

CURRENT STATUS OF MELCOR 2.2 FOR FUSION SAFETY ANALYSES

F. Mascari^a, A. Bersano^a, M. Adorni^b, G. D'Ovidio^c, F.M. Fuertes^c, X.Z. Jin^d, G. Mazzini^{e,f}, B. Gonfiotti^g, G. Georgiev^h, M. Leskovarⁱ, C. Bertani^j, R. Testoni^j, F. Giannetti^k, M. D'Onorio^k, G. Agnello^l, P.A. Di Maio^l, M. Angelucci^m, S. Paci^m, G. Grippoⁿ, M. Malicki ^o, K. Fernández-Cosials^p, D. Dongiovanni^q, D. Luxat^r

^aENEA, Bologna, Italy; ^bBELV, Brussels, Belgium; ^cCIEMAT, Madrid, Spain; ^aKIT, Germany; ^cCVR, Czech Republic; ^fSURO, Czech Republic; ^gENEA, C.R. Brasimone, Brasimone, Italy; ^bJacobsen Analytics; ^JJožef Stefan Institute, Ljubljana, Slovenia; ^JPolitecnico di Torino, Turin, Italy; ^k"Sapienza" University of Rome, Italy; ^lUniversity of Palermo, Italy; ^mUniversity of Pisa, Italy; ⁿUniversity of Bologna, Italy; ^oPaul Scherrer Institut, Villigen, Switzerland; ^oUniversidad Politécnica de Madrid, Spain; ^gENEA, C.R. Frascati, Italy; ^rSandia National Laboratories, USA.

INTRODUCTION

- MELCOR is a fully integrated code, developed at Sandia National Laboratories (SNL) for the US Nuclear Regulatory Commission (USNRC), able to simulate the thermal-hydraulic phenomena in steady-state and transient condition and the main phenomena occurring in fission plant during a severe accident.
- ☐ The Idaho National Laboratories (INL) made fusion reactor specific modifications to MELCOR 1.8.2 and then introduced these modifications into MELCOR 1.8.6.
- ☐ MELCOR fusion is currently adopted as one the *reference code for the safety analyses of fusion reactors*.
- ☐ During the last two decades, *MELCOR capabilities* are being *extended by SNL to analyze* non-LWR fission technologies and also *fusion related facilities* (ITER, DEMO, IFMIF-DONES, etc.). The current version is the MELCOR 2.2.

GOAL OF THE WORK

- ☐ Currently, MELCOR 2.2 still *does not have implemented some* models needed *to carry out analyses* of some specific phenomena occurring *in fusion facilities*.
- ☐ An activity coordinated by ENEA has been launched in order to identify the necessary *models needed for fusion safety analysis* to be implemented in MELCOR 2.2.
- ☐ This work *describes the code modelling needs* to address fusion safety analyses, *ranking their priority* for implementation according to the user expeience.
- ☐ It is described if the models have been already implemented in *MELCOR fusion* or if the phenomena of interest can be simulated through specific methodologies.

1°

IDENTIFICATION of code modelling needs for fusion safety analysis 2

DESCRIPTION
of code modelling needs
for fusion safety
analyses.

3°

RANKING of code modelling needs for fusion safety analyes

MODELS NEEDED TO ADDRESS FUSION PLANT SAFETY ISSUES

The priority for model implementation from 1 (low) to 3 (high) has been assigned by the authors.

Low priority Mid priority High priority

Code modeling needs	Priority
Inclusion of additional working fluids with multiphase capabilities	3
Implementation of the possibility to use different fluids simultaneously in the same code input	3
Models for chemical reactions for selected working fluids	2
Model for steam oxidation of Plasma-Facing-Component (PFC)	2
Model for air oxidation of the Plasma-Facing-Component (PFC)	2
Models for turbulent and inertial aerosols deposition	2
Models for aerosols deposition with different carrying gas and mixtures	2
Model for aerosols resuspension	2
Extension of the aerosols deposition and resuspension modelling to consider the remnant agnetization effects	1
Models for aerosols transport in multifluid (multi-working fluid) simulation.	2
Implementation of specific heat transfer correlations for simulating Helium and other working uids in the geometry of interest.	2
Standard Scrubber model in FL Package for Helium.	1
Inclusion of dissolved NCG species within working fluids	2
Implemention of magnetic pump modelling (for design) and features (e.g. coast-down, etc.)	1
Inclusion of MHD effects on heat transfer correlations and pressure drop evaluation (for design)	1
Extension of the water properties below the triple point	2
Model for air condensation onto cryogenic structures	2
Model for Helium condensation onto cryogenic structures	2
Inclusion of the possibility to work with low temperature operations (>3K) and cryogen working uids	2
Extension of material physical properties to cryogenic range	3
Implementation of enclosure radiant heat transfer	2

CONCLUSIONS

The development of a common MELCOR 2.2 version release, that includes also models for fusion safety analyses, allows to use all the state-of-art features implemented in the code and to use of capability of SNAP for the development of input-decks, post processing of the data, and uncertainty analyses.

This activity, based on the feedback of several MELCOR code users, presents a *first* contribution to identify the code modelling needs necessary to be implemented, in safety analyses code (e.g thermal-hydraulic system codes, severe accident code, etc) to be used for fusion facilities safety analyses.