neglects the fact that the amount of installed renewable generation capacity of

each weather cell contained within the respective balancing-area is not necessarily identical.

The relative contribution to renewable production in a given balancing area tends to be

larger for cells with a larger amount of renewable power plants. Obviously, this renders

the weather conditions of these cells more important, too. Furthermore, the local amount

of installed capacity might change throughout the year and thus result in sudden changes

of renewable production within certain weather cells. To cover the above effects we assign

weights normalized by the overall installed capacity of a certain technology in a certain

balancing-area TRn, n = 1, .., 4 to form representative input variables:

ωu,k
t =

capu,kt
∑

k∈TRn
capu,kt

capu,kt is the installed capacity (in MW) of technology u in location k at hour t. Using these

weights we compute a representative (balancing-area-speciőc) weather variable for hour t in

balancing-area TRn:

zu,nt =
∑

k∈TRn

yu,kt ωu,k
t

Finally, these variables can be used to estimate the relationship gu,n(.) between balancing

area related renewable generation reu,nt of technology u and zu,nt .12 Motivated by technology

12For the case of wind speed we additionally account for the fact that measurements are taken from 120 m
whereas hub heights of turbines might vary. We therefore extrapolate to the average hub height of wind
turbines in each weather cell by using the power law which is common practice in literature (e.g. see Brown
et al. (1984)):

y′ = y
( z

h

)α

where y′(y) corresponds to the wind speed at hubheight z (height of measurement h), and α being the shear
coefficient (α = 0.085).
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speciőc shapes of production curves indicated by Figure 5, we use a logistic function for the

case of wind and a second-order polynomial for solar.13 We then estimate the respective

parameter vector Θu,n of technology u of region n by means of the following minimization:

min
Θu,n,

∑

t∈T

(r̂eu,nt − ĝu,n (zu,nt ,Θu,n))2

where both g(.)u,n as well as ret have been normalized by the sum of total installed capacity
∑

k∈TRn
capu,kt , resulting in hourly efficiency rates r̂e and ĝ. Using these estimated production

shapes then allows us to infer local production conditional on local weather conditions and

installed capacities.

Figure 5: Power curve of exemplary wind turbine

The graph visualizes the dependency of power production and contemporaneous wind speed
for the Enercon E82 wind turbine (capacity 2.05 MW, source: Enercon (2022)).

Figure 6 highlights the estimated production curves for wind and solar of the TenneT

balancing-area with regard to the normalized generation per 1 MW installed capacity, jus-

tifying our choice of a logistic and second-order polynomial function.14 As indicated by

the QQ-plots in Figure 7 our model seems to be quite capable of capturing the distribu-

tional properties of balancing-area speciőc generation from wind. However, our methodology

somehow fails to capture the very high peaks in solar production for some balancing-areas.

Nevertheless, we obtain correlations of over 94 % for model-implied and observed renewable

production (for each of the four balancing-areas), giving indication for the soundness of the

model.
13Although the power curve of solar is mostly linear in irradiation levels, there is a slight decrease of

efficiency for higher levels of irradiation. Solar-panel efficiency is partly reduced by higher temperatures
which happens to be correlated with overall irradiation levels.

14As expected, the second-order polynomial turns out to be signiőcant and negative for the case of all
solar production curves, resulting in deviations from the otherwise linear relationship for large levels of solar
irradiation. More details with regard to the parameterization of power curves and estimation results can be
found in Appendix B.
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Figure 6: Empirical power curves

The two graphs visualize the dependency between TenneT balancing areas’ weather variable
zu,nt and renewable generation for wind (left) as well as solar (right) for 2018. The red line
corresponds to the estimated power curves.

Figure 7: QQ-plots of renewable generation

The two graph depict QQ-plots of observed vs. model-implied renewable generation for wind
(left) and solar (right) in the TenneT balancing-area from 01 January 2017 to 31 December
2018.
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Overall, our approach to model renewable generation production yields good results in terms

of capturing time series properties of observable aggregates. More importantly, a separate

modeling of the renewable generation portfolio and production curves from local weather

risk makes our approach very ŕexible. For instance, we can calibrate weather models to

a large history of more than two decades of local weather data. Once calibrated, we can

also easily change the conőguration of the renewable generation portfolio in order to assess

its potential impact on market-wide renewable power production and with it on wholesale

electricity spot prices.

3.3 Modeling Weather Risk

The last section proposed a methodology that is capable of using local weather conditions as

input variables in a framework for market-wide renewable power generation. This effectively

enables the researcher to model and calibrate weather risk separately by means of state-of-the

art econometric approaches.

Literature with regard to the modeling of the temporal dimension of wind speed and solar

irradiation primarily makes use of autoregressive approaches and various extensions of it

(e.g. Brown et al. (1984), Mora-Lopez and Sidrach de Cardona (1998), Caporin and Preś

(2012) or Alexandridis and Zapranis (2013)). There are furthermore studies focusing on

the spatial distribution only. For instance, both Papaefthymiou and Kurowicka (2009) or

Hagspiel et al. (2012) make use of copulas in order to capture the local dependencies of

wind speed at different locations in Germany. Approaches dealing with both dimensions are

less numerous. Morales et al. (2010) and Papavasiliou and Oren (2013) both make use of

vector autoregressive (VAR) models to capture the wind speed dynamics at various locations

in the United States whereas Grothe and Schnieders (2011) combine autoregressive models

with pair-copula constructions (PCC) in a similar setting for German wind speed data. We

follow the latter stream of literature and choose a VAR structure for the joint distribution

of the multivariate times series of wind speed and solar irradiation.15 In what follows, we

give a short overview of the general idea behind the modeling approach. We then look at

stylized statistical features of wind speed and solar irradiation in our data set for Germany

and discuss adjustments in the model speciőcations necessary to capture weather-speciőc

characteristics (e.g. time-dependent volatility) for each case.

15Although pair-wise copula constructions offer more ŕexibility to capture heterogeneity and asymmetries
in dependence structures, their estimation and simulation of scenarios is more demanding from a computa-
tional point of view. As a result, we stick to the simpler VAR structure and leave an incorporation of copula
theory in this regard for further research.
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3.3.1 A General Multivariate Weather Model

Modeling weather data necessitates a description of serial and spatial correlation among

different locations along with univariate peculiarities such as non-normality. In order to ac-

count for seasonal patterns we őrst remove region-speciőc trends µu,k
t which yields de-trended

data yu,kt := yu,kt −µu,k
t . To capture non-normality one undertakes a transformation by using

the empirical distribution function of the de-trended time series resulting in approximately

normally distributed weather variables ŷu,kt :

ŷu,kt = ϕ−1
[

F u,k
[

yu,kt

]]

(5)

where ϕ−1 is the inverse cumulative distribution function of a standard normal random

variable, and F u,k corresponds to the (empirical cumulative distribution function of the

original untransformed (but detrended) time series yu,kt . Note that F u,k should correspond

closely to the distribution function of the łtruež data-generating process since we can resort

to a large data set of a long history spanning 28 years of hourly observations.16 Since the

transformation preserves the covariance structure of the weather variables (e.g. see Liu and

Der Kiureghian (1986)), we can model their corresponding joint distribution by means of a

VAR-model of order P:

Ŷ u
t =

P
∑

p=1

ΨpŶ u
t−p + Ut

with Ŷ u
t corresponding to a vector of observations of ŷu,kt ’s of all regions Ψp are coefficient

matrices of dimension K x K, and Ut is an error-term following a multivariate normal dis-

tribution with a mean vector of zeros and covariance matrix
∑u. The optimal leg-length

P is decided upon by using the AIC, remaining appearance of autocorrelation and cross-

correlation terms, whereas coefficients along with covariance matrix
∑u are estimated by

maximum likelihood. Henceforth, we are capable of capturing both site-speciőc pecularities

of the marginal distribution and on top of that using the normally distributed transformed

data to calibrate a VAR model that allows us to capture serial and spatial correlation.

16Some studies impose parametric restrictions on the transform (for example, both Brown et al. (1984)
and Morales et al. (2010) use the Weibull distribution for wind speed). However, since we have access
to a long history of data it makes more sense to directly make use of the observed empirical distribution
function offering more ŕexibility in terms of capturing site-speciőc peculiarities. This also allows us to capture
potential seasonality in higher moments by making the empirical distribution function time-dependent.
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3.3.2 Pecularities of Wind Speed and Solar Irradiation Dynamics

As expected, an analysis of weather variables in Germany reveals distinct seasonal patterns.

Wind speed exhibits highly non-normal behavior with volatility being larger during autumn

and winter seasons. Skewness and kurtosis varies across the year as well. Furthermore, there

is much cross-sectional variation. For instance, wind speed in northern regions is larger on

average and more volatile. To capture these aspects we augment the general speciőcation

by introducing a time-dependent, site-speciőc volatility function σw,k
t used as an additional

normalization factor besides the trend-function µw,k
t . We furthermore allow the empirical

distribution function Fw,k
t to vary across seasons in order to account for time-variation in

skewness and kurtosis.

Solar irradiation is behaving quite differently. First, seasonal patterns are much more pro-

nounced: there is no sunshine throughout the night. Furthermore, average solar irradiation

levels are ten times as high during summer season. Cross-sectional differences are much

smaller if compared to the case of wind though. The absence of sunshine during night

complicates the modeling of hourly irradiation levels by means of a VAR approach. Cloud

formations have a considerable impact on the resulting solar irradiation and one is incapable

of observing these during night time. Consequently, we are blind for any uncertainty that

might affect the weather variables during the early morning hours. We therefore deviate from

Morales et al. (2010) and loosely follow Wagner (2014) by instead modeling the daily max-

imum irradiation level ỹs,kt and capture any intraday variation by means of a deterministic

pattern function.

