KIT | KIT-Bibliothek | Impressum | Datenschutz

Disconnection-mediated Twin/Twin-junction migration in FCC metals

Xu, Mingjie; Chen, Kongtao; Cao, Fan; Velasco, Leonardo 1; Kaufman, Thomas M.; Ye, Fan; Hahn, Horst 1; Han, Jian ; Srolovitz, David J.; Pan, Xiaoqing
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

We present the results of novel, time-resolved, in situ HRTEM observations, molecular dynamics (MD) simulations, and disconnection theory that elucidate the mechanism by which the motion of grain boundaries (GBs) in polycrystalline materials are coupled through disconnection motion/reactions at/adjacent to GB triple junctions (TJs). We focus on TJs composed of a pair of coherent twin boundaries (CTBs) and a Σ9 GB in copper. As for all GBs, disconnection theory implies that multiple modes/local mechanisms for CTB migration are possible and that the mode selection is affected by the nature of the driving force for migration. While we observe (HRTEM and MD) CTB migration through the motion of pure steps driven by chemical potential jump, other experimental observations (and our simulations) show that stress-driven CTB migration occurs through the motion of disconnections with a non-zero Burgers vector; these are pure-step and twinning-partial CTB migration mechanisms. Our experimental observations and simulations demonstrate that the motion of a GB drags its delimiting TJ and may force the motion of the other GBs meeting at the TJ. Our experiments and simulations focus on two types of TJs composed of a pair of CTBs and a Σ9 GB; a 107° TJ readily migrates while a 70° TJ is immobile (experiment, simulation) in agreement with our disconnection theory even though the intrinsic mobilities of the constituent GBs do not depend on TJ-type. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000151473
Veröffentlicht am 24.10.2022
Originalveröffentlichung
DOI: 10.1016/j.actamat.2022.118339
Scopus
Zitationen: 10
Web of Science
Zitationen: 7
Dimensions
Zitationen: 11
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2022
Sprache Englisch
Identifikator ISSN: 1359-6454, 1873-2453
KITopen-ID: 1000151473
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Acta Materialia
Verlag Elsevier
Band 240
Seiten Art.-Nr.: 118339
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page