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Memory effects in the density-wave imbalance in delocalized disordered systems
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Dynamics of the imbalance in occupations on even and odd sites of a lattice serves as one of the key
characteristics for the identification of the many-body localization transition. In this work, we investigate the
long-time behavior of the imbalance in disordered one- and two-dimensional many-body systems in the regime
of diffusive or subdiffusive transport. We show that memory effects originating from a coupling between slow
and fast modes lead to a power-law decay of the imbalance, with the exponent determined by the diffusive
(or subdiffusive) transport law and the spatial dimensionality. Analytical results are supported by numerical
simulations performed on a two-dimensional system in the regime of weak localization.
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I. INTRODUCTION

In the absence of interactions, disordered systems exhibit
Anderson localization if the disorder is strong enough, and
even for weak disorder in low spatial dimensionality, with the
transport being fully suppressed in the thermodynamic limit
[1–3]. This phenomenon has its counterpart in the physics
of highly excited states (those with finite energy density) of
interacting disordered many-body systems—many-body lo-
calization (MBL) [4–10]. Specifically, when the interaction
is turned on, there is a critical strength of disorder Wc above
which the system exhibits MBL. According to the current
understanding, for a short-range interaction, Wc is finite in
the thermodynamic limit for one-dimensional (1D) systems
and increases slowly with the system size for higher spatial
dimensionality [in particular, in two-dimensional (2D) sys-
tems]. For W < Wc, the system is ergodic, and the transport
is of diffusive or subdiffusive character [11–15].

The long-time dynamics of the imbalance I (t ) is used as
one of the key markers of the MBL transition, both in experi-
ments and in computational studies [16–19]. For this purpose,
an initial state of a charge-density-wave type is set up, with
a strong imbalance between the occupation numbers of even
and odd sites. After this, the evolution governed by the Hamil-
tonian of the system takes place, and the time dependence
of the imbalance is monitored. In the MBL phase, the im-
balance saturates for long times, t → ∞, at a nonzero value,
reflecting nonergodicity of the system. On the other hand, in
the delocalized phase the imbalance tends to zero at t → ∞,
since ergodic systems loose memory of their initial state in the
long-time limit. The goal of this work is to investigate what is
the law of the decay of the imbalance in delocalized systems.

Naively, one could expect that the imbalance decay is of
exponential character. Indeed, the long-time transport in the
delocalized regime is of essentially classical character, with

the Anderson localization suppressed by interaction-induced
dephasing (or when the localization length is much larger than
the system size, as, e.g., in 2D systems at relatively weak
disorder). When the classical dynamics is described within
the formalism of the Boltzmann equation, inhomogeneities
with a large wave vector q decay exponentially fast, with a
short characteristic time. This is easy to understand physi-
cally: for such an inhomogeneity to disappear, each particle
should travel only a small distance of the order of a few lattice
spacings. This should be contrasted with the slow decay of
diffusive modes with q → 0 that requires that particles travel
a large distance ∼ π/q.

Remarkably, numerical studies show a power-law decay
of the imbalance in the ergodic phase [18–23], strikingly
different from the exponential decay that would follow from
the above argument based on the Boltzmann equation. As
we show in this paper, such a behavior of the imbalance is
in fact a very general property of a diffusive or subdiffusive
disordered system. The key point is that there exist memory
effects that are discarded by the Boltzmann equation (which
has a Markovian character): a particle is scattered off an im-
purity, then moves diffusively through the system, and finally
returns to scatter on the same impurity. It has been known
since long ago that such quasiclassical memory effects and
associated long-time tails are of crucial importance for some
of the transport properties of a disordered system [24,25]. In
particular, they may lead to strong magnetoresistance [26] and
to a zero-frequency anomaly in the ac conductivity [27].

As we show below, memory effects also generate a
coupling between fast and slow modes (as pointed out in
Ref. [18]), which leads to a power-law decay of modes with
large wave vectors q and thus of the imbalance. The exponent
of this decay is controlled by the time dependence of the re-
turn probability, so that, for a diffusive system, the imbalance
decays as I (t ) ∝ t−d/2, where d is the spatial dimensionality.
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For a subdiffusive system, with the effective diffusion constant
depending on the wave vector q according to D(q) ∝ qβ , the
decay law of the imbalance is modified according to I (t ) ∝
t−d/(2+β ). Our theory, which substantiates earlier proposals
[18,22,28] for the role of hydrodynamic long-time tails, thus
provides a relation between the exponents characterizing the
mean square displacement and the imbalance decay that was
observed in numerical simulations [14,22].