An inspection of QQ-plots as well as autocorrelation- and crosscorrelation-functions reveals

that the augmented modeling approaches are successful at explaining the dynamics of the

considered weather variables. More details with regard to stylized characteristics of our

weather data, model speciőcations, and goodness-of-őt tests can be found in Appendix C.

4 Conventional Supply and Demand Factors

4.1 Supply Function

A key ingredient for the model framework is how current market conditions such as demand,

renewable generation, and production costs from conventional generation assets are trans-
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lated into the market clearing spot price in the day-ahead market. In language of our model

framework, this essentially means what kind of structure we impose on the supply function

ft in (1). Existing modeling attempts for ft range from relatively simple approaches (e.g.

Barlow (2002), Burger et al. (2003), and Wagner (2014)) to more involved dynamic frame-

works which also account for shifts in the supply function due to variations in different fuel

prices (e.g. Howison and Coulon (2009), Coulon et al. (2013)). Since the former approaches

have been shown to work quite well and our primary goal lies in a quantitative assessment

of weather risks which are mostly unrelated to global fuel prices, we generally follow this

stream of literature. ft(.) is therefore captured by means of a time-dependent deterministic

function.

As can be seen in Figure 1 spot prices are non-linear in residual demand as such as they

drop disproportionally if d̂t is low enough and vice versa. The relationship seems to be

considerably different when one compares peak to offpeak hours. Additionally, we notice

seasonal patterns with regard to the shape, especially within the range of negative day-

ahead prices and low residual demand. The noticeable seasonal differences in the shape of

the supply curve are supposingly caused by the inŕuence of seasonal fuel prices and seasonal

patterns of intra-European import/export of electricity. Addressing mainly the lower part

of the supply function, we noticed corresponding remarkable lower coal prices in the őrst

half of the year than in the second half of the year.17 Imports to the German market zone

and exports from the German market zone display seasonal patterns as the German net

position (from ENTSO-E (2022)) is mainly negative during summer months and mainly

positive during winter months linked to corresponding renewable infeed. As we assume in

our modeling framework all renewable infeed produced in Germany to inŕuence directly the

residual demand, exported renewable infeed is therefore reducing the residual demand in

our model more than according to the actual German merit order, mapping German day-

ahead prices therefore with lower residual demands and changing the slope in the lower part

according to seasonal pattern. Additionally, the heterogeneous compensation for renewables

in 2017 and 2018 as wells as the inŕuence of seasonality in transmission and outage issues

could explain further deviations. To capture the behavior, we use the following parametric

speciőcation and estimate monthly supply functions ft,m(.) for peak and for offpeak hours:

ft,m(d̂t) = min(smax,max(smin, ct,m(d̂t))

17For the inspection of coal prices we used the Rotterdam RB Index and the import prices of hard coal
from GmbH (2022).
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The minimum and maximum wholesale price smin = −500 EUR/MWh and smax = 3000

EUR/MWh are set exogenousely by the EEX. For ct,m(d̂t) we use the functional form of

monthly, cubic smoothing splines for peak and offpeak hours.18 Smoothing splines are a

ŕexible estimation technique within the category of non-parametric regression models where

we can capture a functional relationship with polynoms (splines) while estimating the pa-

rameters of this functional shape by minimizing a penalized least square criterion with the

smoothing hyperparameter λ (smoothing). The applicable methodology was proposed by

Hastie and Tibshirani (1993) and selectively used in the context of electricity prices (e.g.

Taylor and Majithia (2000), Sigauke (2017)). The non-negative tuning parameter λ controls

and displays the trade off between the smoothness of the functional form and the őt of the

curve. We observed in some months (e.g. May and October) a heavier need of the őtting

of more complex steps in the merit order, while in other months (e.g. January and July)

the supply curve was less complex and had an easily identiőable bid-stack of the underlying

offering power plants. Formally, given the respective smoothing parameter λ the used cubic

smoothing spline estimator cλ,m is the minimizer of a penalized least squares functional:

∑

tm

(stm − ct,m(d̂tm))
2 + λm

∫

(
d2ct,m(d̂tm)

dd̂2tm
)dtm

where integration is over all peak (tm ∈ T peak
m ) and offpeak hours (tm ∈ T offpeak

m ) of month

m ∈ (1, .., 12). As the tuning method, we choose ordinary cross-validation (žleave-one-outž)

after comparing the performance with general cross validation, maximum likelihood and

information criteria methods following Berry and Helwig (2021).19

Figure 8 shows our estimates for offpeak hours in January and peak hours in October whereas

Table 1 provides information about the tuning parameters and őtting criterions. We observe

considerable differences in the shape for different time frames. It seems that in contrast to

earlier studies differences between peak and offpeak hours as well as between months have

increased considerably (e.g. Burger et al. (2003)) and at low residual demand levels the

functional relationship is signiőcantly steeper. Additional information on the monthly, cubic

smoothing splines can be found in Appendix D.

Since our model does not explicitly account for all fundamental factors (e.g. power plant

18Similiar to this methodology is the approach from Jenkin et al. (2018) using quarterly linear and cubic
regressions.

19The other tuning mehtods from Berry and Helwig (2021) showed in the monthly cubic smoothing splines
in one month or more a lower adjusted R2.
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Figure 8: Supply Curve Estimation

The őgure shows the estimated supply curves for offpeak hours in January and peak hours
in October (in red).

df λ Adj. R2

Jan. (offpeak) 18.65 1.15 · 10−7 0.88
Oct. (peak) 6.22 1.51 · 10−5 0.56

Table 1: Tuning parameters and fitting criterions of the exemplary supply curves

The table shows tuning parameters λ and derived degrees of freedom as well as the adjusted
R2 as a őtting criterion for the smoothing splines as estimated supply curves of offpeak hours
in January and peak hours in October.
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outages, transmission restrictions) or other aspects (e.g. market psychology) an inspection

of the residual process σt := f(dt)− st seems warranted. Very similar to Burger et al. (2003)

we őnd that this process is mostly unrelated to fundamentals such as weather variables

or demand.20 In order to make use of the model in risk management applications such as

hedging or Value-at-Risk calculations it makes sense to capture this additional uncertainty as

well. For instance, if weather-related risk such as wind power generation at a speciőc location

is to be hedged with spot price derivatives, neglecting this additional (independent) source

of risk would potentially bias hedging efficiencies. We therefore follow the rather practical

approach by Burger et al. (2003) and model the residuals σt by means of a parsimonious

time series model. The inspection of the σt reveals both serial correlation at various lags as

well as heteroscedasticity prompting us to choose an ARIMA process with GARCH noise.21

4.2 Demand

Demand can be seen as the major driver of price changes. It exhibits pronounced seasonal

patterns on a yearly, weekly, as well as intra-daily basis with additional holiday-effects.22

Modeling demand has been investigated in numerous studies (e.g. Weron (2006), Burger

et al. (2003), Howison and Coulon (2009) or Wagner (2014)) and is quite well understood.

It has been shown that besides the need for a ŕexible trend function in order to capture

the pronounced seasonality patterns demand also requires to capture serial dependencies

justifying the use of ARIMA-type modeling approaches. We once again follow Burger et al.

(2003) and use an ARIMA-type model to capture auto-correlation and a deterministic trend

function with indicator variables for months, hours, weekends, holidays and winter season

based on hourly demand data from EEX (2022). As in the aforementioned studies, the model

is capable of capturing the characteristics of temperature-driven market-wide demand.

5 Discussion of Model Extensions

Our parsimonious structural modeling framework obviously carries its limitations. We will

therefore shortly look at its most severe drawbacks, how one could approach these, and in

which cases these might be of minor importance.

20All time series correlations are below 20 % (in absolute terms).
21A more detailed discussion of the model for the residual volatility process σt can be found in Appendix E.
22Please refer to Appendix F for a more detailed discussion of the modeling details and statistical properties

of market-wide demand in Germany.
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Obviously, the deterministic supply function could be modeled in a more involved fashion.

First, the data-driven cubic smoothing spline estimation leads to several supply functions

that are not monotonous as the underlying hourly merit order curve would economically

suggest.23. Therefore, further monotony conditions should be implemented to maintain the

logical bid-stack order. Second, if variations in the supply function are modeled with ad-

ditional, explicit model components, the more data-driven methodology of using monthly

supply curves could be changed to one common supply curve. Variations in the shape of the

curve are overall caused by three factors: (1) import/export of electricity, (2) power plant

availability, and (3) power generation costs.

In our modeling framework we assume all fundamental factors to inŕuence only the German

market environment. With the growing integration of a European electricity market, not

all German renewable generation is satisfying only German demand and other European

power plants with their respective marginal costs can be price-setting during a period of

supranational price convergence. As the market coupling of multiple market zones is a com-

plex modeling attempt, a őrst step of more accurately measuring the price inelastic residual

demand for a common supply curve methodology could be corrected with the German net

position ∆: d̂ = d − ret + ∆. Without detailed consideration of individual interconnected

relationships, the residual demand would therefore be higher in case of import (∆ > 0)

and lower in the case of exports (∆ < 0). Technically, modeling the net position could be

performed comparable to demand based on an SARIMA model.

