KIT | KIT-Bibliothek | Impressum | Datenschutz

Vacancy driven surface disorder catalyzes anisotropic evaporation of ZnO (0001) polar surface

Wang, Zhen; Byun, Jinho; Lee, Subin 1; Seo, Jinsol; Park, Bumsu; Kim, Jong Chan; Jeong, Hu Young; Bang, Junhyeok ; Lee, Jaekwang ; Oh, Sang Ho
1 Institut für Angewandte Materialien - Werkstoff- und Biomechanik (IAM-WBM), Karlsruher Institut für Technologie (KIT)

Abstract:

The evaporation and crystal growth rates of ZnO are highly anisotropic and are fastest on the Zn-terminated ZnO (0001) polar surface. Herein, we study this behavior by direct atomic-scale observations and simulations of the dynamic processes of the ZnO (0001) polar surface during evaporation. The evaporation of the (0001) polar surface is accelerated dramatically at around 300 °C with the spontaneous formation of a few nanometer-thick quasi-liquid layer. This structurally disordered and chemically Zn-deficient quasi-liquid is derived from the formation and inward diffusion of Zn vacancies that stabilize the (0001) polar surface. The quasi-liquid controls the dissociative evaporation of ZnO with establishing steady state reactions with Zn and O$_{2}$ vapors and the underlying ZnO crystal; while the quasi-liquid catalyzes the disordering of ZnO lattice by injecting Zn vacancies, it facilitates the desorption of O$_{2}$ molecules. This study reveals that the polarity-driven surface disorder is the key structural feature driving the fast anisotropic evaporation and crystal growth of ZnO nanostructures along the [0001] direction.


Verlagsausgabe §
DOI: 10.5445/IR/1000151475
Veröffentlicht am 24.10.2022
Originalveröffentlichung
DOI: 10.1038/s41467-022-33353-2
Scopus
Zitationen: 7
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien - Werkstoff- und Biomechanik (IAM-WBM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000151475
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Nature Communications
Verlag Nature Research
Band 13
Heft 1
Seiten Art.-Nr.: 5616
Vorab online veröffentlicht am 24.09.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page