To support our analytical results and to demonstrate that
in a disordered system the mode coupling generically leads
to the power-law decay of the imbalance specified above,
we have performed numerical simulations of a noninteracting
2D system. The choice of the 2D (rather than 1D) geometry
allows us to explore numerically a noninteracting system in
the regime l � L � ξ (where L is the system size, l is the
mean free path, and ξ is the localization length), in which the
system is diffusive and the localization effects are of minor
importance. The advantage of considering a noninteracting
system is rather obvious: we access the exact long-time dy-
namics in a big system (up to 200 × 200 sites). The numerical
results confirm the analytically predicted decay of the im-
balance, I (t ) ∝ t−γI , governed by the memory effects, with
the exponent γI being somewhat below unity due to weak
multifractality. In view of the generality of the memory-effect
mechanism, our results equally apply to interacting systems.

The structure of the paper is as follows. In Sec. II, we
define the imbalance I (t ) and derive a relation between the
long-time asymptotics of the imbalance and the density re-
sponse function. In Sec. III, a diagrammatic calculation of
the long-time tail in the imbalance resulting from memory
effects is performed. The analytical results are supported by
numerical simulations presented in Sec. IV. Our findings are
summarized in Sec. V.

II. IMBALANCE AND ITS RELATION TO THE DENSITY
RESPONSE FUNCTION

In this section, we define the imbalance and derive a re-
lation between its tail at long times and the density response
function. We consider first a 1D lattice; a generalization to 2D
geometry (or a higher dimensionality) is straightforward and
discussed in the end of the section.

We consider the time-dependent imbalance between the
particle numbers Neven(t ), Nodd(t ) at even and odd lattice sites
j normalized to the total number of sites N ,

I (t ) = 〈Neven(t ) − Nodd(t )〉
N

(1)

= 1

N

∑
sites j

〈n j (t )〉(−1) j . (2)

Here, the angular brackets denote the average over the quan-
tum many-body state. Since we deal with disordered systems,
the average 〈. . .〉 below also includes the disorder average. We
define the density n j (t ) and its continuum version n(x, t ), as
well as the corresponding Fourier transform

ñ(q, t ) =
∑

j

e−iqa jn j (t ) =
∫

dx e−iqxn(x, t ), (3)

where a is the lattice spacing. The imbalance then reads

I (t ) = 1

n0V

〈
ñ
(

q = π

a
, t

)〉
, (4)

where n0 = V −1〈ñ(q = 0)〉 is the conserved density and V =
Na is the system volume.

Experimentally and numerically, one explores the relax-
ation (or its absence) in the system by setting up a maximally
imbalanced initial state at t = 0 that is then time-evolved
with the Hamiltonian H of the system until long times t .
In this paper, we are interested in the long-time behavior
of the imbalance in the delocalized phase where the system
evolves towards an equilibrium state with a uniform density
distribution, I (t ) → 0 at t → ∞. To understand the form of
this asymptotic tail, we can thus equivalently start from a state
with only a small imbalance (i.e., that is close to equilibrium).

In this way, we can reformulate the problem under con-
sideration in terms of a linear response near the equilibrium.
Specifically, let us consider the system at t � 0 as an equilib-
rium state of the Hamiltonian H0 − H ′, where

H ′ = I0

ν
ñ(q, t ). (5)

Here, q is the wave vector of the charge density wave, I0 =
(n0V )−1〈ñ(q, t = 0)〉 is the initial value of the imbalance, and
ν is the density of states. The term −H ′ in the Hamiltonian
describes a periodic potential that yields the initial imbalance
I0. Now, at time t we perform a quench by removing the term
−H ′, which is equivalent to adding a perturbation H ′ to the
initial Hamiltonian. The system then starts relaxing towards
the equilibrium state of the Hamiltonian H0 with a uniform
density. i.e., zero imbalance.