Unexpected technical issues can result in sudden shutdowns of conventional generation assets

resulting in potential changes in the shape of the supply curve. Note that such impacts might

be very different conditional on which kind of asset is affected by the outage. For instance,

an outage of a large nuclear baseload plant with low marginal costs usually results in a shift

of the whole curve to the left, affecting the price formation for all hours within a day. In

contrast, an outage of a ŕexible smaller natural gas power plant is more likely to make the

supply curve steeper in the right part of the supply function, thereby having a stronger

impact on prices during peak hours. Given detailed data on łdefault ratesž of the generation

ŕeet of conventional assets one could model the aggregate plant availability over time and

construct the supply function based on available assets at a given point in time. This would

then render the supply function stochastic.

As power plant owners usually offer to produce electricity for prices close to their marginal

costs, fuel prices are an important driver of time variation and seasonality in the supply

23Figure 29 and Figure 30 in Appendix D visualize all the estimated monthly supply curves.
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function. Note that different parts of the supply function are driven by different fuel costs

as well. At the moment, we capture any seasonal monthly variation by a different estimated

shape of the supply function and any further uncovered variation by a residual volatility

process σt. The residual volatility process is assumed to be stationary and therefore does

not cover any long-term risks such as permanent changes in fuel prices. A geopolitical event

(e.g. pandemic, military conŕict) could shift part of the supply function up- or downwards

and result in a long-term average price shift. In a similar way, ŕuctuating CO2 emission

prices could have an impact on the supply function as well.24

The above extensions for a common supply function necessitate a lot of highly detailed data

on the conventional generation portfolio which might not always be available. Although

long-term risks in terms of changes in fuel prices are not captured, the residual volatil-

ity component should at least be capable of covering short-term deviations attributable to

outages to some extent. We therefore regard the limitations primarily relevant for market

participants concerned with long-term prospects of market dynamics. An ad-hoc approach to

accommodate for a current permanent shift in the supply function could be partly captured

by an additional parameter in the model component (1):

st = ft(d̂t) + σt + δ

If permanent, such a shock should be reŕected in traded forward-looking instruments. As

a result, δ could then be estimated by means of long-maturity electricity futures, some-

what similar to the practice of yield curve őtting for spot-price models of the őxed-income

literature. The price of such a contract is its expected value under the risk neutral measure:

f e
t = E

Q
t

[

∑

t∈T

st

]

= E
Q
t

[

∑

t∈T

ft(d̂t) + σt + δ

]

= E
Q
t

[

∑

t∈T

ft(d̂t)

]

+ δ̂

The second equality follows from the fact that the residual volatility process
∑

t∈T σt is

zero in expectation and independent from other sources of considered risk factors. Using a

24As CO2 emissions vary across electricity generation technologies, the impact of changes in CO2 prices
is not the same for different parts of the supply function.
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calibrated version of the model could in turn be used to match observed futures prices by

adjusting δ̂ =
∑

t∈T δ accordingly. Nevertheless, care has to be taken in the estimation of

δ. First, futures contracts incorporate risk premia which need to be estimated beforehand

(e.g. based on historical fundamental data and quotes on futures). Second, one has to

make sure that the shift in average prices is not attributable to forward-looking changes in

fundamentals on the demand- or supply-side.

Other overlooked aspects in the model are wind direction, air density, surface roughness and

variations in irradiation angle. The direction a physical asset faces can have a considerable

impact on the resulting power production both for wind as well as for solar. For wind power

this is much less of a concern. This is due to the fact that so-called horizontal axis turbines,

which represent the vast majority of commercial assets nowadays, can quickly adjust their

rotor blades to variations in wind direction.25

In contrast, the majority of commercial solar power plants are unable to adjust their orien-

tation towards incoming irradiation which changes throughout the day. Therefore, a solar

power plant’s individual conőguration inŕuences the resulting power generation. An exten-

sion of our model could incorporate information about each asset’s conőguration within a

weather cell. This could be captured by adjusting the local capacity weights when estimating

the balancing-area-speciőc production curve gs,nt (see section 3.2) according to the respective

local orientations of solar power plants and be of help to capture local renewable generation

dynamics more realistically.26 Furthermore, this would allow market participants to consider

an additional strategic layer in their decision making process.

6 Empirial Analysis

Using the calibrated SLHS model, we now address its performance in terms of reproducing

wholesale power price dynamics. We then look into how our model can be applied in practice

and in which cases it provides unique beneőts for different stakeholders in the electricity

sector.
25Wind direction as well as air density and surface roughness can become important for the detailed

analysis of the power production proőle of a speciőc wind park though (e.g. the exact placement of turbines
next to each other and/or the consideration of obstacles such as hills). Given the spatial granularity of our
weather model (weather cells of 100 km × 100 km size) such a level of detail is beyond the scope of this
study.

26We actually attribute some of the unexplained variation by our solar production curves (see section 3.2
Figure 6) to the neglection of solar panel orientation.
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In the following analysis, we make use of simulations to compare statistical properties such as

observed and model-implied moments or quantiles. We found N = 1000 simulation scenarios

to be reasonably robust in terms of the sampling error. To obtain one trajectory of wholesale

power prices we have to simulate all state variables: (1) weather variables, (2) market-wide

demand, and (3) residual volatility. Our analysis also entails assessments of speciőc time

frames in isolation (e.g. a speciőc month). If not stated otherwise, we create simulation

scenarios in these cases by conditioning all state variables to equal their mean values at the

beginning of the month.

6.1 Explaining Wholesale Power Prices

To underline the soundness of the proposed modeling framework we now shed light on its

capability of reproducing salient statistical features of wholesale spot prices in the German

electricity market. We start with a visual inspection of historical as well as simulated day-

ahead spot prices. Figure 9 is an exemplary selected plot of st from 01 October 2018 to 31

December 2018. It can be seen that the stylized features of observed day-ahead prices seem

to be captured quite well. For instance, negative price spikes tend to occur more frequently

during winter holidays when the demand from large industrial consumers is missing.27

Figure 9: Observed vs. simulated price trajectories

The őgure depicts observed (top) and simulated (bottom) day-ahead spot prices for the last
quarter of 2018.

27Further details considering the model’s capability of reproducing a comparable time series can be found
in Appendix H Figure 38.
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Next, we look at QQ-plots of model-implied and observed spot prices. As a benchmark,

we choose a standard reduced-form price model for electricity price dynamics used in Benth

et al. (2013) and calibrate it to the same time series of wholesale spot prices used for the

SLHS model. The model features a ŕexible trend function, a mean-reversion component, as

well as a spike process to capture heavy tails in the empirical distribution.28 Since reduced-

form approaches are calibrated to the observed price distribution directly they serve well

as a benchmark for our modeling framework. Figure 10 highlights the QQ-plots between

the observed price distribution and the corresponding modeling approaches for the time

between 01 January 2017 to 31 December 2018. Both seem to be capable of capturing the

majority of the empirical distribution although the extreme tails are not captured perfectly.

The SLHS model has certain problems with estimating very negative spot prices, while the

reduced form model overestimates moderately positive spot prices. This demonstrates that

the SLHS model can compete with existing reduced-form approaches.29

Figure 10: QQ-plot between observed and simulated day-ahead prices

The őgure shows QQ-plots between observed and simulated spot prices using the SLHS
model approach (left) as well as using the reduced-form model (right) between 01 January
2017 and 31 December 2018.

Next, we have a look at how the model fares with capturing key properties of price volatility.

Volatility is a key factor for important managerial decisions or risk management applications.

For example, the scheduling of electricity production of highly ŕexible power plants is a

complex path-dependent dynamic optimization problem. The asset derives much of its value

28Please refer to Appendix G for a description of model speciőcation and calibration.
29Please note that we used winsorizing at the 99.9 % / 0.1 % quantile for the simulated price distribution

(1000 trajectories) of the SLHS model.
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from price volatility. Consequently, the decision to ramp up such an asset should then be

based on the most relevant observable state variables inŕuencing future volatility. As a

result, we require a model in which the dependence between volatility and other variables of

interest is captured accordingly.

To demonstrate the SLHS model’s capability in this regard we look at the relationship

between residual demand d̂t and price volatility. To set the corresponding variables into

perspective, we calculate daily average values for both variables of interest and inspect the

relationship visually (see Figure 11).30 Although the pattern is not captured perfectly, the

model correctly predicts higher volatility levels for higher residual demand levels. We also

observe a reversal of this effect for very low levels of residual demand both for historical

data as well as model-implied. This pattern can be attributed to the fact that for very low

and high levels of residual demand d̂t the supply function is relatively steep (see Figure 8),

potentially causing larger price swings. Note that this effect is present in other electricity

markets as well (e.g. see Eydeland and Wolyniec (2003)) and called "inverse leverage effect".

Figure 11: Relationship between residual demand and price volatility

The őgure shows the relationship between average daily residual demand d̂t and average
daily price volatility for historical data (blue line) and model-implied (red line).

