A Critical Review of Neural Networks for the Use with Spectroscopic Data

J. Schuetzke1, N. J. Szymanski2, G. Ceder2, M. Reischl1

ECM 2022, Versailles, France

1Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany \hspace{1cm} 2Lawrence Berkeley National Laboratory | UC Berkeley, Berkeley, USA
Outline

- Introduction
- Related Work
- Evaluation Dataset
- Recent Developments
- Conclusion
Introduction - Topic

- Machine learning (ML) methods popular for spectra analysis
- Neural networks used for X-ray diffraction (XRD), Raman spectroscopy, etc.
- E.g., XRD 1D powder spectra → typical task: phase identification

From Schuetzke et al. 2021 [1]
Introduction - Challenges

- Matching measured intensities with references “pattern matching” → classification task
- Picking candidates based on peak positions and intensities
- Variation of positions, intensities, shapes, background, etc.
Introduction – Machine Learning Models

- Machine Learning models learn thresholds per dimension

- For spectra: each datapoint a separate dimension

- Problem with shifts: various dissimilarity metrics to account for position variation [2]

Expected ≠ Measured
Related Work – Neural Networks for Spectra

- Neural Network models applied to spectroscopic data of various domains; improvement over traditional ML models
- Models mostly use Convolutional Neural Network (CNN) structure
- BUT no network achieved perfect prediction accuracy in recent benchmark study [6]

<table>
<thead>
<tr>
<th>Publication</th>
<th>Type</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu et al., 2017</td>
<td>Raman</td>
<td>3 Convolutional Layers</td>
</tr>
<tr>
<td>Cui and Fearn 2018</td>
<td>Near-infrared</td>
<td>1 Convolutional Layer</td>
</tr>
<tr>
<td>Lee et al., 2020</td>
<td>XRD</td>
<td>3 Convolutional Layers</td>
</tr>
</tbody>
</table>
Related Work – Convolutional Layers + Pooling

- Convolutional layers: extraction of local features
- (Maximum) Pooling: reduction of resolution

VGG16 network, pretrained weights from Imagenet

From Szymanski et al. 2021 [7]
Evaluation Dataset – Training Samples

- Classification of single peak: max. intensity 0.8 or 0.6
- Variation of position (+/- 50), intensity (+/- 0.1) and shapes (Gaussians)
- Addition of background function and noise
- Result: minor overlap of max. intensities
Evaluation Dataset – Classification Results

- Accuracy of CNN architecture [5] 96%
- Performance of traditional ML: Random-Forest (RF) 80%
- CNN distinguishes between both classes, while RF performs worse
Evaluation Dataset – CNN Feature Maps

- What is the output of the convolutional layers?
- Reduction of
 - Noise
 - Background
 - Shape variation
 - Position variation
Evaluation Dataset – Benefits of MaxPooling

- Reduction of positional variation from MaxPooling
- How do traditional ML models benefit from reduced input?
- Second MaxPooling layer already improves performance from 92% to 94%
- Similar performance of Random Forest for reduced inputs
MaxPooling reduces position and shape variations

What is the benefit of using Convolutional layers then?

Conv-Layers eliminate background and match peak shapes to facilitate classification
CNN with single filter per layer? (reducing computational effort)

Randomly initialized weights possibly cause negative peaks

ReLU activation sets negative values to zero → output “empty”

Different initialization methods or activation function required
Recent Developments – Overview

- For images: CNNs with few convolutional layers state-of-the-art in 2012, advancement through stacking more convolutional layers and more complex structures (Resnet, Inception, etc.)

- For spectra: CNNs with 1-3 convolutional layers in 2017-2020, recently stacking more layers [7] or copying complex structures (Resnet) [8].

- More layers \rightarrow Resolution of spectra gets even more reduced

- **BUT:** What if position of peaks is important for classification?
Recent Developments – Dataset

- Evaluating positional information with second dataset
- Class A: Max. at 950-999
 Class B: Max. at 1000-1050
 → No overlap
- Model: Resnet [8]
Recent Developments – Resnet Performance

- Resnet fails to correctly classify spectra with peak maxima close to border
- Pooling reduces resolution → peaks align and become indistinguishable
- Solution: Use *less* conv-layers/pooling

Pooling
Related Work – Batch Normalization

- **Batch Normalization as regularization**
- **Removing background + rescaling features**
- **Highlights “unique” features**

From Szymanski et al. 2021 [7]

- **Scaled feature map**
 - Max val. 957

- **Normalized feature map**
 - Max val. 11.5
Recent Developments – Batch Norm. for spectra

- Recent networks like Resnet apply Batch-Norm. between convolutional layers.

![Graphs showing before and after normalization](image)

- No “unique“ features per class, nothing to *highlight*
- Normalization questionable for spectra
Conclusion

1. Convolutional layers work well on spectra because filters reduce peak shape variations + background and pooling reduces peak position shifts.

2. Traditional ML algorithms struggle on peak shift variations but perform similarly as networks on lower resolution data.

3. Spectra exhibit different "features" compared to image data: adaptation of initialization or activation functions necessary.

4. More elaborate structures & techniques developed for image data not better for spectra; always evaluate usage.
References

