KIT | KIT-Bibliothek | Impressum | Datenschutz

3D direct pore level simulations of radiant porous burners

Wieland, Christoph 1; Weis, Christof ORCID iD icon 1; Habisreuther, Peter ORCID iD icon 2; Trimis, Dimosthenis 1
1 Engler-Bunte-Institut (EBI), Karlsruher Institut für Technologie (KIT)
2 Institut für Technische Chemie (ITC), Karlsruher Institut für Technologie (KIT)


Inside porous burners, chemical combustion reactions coincide with complex interaction between thermo-physical transport processes that occur within solid and gaseous phase and across phase boundary. Fluid flow, heat release and resulting heat flows influence each other. The numerical model used in this work considers gaseous and solid phases, includes fluid flow, enthalpy transport, conjugate heat transfer, and radiative heat transfer between solid surfaces, as well as combustion kinetics according to a skeletal chemical reaction mechanism, fully resolved on the pore scale in three-dimensional space (Direct Pore Level Simulation, DPLS). The calculations are performed based on the finite volume method using standard applications implemented in the OpenFOAM library. The present study presents simulations of three different structures, each at four settings of specific thermal power. Results indicate that specific surface area of the porous structure is a major influencing parameter for increasing radiation efficiency, whereas no correlation of the orientation of an anisotropic structure on radiation efficiency was observed.

Verlagsausgabe §
DOI: 10.5445/IR/1000151471
Veröffentlicht am 24.10.2022
DOI: 10.1016/j.combustflame.2022.112370
Zitationen: 5
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Engler-Bunte-Institut (EBI)
Institut für Technische Chemie (ITC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2022
Sprache Englisch
Identifikator ISSN: 0010-2180, 1556-2921
KITopen-ID: 1000151471
HGF-Programm 38.05.01 (POF IV, LK 01) Anthropogenic Carbon Cycle
Erschienen in Combustion and Flame
Verlag Elsevier
Band 245
Seiten Art.-Nr.: 112370
Nachgewiesen in Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page