Finally, we test the model’s capability to describe the joint distribution of the modeled

(aggregate) drivers and the wholesale spot prices - a property that becomes very important

30We actually depict splines őtted to the empirically observed relationships to facilitate the presentation.
Further details considering the used splines can be found in Appendix H Table 6.
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for hedging practices. For instance, the owner of a wind park might be interested in using

price-based derivative instruments (e.g. electricity futures) to reduce the volatility of his

future cash ŕows. In order to make an assessment of the potential of such strategies he

necessitates a model that correctly predicts the relationship between prices and wind power

production. Table 2 depicts the time series correlations of renewable generation from solar,

wind, demand, and residual demand with spot prices. As can be seen, the model-implied

correlations are very close to what we actually observe.31 For instance, the link between

residual demand and spot prices is stronger than for the case of raw demand and wind seems

to have a stronger impact on spot prices than solar. Additional evaluation of the model

performance can be found in Appendix H.

model data
ρst,rewt -0.46 -0.46
ρst,rest -0.09 -0.04
ρst,dt 0.45 0.47
ρst,d̂t 0.79 0.77

Table 2: Correlations between spot prices and fundamental factors

This table compares correlations for several fundamental factors (demand dt, residual de-
mand d̂t, wind generation rewt as well as solar generation rest) with wholesale spot prices st
for the model (left column) as well as the historical data (right column) from 01 January
2017 to 31 December 2018. The model-implied correlation is calculated as the mean of the
pearson correlations at each hour of all simulated trajectories.

6.2 Managing Market Risks with the SLHS Model

Market participants in modern power markets are facing increasingly complex weather-

dependent uncertainties. This section highlights how the SLHS model can help to better

understand the associated risks.

6.2.1 Setup of Risk Analysis

We take the renewable portfolio conőguration from the start of 2017 as our base scenario and

hold the installed capacity constant at őrst. This assumes approx. 55 (37) GW of installed

31We are well aware that correlations can be misleading for non-linear relationships. Nevertheless, the
similarity of both empirical and model-implied moments is striking.
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wind (solar) power.32 We make use of simulations to deduce corresponding measures of

interest and set the number of scenarios to N = 1000. One trajectory of wholesale power

prices necessitates the simulation of all state variables: (1) weather variables, (2) market-

wide demand, and (3) residual volatility. In some cases, we analyze different time frames (e.g.

months or years) in isolation. If not stated otherwise, we then compute the corresponding

measure by conditioning the state variables to equal their mean values at the beginning of

the respective time interval.

6.2.2 The Impact of Renewable Generation

As outlined in section 3 the renewable generation portfolio is in constant change. Market

participants need to understand how capacity additions impact their current commercial

operations. This subsection will showcase two examples of important market players and

how these might be affected.

Our őrst example consists of a merchant power plant which is not tied to any customer needs

or long-term power purchase agreements. If one abstracts from technical restrictions as well

as other őxed costs a conventional power plant can be seen as a strip of call options written

on wholesale spot prices. A stylized proőt margin of such a physical asset is given as follows:

rvppT (c) =
∑

t∈T

max(st − c)+ (6)

where T corresponds to the set of all hours within the respective time interval and c to the

variable cost required to produce the equivalent of 1 MWh of electricity. The variable costs

are determined by the type of power plant considered.33 We focus on ŕexible peaking power

plants that usually burn natural gas in order to produce electricity. Using a corresponding

efficiency rate and fuel costs results in variable costs c of about 60 EUR/MWh.34 Given the

32Please note that this differs from section 6.1 where we reŕect on our model’s capability of reproducing
the observed electricity spot prices. By holding the installed capacity constant, we neglect the further real
expansion of installed renewable capacity during 2017 and accept a moderate deviation to the observed spot
prices.

33In order for Eq.(6) to hold the power plant needs to be ŕexible enough such that it can be switched
on and off with very short notice. Since coal and lignite power plants often times require several hours or
even days to ramp up and down we focus on more ŕexible gas power plants for this example. Additionally,
we assume that the peaking power plant is not the price-setting power plant in the day-ahead auction, as
otherwise the call options would never have a positive value.

34Efficiency rates of such physical assets usually range between about 20 - 30% (see Eydeland and Wolyniec
(2003)), thus for every MWh of electricity one necessitates the equivalent of 3 to 5 MWh of naturals gas.
Prices of natural gas in Europe have not changed considerably during the years 2017 and 2018 and averaged
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Figure 12: Peaking power plant

The left graph shows values of vt0 of the peaking power plant as well as the average (observed)
spot price for different months over the year (2017), in which both time series have been
normalized by their maximum value. The right graph shows the percentage reduction in the
peaking plant’s value in different scenarios over the year.

fact that c is almost twice the price of average spot prices demonstrates that such an asset

can thus be basically regarded as a strip of deep out-of-the money call option contracts.

In order to value the basket of option contracts one needs to calculate their expected value

under the pricing measure Q:

vt0(c) = E
Q
t0
[rvppT (c)] (7)

We ignore risk premia and compute the above expectation under the physical measure P.

Given the absence of a closed-form solution for (7) we resort to simulations and assume a

risk free rate of rf = 0.2 % to calculate a discounted value at t0 of future proőts. Option

values are heavily driven by higher order price risks and our SLHS model allows us to price

these risks accordingly.

The left graph of Figure 12 shows vt0 as well as the average electricity price level for all

months during a year. Clearly, there are seasonal patterns in both cases. The average price

level is larger during autumn and winter season due to higher demand levels (see section

at about 20 EUR/MWh which is why we assume them to be constant for our analysis.
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4.2) and lower supply in terms of solar power production (see section 3.3.1). The lower

level in December is comparable to what we actually observe in 2017. However, in contrast

to the average price level, the value of the peaking power plant rises approx. tenfold in

November. This aspect can be explained by the non-linear shape of the supply function ft.

During autumn and winter, the intersection of supply and demand is much more likely to

take place in a steeper part of ft (see section 4.1 Figure 8). The chances of positive price

spikes therefore increases disproportionally. This increase of (positive) jump risk then has

a large impact on the value of the portfolio of deep out-of-the money call option contracts

(the peaking plant vt0).
35 This explains the much larger discrepancies between values of vt0

during autumn/winter and spring/summer season compared to average price levels.36

Now suppose there is renewable capacity added to the supply-side instantly at the beginning

of the period. Given the heterogeneity in dependencies of local weather variables as well as

the non-linearity of local production curves gu,k, it is a non-trivial task to quantify how such

capacity additions inŕuence aggregate renewable generation. Existing approaches (Wagner

(2014)) can at best account for a proportional growth of renewable capacities at all locations

such that the relative contribution of all local constituents remains exactly the same. Of

course, this is highly unrealistic. Our approach on the other hand captures these local

aspects. The following example demonstrates their further usage.

To outline the varying impact of new renewable capacity additions we consider two scenarios

in which a total amount of 3.9 GW wind capacity is installed (2.2 GW wind offshore, 1.7

GW wind onshore). This corresponds to the average annual growth rate needed to achieve

the targets of renewable installed capacity for wind of the German government from 2020 to

2030.37 We consider two schemes to allocate those across the K = 38 weather cells. The őrst

one corresponds to an equally distributed scheme where each location is allocated an equal

amount of wind power (Scenario Diversiőed). For the second scenario we assume that all

capacity is clustered in the weather cells with the highest average corresponding wind speed

(Scenario Clustered). We choose to illustrate an expansion of wind capacity because based

on the weather variables the PV generation is not as focused on single weather cells as the

35In relation to the price of futures contracts (łaverage price levelž) or prices of at-the-money options,
out-of-the money options prices increase disproportionally in value if jump risk increases, since large jumps
are usually the only events that causes these contracts to end up in-the-money.

36Note that some existing structural models (e.g. Wagner (2014)) would have allowed to make a similar
assessment. Keep in mind though, that we make use of a much longer time series of weather data, whereas
e.g. Wagner (2014) is restricted to the few years of renewable production data currently available. This lack
of data might result in less reliable parameter estimates for the market-wide renewable processes.

37ğ 4 sec. 1 EEG is codifying the target of 71 GW for wind onshore and ğ 1 sec. 2 WindSeeG 40 GW for
wind offshore.
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wind generation. However, all individual expansion scenarios in both technologies using our

assumed weather cell grid can be modeled and quantitative implications derived.

Using our SLHS model, we assess changes in the peaking plant value due to changes in the

renewable generation portfolio. We őnd that in both cases, price volatility rises but as can

be seen from Table 3 there is a considerable negative impact on the value of the power plant

ranging from -6.87 % to -9.49 %. The reason for this is the fact that in both scenarios, the

probability of higher price states is decreased and with it the proőt margin of the peaking

plant. The right graph in Figure 12 again visualizes the impact on the monthly (average)

values of the physical asset. As can be seen, the inŕuence is felt the most during winter season.

More importantly however, there is a difference between the two scenarios. Due to the fact

that Scenario B situates new wind power capacities in a more windy weather cell there is an

even larger discount on the value of our basket of out-of-the-money options compared to the

equally weighted capacity addition case. For the yearly value of an average sized peaking

power plant (e.g. 500 MW) this results in a economically sizable difference in value of 500

MW × (1.12-1.09) EUR/MWh × 8760 h = 131,400 EUR. This shows that changes in the

spatial distribution of the wind power generation portfolio have an economically important

impact on conventional physical assets. Most importantly, this impact could not have been

analyzed quantitatively by the help of existing reduced-form (e.g. Benth et al. (2013)) or

structural models (e.g. Wagner (2014)).

base scenario A scenario B
vt0(c = 60) 1.20 1.12 1.09
% increase - -6.87 % -9.49 %

Table 3: Valuation of peaking power plant under different scenarios

This table summarizes annual values and relative changes of a stylized natural gas-őred
power plant (1 MW) under three different scenarios. The base scenario corresponds to the
market environment of 2017 whereas scenario A and B correspond to an equally weighted
expansion and a clustered expansion respectively. The second line is the relative change in
the respective scenario compared to the base case.

Next, we look at the risk electricity suppliers face. In most electricity markets the majority of

consumers enter some kind of load-serving contract in which the exact quantity of power is left

unspeciőed while a őxed price for every consumed unit is set ex-ante. While very appealing

for risk-averse consumers, this can potentially result in very risky non-linear exposures for the

other party. These so-called Load-Serving Entities (LSEs) usually manage a large portfolio

of such customers. A simpliőed version of the associated revenue stream arising from such a

commitment is given as follows:
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rvlseT (p) =
∑

t∈T

q̂t(p− st) (8)

where q̂t corresponds to the consumer-speciőc demand in hour t and p is the contracted

őxed price charged from the LSE for every quantity of electricity consumed. For electricity

markets, quantity and price variables are usually positively related, resulting in non-linear

payoff patterns. As q̂t is not traded in the marketplace, contracts of this type are rather

difficult to hedge.38 To visualize the problem, we now look at a simpliőed yearly load-serving

contract for the German power market using our calibrated price model. For simplicity, we

ignore the idiosyncratic part of the consumer demand and furthermore assume it to be

perfectly correlated with market-wide power demand dt. We furthermore set the őxed price

p such that the contract has a value of zero at initiation (EQ
t0
rvlseT (p) = 0). Given the concave

payoff structure of the load-serving contract and assuming again rf = 0.2 %, the őxed price

is larger than the average electricity spot price (EQ
t0
st = 44.27 < p = 45.50 EUR/MWh).

Figure 13: Load-serving contract

The left graph shows the (hourly) payoff from the load-serving contract (q̂t(p− st)) relative
to the prevailing spot price st. The red vertical line corresponds to the contracted price p.
The right graph shows the correlation between spot prices st and market-wide demand dt
in every month of the year. Both graphs use simulated spot prices and demand from the
calibrated SLHS model.

The left graph in Figure 13 shows the relationship between hourly payoffs and the spot price

38In other commodity markets, the supplying company can at least build buffer stocks by storing an
adequate amount of the underlying good physically. Unfortunately, electricity is non-storable making the
problem even more difficult.
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in the load-serving contract. The non-linear pattern is clearly visible: consumers tend to ask

less for lower price states and ask for more in higher price states.39

Before analyzing the impact of potential changes in the renewable generation portfolio, it is

insightful to shed some light on how renewables affect the LSE’s business. The right graph

in Figure 13 shows the monthly correlations of spot prices st and market-wide demand dt

(which is assumed to be perfectly correlated with the above customer demand q̂t).40 As can

be seen, there is a pronounced seasonal pattern with a signiőcant drop of dependencies aris-

ing throughout the summer months. This shows how the increasing presence of renewables

introduces new sources of risks into wholesale market prices. As shown in section 3.3 solar

irradiation is at extremely low levels during the winter season making wind power a much

more important contributor to market-wide power generation. During summer, solar power

production rises about ten-fold whereas wind production drops by about 30% - 50%. Overall,

aggregated market-wide renewable generation is much higher and more volatile during sum-

mer. As a result, the link between market-wide demand dt and the resulting spot price st is

decreased. This has important implications for the LSE. First, if the dependencies between

spot prices and the uncertain quantity variable change so does the amount of the non-linear

exposure in the payoff function, potentially even decreasing the risk of extreme losses for the

LSE. On the other hand, a weaker link between wholesale prices and demand means that the

hedging efficiency of electricity futures is lower in some periods during the year. LSEs are

consequently more and more affected by the growing share of weather-dependent electricity

production.

Suppose now, it is publicly known that new renewable capacities are added to the gen-

eration portfolio next year (as was the case for the peaking power plant example). The

consumer now wants to re-assess whether the őxed price p he is charged is still łfairž in

this regard. To do so he can compute p such that E
Q
t0
rvlseT (p) = 0 holds. The őxed price

under scenario A (diversiőed wind power expansion) is larger than under scenario B (clus-

tered wind power expansion). We obtain p ≈ 44.67 EUR/MWh for Scenario Diversiőed

and p ≈ 44.34 EUR/MWh for Scenario Clustered. So, if one is not charged accordingly

this can easily result in large discrepancies in the resulting electricity costs. Even for just

a medium-sized commercial business (e.g. 150 MW per hour) the difference is economically

39Although not central to our analysis, this demonstrates the hedging dilemma the LSE faces. A linear
hedge using futures contracts will consequently not be capable of completely protecting the company from
adverse payoffs in high- and low price states. Unfortunately, non-linear instruments, such as options, are not
liquid. As a result, LSEs usually adjust the őxed price to compensate for the unhedgable risks they bear.

40To arrive at a representative correlation coefficient, we take the average correlation across all N = 1000
simulated scenarios of a month.
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signiőcant with 150 MW · (44.67 − 44.34) EUR
MWh

· 8760h = 433, 620.00EUR, which is even

larger than for the case of the power plant outlined in the last section as well.

Overall, the above two examples demonstrate the impact of the steady increasing amount of

renewables on commercial activities of market participants. It is shown that even if one is

not directly invested in local renewable production assets it can be important to incorporate

the spatial distribution of renewable generation capacities within a power price model.

7 Conclusion

The intermittent nature of renewable electricity production has changed the landscape of

many liberalized power markets. New weather related risks arise for the stakeholders. Ag-

gregate (market-wide) renewable production is itself determined by the sum of local (renew-

able) production facilities across a given market area. As local output is highly sensitive to

local weather conditions, the spatial distribution of installed renewable generation capacities

is therefore a potentially interesting characteristic that should be captured by a meaning-

ful risk management tool. We propose a ŕexible modeling framework for wholesale power

prices capable of incorporating the local aspect of renewables for the case of the German

power market. We recursively adopt the basic idea behind hybrid structural models by not

only looking at the drivers of wholesale prices (e.g. temperature driven demand, aggregate

solar or wind production) but also at the (local) drivers of renewable production itself. In a

nutshell, we disentangle the modeling of weather conditions, the mapping to (local) renew-

able production, and the amount of (local) installed capacity. This is advantageous since it

allows us to calibrate part of our model to a rich history of weather data instead of having

to rely on the (relatively) short time frame of renewable production. Our results show that

the SLHS model is well capable of reproducing the statistical properties in the time series

of renewable production and wholesale power prices and can consequently be regarded as a

valid tool for risk management purposes. We furthermore outline how market participants

can make use of our ŕexible modeling framework. It is shown that changes in the renew-

able generation portfolio have a considerable impact on the commercial business activities of

market participants such as power plant owners as well as suppliers. More importantly, and

in contrast to existing approaches, the SLHS model is capable of quantifying the distinct

impact of changes in the renewable generation portfolio on wholesale market prices. This

makes it clear that market participants, facing the challenges in renewable-dominant power

markets, require a modeling approach like ours. Given the fact our model captures local risks
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it lends itself well to manage production risks of renewable energy projects. Local weather

conditions across distant locations can be very different. Consequently, we also expect a

similar degree of heterogeneity for local renewable production. A methodology that is only

capable of capturing the aggregate market-wide renewable generation is thus insufficient to

assess idiosyncratic production risks of speciőc locations. For instance, investors might want

to weight risk and reward for new renewable energy projects. Also, to manage production

risks, producers might be interested in the potential of risk transfer by the use of deriva-

tive instruments whose payoff is often times tied to market-wide aggregate variables, such

as wholesale spot prices or weather-related indices. A meaningful assessment consequently

necessitates a model which incorporates the joint distribution of local weather conditions

and important market variables such as spot prices. The SLHS model is a suitable tool to

address these challenges.
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A Overview of Data

The following data is used for the respective model components:

Model

Component
Time Source Note

Solar irradiation
01.01.1990 -
31.12.2018

Anemos (2019)
hourly, 6704 weather

cells, reanalysis

Wind speed
01.01.1990 -
31.12.2018

Anemos (2019)
hourly, 6704 weather

cells, reanalysis

Demand
01.01.2017 -
31.12.2018

ENTSO-E (2022)
15 min, hourly

averages, balancing
area, ex ante

Wind energy
infeed

01.01.2017 -
31.12.2018

ENTSO-E (2022)
15 min, hourly

averages, balancing
area, ex ante

PV energy
infeed

01.01.2017 -
31.12.2018

ENTSO-E (2022)
15 min, hourly

averages, balancing
area, ex ante

PV and wind
capacity

31.12.2016 -
31.12.2018

Bundesnetzagentur (2019a),
yearly, hourly
interpolating

Bundesnetzagentur (2019b)

Day-ahead
prices

01.01.2017 -
31.12.2018

EEX (2022)
hourly, market zones
(change of DE-AT-LU

in 2018)

Table 4: Overview of data time series for the SLHS model components

The table shows for each model component the time frame, data source as well as notes
considering data granularity or speciőc circumstances.

B Estimation of Production Curves

Given observed patterns regarding dependencies between renewable power production and

its corresponding weather variable we choose a 3-parameter logistic function for wind and a

second-order polynomial for solar:
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gw,k(yw,k
t ) =

γk0

1 + e−γk
1
(yw,k

t −γk
2 )

gs,k(ys,kt ) = πk
0 + πk

1y
s,k
t + πk

2(y
s,k
t )2

Parameters are obtained by non-linear least squares (least-squares) for wind power (solar

power). Table 5 shows estimated coefficients along with standard errors.

A. Wind power 50Hertz TenneT Amprion TransnetBW
γk0 6.53 · 10−1 8.43 · 10−1 4.66 · 10−1 2.78 · 10−1

(3.43·10−3)∗∗∗ (3.04·10−3)∗∗∗ (2.16·10−3)∗∗∗ (1.57·10−3)∗∗∗

γk1 4.14 · 10−1 4.41 · 10−1 4.57 · 10−1 4.47 · 10−1

(2.30·10−3)∗∗∗ (2.30·10−3)∗∗∗ (2.35·10−3)∗∗∗ (2.70·10−3)∗∗∗

γk2 1.02 · 101 9.07 · 100 9.57 · 100 9.67 · 100

(3.07·10−2)∗∗∗ (2.13·10−2)∗∗∗ (2.52·10−2)∗∗∗ (3.10·10−2)∗∗∗

B. Solar power 50Hertz TenneT Amprion TransnetBW
πk
0 7.06 · 10−3 5.56 · 10−3 2.89 · 10−3 2.21 · 10−2

(4.94·10−4)∗∗∗ (4.17·10−4)∗∗∗ (2.58·10−4)∗∗∗ (1.46·10−3)∗∗∗

πk
1 9.38 · 10−4 8.94 · 10−4 5.14 · 10−4 2.12 · 10−3

(5.76·10−6)∗∗∗ (4.74·10−6)∗∗∗ (2.92·10−6)∗∗∗ (1.61·10−5)∗∗∗

πk
2 −1.83 · 10−7 −2.18 · 10−7 −1.19 · 10−7 −4.16 · 10−7

(8.33·10−9)∗∗∗ (6.72·10−9)∗∗∗ (4.15·10−9)∗∗∗ (2.19·10−8)∗∗∗

Table 5: Parameter estimates of power curves

The table shows parameter estimates and standard errors (in parantheses) for production
curves of wind power (Panel A) as well as for solar power (Panel B) in all four balancing-
areas. Estimates are obtained by non-linear least-squares (least-squares) for wind power
(solar power) from 01 January 2017 to 31 December 2018. Note that parameter estimates
are very small for the case of solar due to the fact that the weather variable (solar irradiation)
takes relatively large values (between 0 and 1000 W/m2) compared to wind speed (between
0 and 20 m/s). ∗∗∗, ∗∗, and ∗ denotes statistical signiőcance at the 0.1%, 1%, and 5% level.
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C Empirical Analysis of Weather Model

C.1 Wind speed dynamics

Figure 14 visualizes the hourly wind speed in the southern part of Germany for 2005-2008

as well as for a week in June 2002. Clearly, wind speed is highly volatile and can change

dramatically just within a few hours. Its levels also tend to be lower during summer than

winter.41 On top of that, volatility tends to be a lot higher during autumn and winter

months. In a similar fashion, higher moments such as skewness and excess kurtosis also

vary and seem to rise during autumn and winter season. For most locations, the wind speed

distributions’ shape thus seems to exhibit considerable seasonality. Wind speed furthermore

exhibits considerable evidence for non-Gaussian behavior with a positive skewness and sig-

niőcant positive autocorrelation (see Figure 14). Unsurprisingly, these characteristics are

not homogeneous across locations. Figure 15 depicts the time series of wind speed at two

different weather cells and clearly demonstrates that although key characteristics such as

trends in level and volatility prevail, differences do exist.

Figure 14: Wind speed distribution and autocorrelation function

The left graph shows the histogram of wind speed in a weather cell located in southern Ger-
many (Baden-Wuerttemberg) along with the density of a normal distribution with identical
mean and standard deviation (red dotted line). The right graph depicts the corresponding
autocorrelation function.

41We also observe a weak day- and night pattern.
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Figure 15: Time series of wind speed at different locations

The őgure shows time series of wind speed for a weather cell in southern Germany (top) as
well as for a weather cell located in the North Sea (bottom) for the years 2015-2018.

Figure 16: Observed vs. simulated wind speed

The őgure shows observed (top) as well as simulated (bottom) wind speed for a weather cell
located in southern Germany.
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Figure 17: QQ-plots of simulated vs. observed wind speed

The őgure depicts QQ-plots of simulated (x-axis) vs. observed (y-axis) wind speed of nine
exemplary selected locations throughout the German market area.
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Figure 18: ACFs of observed and simulated wind speed

The őgure visualizes the actual (blue) as well as the simulated (red) autocorrelation func-
tion of de-trended and transformded wind speed ŷwt for nine exemplary selected locations
throughout Germany.
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Figure 19: ACFs of observed and simulated wind speed

The top three graphs visualize the actual (blue) as well as the simulated (red) autocorrelation
function of de-trended and transformed wind speed ŷwt for three exemplary locations in
Germany. The bottom three graphs show the autocorrelation function of the corresponding
model residuals with 5 % conődence bound.
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Figure 20: CCFs of observed and simulated wind speed

The őgure visualizes the actual (blue) as well as the simulated (red) crosscorrelation function
of de-trended and transformed wind speed ŷwt for nine pairs of exemplary selected locations
throughout Germany.
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Figure 21: CCFs of wind speed and model residuals

The top three graphs visualize the actual (blue) as well as the simulated (red) crosscorrelation
function of de-trended and transformed wind speed ŷwt between three pairs of exemplary
locations in Germany. The bottom three graphs show the crosscorrelation function of the
corresponding model residuals with 5 % conődence bounds.
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In addition to the general speciőcation outlined in Section 3.3.1, we therefore incorporate a

time-dependent and location-speciőc volatility function σw,k
t and distribution function Fw,k

t

to capture seasonal time-variation in the symmetry of the distribution. This is achieved

by normalizing the wind speed times series both by its trend as well as by its (seasonal)

standard deviation:

yw,k
t = (yw,k

t − µw,k
t )(σw,k

t )−1

where σw,k
t is estimated on a monthly basis. We then group yw,k

t by quarters and estimate

a corresponding distribution function. Since skewness and kurtosis are highly sensitive to

outliers we choose a quarterly time frame to increase the number of observations in each

case.

Dependencies between regions also vary and are largely determined by distance. For instance,

exemplary adjacent regions located in the of south Germany (state of Baden-Wuerttemberg)

exhibit a correlation of over 90% (after removing trends in levels and volatility) while the

relationship to a third region situated in the north-eastern part of Germany is much lower

(30 and 40 % respectively).

To demonstrate the overall őt of our modeling approach we compare empirical and (model-

implied) simulated values. Figure 16 shows the trajectory of wind speed for a region in

north-western Germany over the years 2010-2018 along with its simulated correspondent

indicating that the approach seems to be capable of reproducing the prominent statistical

characteristics. This can also be seen by inspecting QQ-plots of simulated vs. observed wind

speed values (Figure 17). The model-implied autocorrelation functions also come very close

to their observed counterparts (Figure 18). This is also apparent by having a look at model

residuals which mostly void of any signiőcant autocorrelation (Figure 19). Similarly, the

modeling approach does a good job at capturing the cross-sectional dependencies between

locations. We obtain a close őt to the observed crosscorrelation function (Figure 20) and

model residuals show hardly any evidence of dependencies across locations (Figure 21).

Overall, this results suggest that our approach is capable of capturing both location-speciőc

characteristics and cross-sectional dependencies.
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C.2 Solar Irradiation Dynamics

Solar irradiation shows a very pronounced intraday pattern (see left graph in Figure 22)

due to the fact that there is no sunshine during night time. This pattern gradually changes

throughout the year, that is, the sun rises earlier and sets later in the evening during the

summer months. However, the peak is happening at noon regardless of the current season.

The absolute level of daily peaks also changes seasonally indicated by the right graph in

Figure 22. Apart from the above deterministic day- and night pattern, cloud formations

can lead to unexpected drops in irradiation levels. Figure 23 shows hourly irradiation in

the southern part of Germany for a week in April. Sudden strong decreases thus regularly

happen. However, we noticed that most of the time, days tend to be either sunny or rather

cloudy overall. Thus, consecutive extreme drops and rises throughout the same day are

rather rare.

Figure 22: Intraday pattern and yearly cycle of solar irradiation

The top two graphs show the pronounced seasonality in the solar irradiation dynamics within
a day (top left) as well as across seasons (top right). The weather cell is located in southern
Germany (Baden Wuerttemberg).

Cloud formations thus have a considerable impact on the resulting levels of solar irradiation

and one is incapable of observing these during night time. Consequently, we are blind for any

larger cloud formations that have been built up in the hours just before sunrise and which

heavily affect the weather variables during the early morning hours. We therefore adjust the

general methodology and loosely follow Wagner (2014). Motivated by the fact that extreme

intraday volatility is rather uncommon for our data set, we model daily maximum irradiation

level ỹs,kt and capture any variation throughout the day by means of a deterministic pattern

function. To formalize the notion of the daily maximum irradiation level, we introduce the
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Figure 23: Intraday pattern and yearly cycle of solar irradiation

The őgure shows a typical pattern of the variation of solar irradiation within a month (April
2018). The weather cell is located in southern Germany (Baden Wuerttemberg).

day count function that maps all hours in the data set of length T to its respective day of

the year

d : [0, T ] 7→ N0

d thus takes values between 1 and 36542 depending on which day a respective hour t belongs

to. The dayily maximum process of local hourly solar irradiation levels then reads as follows

ỹs,kj = max
t:dt=j

(ys,kt ), j = 1, ..., dT (9)

To account for seasonal variations over the year we de-trend the data ys,kj := ys,kj −µs,k
j . The

resulting process shows serial and spatial correlation as well as non-normality. The latter

issue can be dealt with the transformation-approach outlined in section 3.3.1 to arrive at an

approximately normally distributed time series that preserves the original covariance struc-

ture as usual. The resulting multivariate time series of (daily) maxima of solar irradiation is

then once again captured by means of a VAR model as usual. We furthermore assume solar

irradiation and wind speed to be independent from each other since time series correlations

42For simplicity, we map the 29th of February in leap years to the 28th of February.
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of the corresponding de-trended weather variables are smaller than 25 % (in absolute terms)

and cluster near 0.

To capture (local) intraday-variations we make use of a deterministic time-dependent and

site-speciőc function δkj mapping the daily maximum to hourly values as follows:

ys,kt = δkdt(t, y
s,k
dt
)

with

δkj (t, x) = x

24
∑

k=1

αk1(k-th hour of the day)

where δkj is estimated for every day of the year and every weather cell separately.

We őnd that, similarly to the case of wind speed, our modeling approach seems to be capable

of reproducing the salient features of solar irradiation (see Figure 24, Figure 25, Figure 26,

Figure 27, and Figure 28 respectively).
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Figure 24: QQ-plots of simulated vs. observed solar irradiation

The őgure shows QQ-plots of exemplary selected weather cells of solar irradiation levels.
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Figure 25: ACFs of observed and simulated solar irradiation

The őgure visualizes the actual (blue) as well as the simulated (red) autocorrelation function
of de-trended and transformed daily maximum of solar irradiation ŷs,kt for nine exemplary
selected locations throughout Germany.
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Figure 26: ACFs of solar irradiation and model residuals

The top three graphs visualize the actual (blue) as well as the simulated (red) autocorrelation
function of de-trended and transformed daily maximum of solar irradiation ŷs,kt for three
exemplary locations in Germany. The bottom three graphs show the autocorrelation function
of the corresponding model residuals with 5 % conődence bounds.
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Figure 27: CCFs of observed and simulated solar irradiation

The őgure visualizes the actual (blue) as well as the simulated (red) crosscorrelation function
of de-trended and transformed daily maximum of solar irradiation ŷs,kt for nine exemplary
selected pairs of locations through Germany.
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Figure 28: CCFs of solar irradiation and model residuals

The top three graphs visualize the actual (blue) as well as the simulated (red) crosscorrelation
function of de-trended and transformed daily maximum of solar irradiation ŷs,kt between three
pairs of exemplary locations in Germany. The bottom three graphs show the crosscorrelation
function of the corresponding model residuals with 5 % conődence bounds.
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D Supply Curve Estimation

The following Figure 29 displays monthly supply functions estimated with smoothing splines

for peak hours:

Figure 29: Monthly supply functions with smoothing spline estimation for peak

hours
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The following Figure 30 displays monthly supply functions estimated with smoothing splines

for offpeak hours:

Figure 30: Monthly supply functions with smoothing spline estimation for off-

peak hours
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Figure 31 displays on the top the time series of simulated day-ahead prices using the monthly

supply curve estimations and observed residual demand (red) as well as the observed day-

ahead prices (black) from 01.01.2017 to 31.12.2018. The bottom of Figure 33 depicts the

corresponding QQ-plots.

Figure 31: Time series and QQ-plot of supply curve estimation with observed

residual demand and without residual volatility process

The őgure depicts the time series (top) and QQ-plots (bottom) of simulated and observed
day-ahead prices from 01 January 2017 to 31 December 2018 using for the simulation the
described supply curve estimation methodology with the observed residual demand and
without a residual volatiltiy process in the respective time period.

65



Table 6 depcits the parameters of the cubic smoothing spline estimations:

df λ spar ratio CV crit. PV crit. Adj. R2

Jan. (peak) 11.56 7.95 · 10−7 0.16 0.16 156.46 0.16 0.81
Feb. (peak) 5.69 2.63 · 10−5 0.37 0.37 49.32 0.37 0.63
Mar. (peak) 5.01 4.66 · 10−5 0.40 0.40 42.80 0.40 0.67
Apr. (peak) 8.95 3.22 · 10−6 0.24 0.24 21.61 0.24 0.72
May (peak) 24.41 2.61 · 10−8 -0.05 -0.05 44.95 -0.05 0.82
Jun. (peak) 9.29 2.68 · 10−6 0.23 0.23 40.29 0.23 0.72
Jul. (peak) 5.20 3.78 · 10−5 0.39 0.39 85.27 0.39 0.16
Aug. (peak) 8.35 3.35 · 10−6 0.24 0.24 176.98 0.24 0.26
Sep. (peak) 5.45 2.92 · 10−6 0.37 0.37 196.04 0.37 0.30
Oct. (peak) 6.22 1.51 · 10−5 0.33 0.33 151.38 0.33 0.56
Nov. (peak) 19.33 1.15 · 10−7 0.04 0.04 117.88 0.04 0.67
Dec. (peak) 7.66 5.73 · 10−6 0.27 0.27 117.68 0.27 0.69

Jan. (offpeak) 18.65 1.15 · 10−7 0.04 0.04 62.65 0.04 0.88
Feb. (offpeak) 19.17 1.15 · 10−7 0.04 0.04 34.21 0.04 0.83
Mar. (offpeak) 25.56 2.86 · 10−8 -0.04 -0.04 29.21 -0.04 0.85
Apr. (offpeak) 14.79 3.12 · 10−7 0.10 0.10 35.17 0.10 0.83
May (offpeak) 17.74 1.49 · 10−7 0.06 0.06 54.33 0.06 0.71
Jun. (offpeak) 7.95 4.98 · 10−6 0.27 0.27 38.48 0.27 0.73
Jul. (offpeak) 13.89 3.66 · 10−7 0.11 0.11 73.13 0.11 0.57
Aug. (offpeak) 2.00 4.10 · 103 1.50 1.50 169.75 1.50 0.34
Sep. (offpeak) 7.39 6.69 · 10−6 0.28 0.28 145.00 0.28 0.46
Oct. (offpeak) 9.12 2.55 · 10−6 0.23 0.23 168.50 0.23 0.77
Nov. (offpeak) 15.25 2.90 · 10−7 0.10 0.10 104.63 0.10 0.63
Dec. (offpeak) 14.54 3.77 · 10−7 0.11 0.11 160.39 0.11 0.66

Table 6: Hyper parameters of monthly supply curve estimated with smooting

splines

The table shows the hyper parameters and valuation criteria of the monthly supply curve
estimated with smoothing splines in the years 2017 and 2018.
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E Modeling Residual Volatility

We consider various model speciőcations to model the residual volatility process σt = st −

ft(d̂t). After experimenting with different lags and speciőcations we found a SARIMA(2,0,2)

x (1,0,1)24 model to be the superior one (in terms of AIC). Likewise Gaussian GARCH noise

was incapable of capturing the tails of the distribution appropriately causing us to instead

opt for student-t distributed error terms.

The formal discription of the model for the residual volatility process σt thus reads as follows:

ϕ(B)Φ(B24)σt = θ(B)Θ(B24)ϵt (10)

with

ϵt = ηtξt

ξ2t = ω0 + ω1ϵ
2
t−1 + ω2ξ

2
t−1, ωi ∈ R+, i = 0, 1, 2

where ω0 ≥ 0, ω1 > 0, ω2 > 0, ω1 + ω2 < 1, ϕ(z) = 1 − ϕ1z − ϕ2z
2,Φ(z) = 1 − Φ1(z), θ(z) =

1− θ1(z)− θ2z
2,Θ(z) = 1− Θ1(z), ϕ1, ϕ2,Φ1, θ1, θ2,Θ1 ∈ R, B corresponds to the backshift

operator (Bjxt = xt−j), and ηt is a student-t distributed random variable with v degrees of

freedom. We can write (10) explicitly

σt = ϕ1σt−1 + ϕ2σt−2 + Φ1σt−24 − Φ1(ϕ1σt−25 + ϕ2σt−26)

+ϵt − θ1ϵt−1 − θ2ϵt−1 −Θ1ϵt−24 +Θ1(θ1ϵt−25 + θ2ϵt−26)

making it more clear how lagged and contemporaneous values are related to each other. The

model is estimated by maximum likelihood and results are shown in Table 7.

To evaluate the corresponding methodology of smoothing splines estimation (monthly, peak

and offpeak) with a SARIMA residual volaitlity process using GARCH noise, we inspect

the performance using the observed residual demand values as input and compare day-

ahead prices modeled with 1000 trajectories with the observed day-ahead prices. Please

note that the simulated price distribution (1000 trajectories) is winsorized at the 99.9 % /

0.1 % quantile. Figure 32 inspects the time series of day-ahead prices, Figure 33 reveals

the QQ-plots, Figure 34 compares the density functions, and Table 8 displays the statistical

moments.
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A. SARIMA ϕ1 ϕ2 Φ1 θ1 θ2 Θ1

1.6384 -0.6454 0.9745 -0.8920 -0.0287 -0.8953
(0.0162)∗∗∗ (0.0032)∗∗∗ (0.0014)∗∗∗ (0.0175)∗∗∗ (0.0112)∗ (0.0063)∗∗∗

B. GARCH ω0 ω1 ω2 v
1.6973 0.3057 0.5905 4.0829

(0.6333) (0.0713)∗∗∗ (0.5905)∗∗∗ (0.1737)∗∗∗

Table 7: Parameter estimates of the residual volatility model

The table shows parameter estimates and standard errors (in parantheses) for
SARIMA(2,0,2) x (1,0,1)24-GARCH(1,1) model. Estimates are obtained by maximum like-
lihood. ∗∗∗, ∗∗, and ∗ denotes statistical signiőcane at the 0.1%, 1%, and 5% level.

Figure 32: Time series comparison of observed spot prices and modeled spot

prices using supply curve methodology with observed residual demand

The őgure exhibits the times series of observed day-ahead prices (black) with the corre-
sponding modeled day-ahead prices (mean and quantiles) using the described supply curve
estimation methodology with the observed residual demand from 01 January 2017 to 31
December 2018.
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Figure 33: QQ-plot of observed spot prices and modeled spot prices using supply

curve methodology with observed residual demand

The őgure depicts the QQ-plot of observed (x-axis) vs. simulated (y-axis) day-ahead prices
from 01 January 2017 to 31 December 2018 using the described supply curve estimation
methodology with the observed residual demand in the respective time period.

Figure 34: Density function of of observed spot prices and modeled spot prices

using supply curve methodology with observed residual demand

The őgure depicts the density functions of the observed and the simulated day-ahead prices
from 01 January 2017 to 31 December 2018 using the described supply curve estimation
methodology with the observed residual demand in the respective time period.
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Observed Model
Mean 39.36 39.91

Variance 339.90 314.90
Skewness -0.23 -0.27
Kurtosis 5.04 4.45

Table 8: Statistical moments of of observed spot prices and modeled spot prices

using supply curve methodology with observed residual demand

The table shows the őrst four statistical moments of the observed and the simulated day-
ahead prices from 01 January 2017 to 31 December 2018 using the described supply curve
estimation methodology with the observed residual demand in the respective time period.

F Market-Wide Demand in Germany

As expected, demand in Germany exhibits pronounced seasonal patterns. Figure 35 shows

the hourly time series of demand for Germany from beginning 2015 until the end of 2018

revealing several salient patterns and features. First, demand tends to be considerably higher

during winter seasons, which can mainly be attributed to an increased demand for electrical

light. Additionally, sharp drops in consumption levels for winter holidays (24th of December

until about the 4-6th of January) are noticeable caused by the seasonal shutdown of major

production facilities in the car manufacturing business as well as of steel mills and aluminum

smelters.

Figure 35: Yearly electricity demand variation

The őgure depicts the hourly time series of (expected) load in the day-ahead market from
01 January 2015 to 31 December 2018.

The left graph of Figure 35 offers a more detailed look at the weekly seasonality. Demand
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usually peaks in the őrst half of the week and drops considerably on the weekend with Sunday

generally having the lowest demand levels overall. The intraday variation of electricity

consumption is very large with changes of almost 50 % during the day (see right graph of

Figure 36). Consumption usually rises signiőcantly in the morning hours when people get

up and prepare for work and peaks during lunch time and later in the evening (rush hour).

Figure 36: Weekly and intraday pattern of electricity demand

The left graph shows a detailed view of (expected) load in March 2018 whereas the right
graph depict the timeseries of load for the 5th March, 2018.

Following Burger et al. (2003) we model demand with a ŕexible trend function paired with

a SARIMA(2,0,2) x (1,0,1)24 component. This results in the following model speciőcation:

dt = µd
t + ψt

ϕ̂(B)Φ̂(B24)ψt = θ̂(B)Θ̂(B24)ϵt

where µd
t corresponds to the trend-function with indicator variables for hourly-, weekly-,

monthly-, and holiday-patterns, ϕ̂(z) = 1− ϕ̂1z − ϕ̂2z
2, Φ̂(z) = 1− Φ̂1z, θ̂(z) = 1− θ̂1(z)−

θ̂2(z
2), Θ̂(z) = 1− Θ̂1(z), ϕ̂1, ϕ̂2, Φ̂1, θ̂1, θ̂2, Θ̂1 ∈ R, B corresponds to the backshift operator

(Bjxt = xt−j), and ϵt is a normally distributed random variable. The model estimated by

maximum likelihood and results can be found in Table 11.
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ϕ̂1 ϕ̂2 Φ̂1 θ̂1 θ̂2 Θ̂1

1.6360 -0.6461 0.9697 -0.5959 -0.2166 -0.8655
(0.0251)∗∗∗ (0.0236)∗∗∗ (0.0029)∗∗∗ (0.0247)∗∗∗ (0.0077)∗∗∗ (0.0053)∗∗∗

Table 9: Parameter estimates of the demand model

The table shows parameter estimates and standard errors (in parantheses) for
SARIMA(2,0,2) x (1,0,1)24 model. Estimates are obtained by maximum likelihood. ∗∗∗,
∗∗, and ∗ denotes statistical signiőcance at the 0.1%, 1%, and 5% level.

G Reduced-Form Model Specification and Calibration

Given the occurrence of negative prices for the case of electricity, arithmetic spot price

models have gained wide acceptance during recent years. We follow Benth et al. (2007),

Meyer-Brandis and Tankov (2008), and Benth et al. (2013) and model hourly day-ahead

spot prices by means of a multi-factor spike model speciőed as follows:

st = µs
t + xt + yt (11)

with

dxt = −κxxtdt + σxdwt, κx, σx ∈ R+

dyt = −κyytdt + dnt, κy ∈ R+

where µs
t corresponds to the deterministic seasonality function which accounts for trends

over the year, weekday- and the pronounced intraday-pattern. xt is a standard Vasicek

mean-reversion process capturing "normal" price variations whereas yt is a spike process

to account for rare price spikes. dωt is a standard brownian motion and dnt a compound

Poisson process with constant jump intensity λ and double-exponentially distributed jump

sizes zt, i.e. exponentially distributed negative as well as positive jumps with density:

fz(x) = pβ1e
−β1x✶x<0 + (1− p)β2e

−β2x✶x>0, p, β1, β2 ∈ R+

where β1, β2 > 0 and p ∈ [0, 1]. β1(β2) controls the shape of the positive (negative) jump size

distribution whereas p determines the fraction of positive and negative spikes respectively.

The calibration of the above model speciőcation necessitates the identiőcation of latent state

variables xt and yt as well as model parameters governing the Gaussian and non-Gaussian
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mean-reversion process. Following Cartea and Figueroa (2005), Benth et al. (2007), and

Bieger-König (2013) we identify spikes by a recursive őltering algorithm which simultaneously

estimates the trend function µs
t as well as the time series of yt. Given the values of yt and µs

t

we can infer the time series of the Gaussian mean-reversion process xt. Model parameters

can then be estimated by means of standard econometric techniques.

Figure 37 shows the time series of őltered state variables whereas Table 10 summarizes

the paramter estimates. The distribution of xt exhibits low skewness (−0.0931) and excess

kurtosis (4.1476). The őltering algorithm thus works quite well in identifying heavy tailed

price movements allowing the disentaglement of both processes and estimation of parameter

values afterwards. We őnd an hourly spike intensity of 0.6 % which corresponds to roughly

52 spikes annually on average. Furthermore, positive price spikes are less likely to occur with

p ≈ 0.37 and have smaller magnitude (+ 52 EUR/MWh vs. -77 EUR/MWh on average).

This stands in contrast to studies using data before 2010. For instance, Bieger-König (2013)

őnds that positive spikes are slightly larger and almost three times as frequent. An effect

which we attribute to the growing presence of renewable generation.

κx σx κy λ p β1 β2
0.1140 11.4915 0.2778 0.0060 0.3714 0.0217 0.0145

Table 10: Parameter estimates of the reduced-form power price model

The table shows parameter estimates for the reduced-form power price model given by (11).
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Figure 37: Filtered state variables

The top graph shows the őltered Non-Gaussian process whereas the bottom graph depicts
the Gaussian counterpart.
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H Evaluation of Model Performance

Figure 38: Time series of modeled and observed day-ahead prices

The top graph depicts the time series of the observed (black) and the simulated means of all
trajectories in the same hour (red) from 01 January 2017 to 31 December 2018. The lower
graph shows the time series of the observed (black) and simulated 95 % quantile (green)
and 5 % quantile of all trajectories in the same hour (orange) from 01 January 2017 to 31
December 2018.
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Figure 39: Density functions of modeled and observed day-ahead prices

The top graph depicts the density functions of the observed (black) and simulated (red) from
01 January 2017 to 31 December 2018.

Observed Model
Mean 42.67 39.33

Variance 340.27 244.38
Skewness -0.23 -0.06
Kurtosis 8.02 5.04

Table 11: Statistical moments of modeled and observed day-ahead price distri-

butions

The table shows the őrst four statistical moments of the observed and the simulated day-
ahead prices from 01 January 2017 to 31 December 2018.

df λ spar ratio
observed 4 1.27 · 10−4 0 0
simulated 4 1.27 · 10−4 0 0

Table 12: Spline Interpolation Parameters

The table shows the parameter speciőcation in the spline interpolation of Figure 11 using
smoothing splines.
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