Applying the Kubo formula [29] to obtain the density re-
sponse to the perturbation (5), we obtain

〈ñ(q, t )〉 = 〈ñ(q, 0)〉
[

1 + 1

ν

∫ t

0
dt ′χ (q, t − t ′)

]
, (6)

where χ (q, t ) is the retarded density-density correlation func-
tion (equivalently, density-density response function),

χ (q, t ) = − iθ (t )

V
〈[ñ(q, t ), ñ(−q, 0)]〉, (7)

with the Heaviside theta function θ (t ). Note that, in the Kubo
formula, we are supposed to average over the equilibrium
state of the initial Hamiltonian, which is given by H0 + H ′.
However, since the analysis is performed to linear order in the
small perturbation H ′, we can discard H ′ here and average
over the equilibrium state of H0 towards which the system
evolves.

Equations (4) and (6) establish the relation of the long-time
tail of the imbalance with the density response function. An
extension of this relation to higher-dimensional systems is
straightforward. In particular, for a 2D square lattice, one
can consider the checkerboard imbalance corresponding to a
charge density wave with the wave vector q = (π/a, π/a) or
the columnar imbalance with the wave vector q = (π/a, 0).
The formulas (4) and (6) remain valid with the replacement
of q by the corresponding 2D wave vector q. This relation is
used below for the analytical study of the imbalance decay.
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At the Markovian level and at sufficiently small values
of the wave vector, q � l−1, the density response function
is given, in the momentum-frequency representation, by the
well-known diffusive formula

χ̃ (q, ω) = −ν
Dq2

Dq2 − iω
, (8)

where D = v2τ/d is the diffusion constant with the particle
velocity v, transport scattering time τ , and spatial dimension-
ality d . Upon Fourier transformation to time space, it yields

χ (q, t ) = −νDq2 exp(−Dq2t ). (9)

Substituting this into Eq. (6), we get

〈ñ(q, t )〉 = 〈ñ(q, 0)〉 exp(−Dq2t ), (10)

and thus, according to Eq. (4), the exponential decay of the
imbalance,

I (t ) = I0 exp(−t/tq), (11)

with tq = 1/Dq2.
With increasing q, the decay time tq becomes shorter,

reaching a very short value t ∼ τ at the ultraviolet border
of the diffusive range of wave vectors, q ∼ l−1. For fur-
ther increasing wave vectors, q > l−1, the exponential decay
exp(−t/tq ) with a short time tq ∼ τ remains valid in the
quasiclassical contribution to the imbalance in the Markovian
approximation. This is obvious physically (the waves with a
shorter wave lengths are expected to decay faster) and is easy
to check by using an explicit form of the modified diffusion
propagator in such ballistic range of wave vectors (see, e.g.,
Ref. [30] for 1D systems and Ref. [31] for 2D systems).

At large q > l−1, this decay factor actually describes
the envelope of the oscillatory quasiclassical Markovian
imbalance. In particular, in the 1D case, one gets I (t ) ∝
exp(−t/2τ ) sin(qvt ). It should be noted that, on top of this
quasiclassical contribution to I (t ), there is a purely quantum
(described by only retarded or only advanced Green’s func-
tions in the diagrammatic language, see below) one, which
also decays exponentially in time. However, in contrast to the
quasiclassical term, at the momentum q = π/a at half filling
(i.e., q = 2kF, where kF is the Fermi momentum), this term
yields a nonoscillatory contribution to I (t ). Its decay rate is
given by the maximum of 1/τ and temperature T (in our case
T τ 
 1). This is similar to the decay of Friedel oscillations
or magnetooscillations, which are also suppressed by both
disorder and thermal averaging.

Thus, at the level of the Boltzmann equation (i.e., in the
Markovian approximation), the imbalance decays exponen-
tially, with a very short decay time. However, as we show in
Sec. III by a diagrammatic analysis, there exists a contribution
of memory effects, which is discarded by this approximation.
Calculating this contribution, we demonstrate that the actual
decay of the imbalance is of power-law form and determine
the corresponding exponent.

III. DIAGRAMMATIC ANALYSIS

To calculate the long-time tail in the density response func-
tion [and thus in the imbalance in view of the relations (4)

FIG. 1. (Left) Example of a diagram contributing to the long-
time tail of the density response function (and, thus, of the
imbalance). The shaded box is the diffuson. It is crossed by one or
several (two in the shown example) lines representing return events
of a particle to the same scatterer(s) after moving diffusively for a
long time t . (Right) Another representation of the same diagram. The
diffuson is shown here by a wavy line.

and (6)], we use the conventional diagrammatic technique for
disordered systems. The calculation bears analogy with that of
the zero-frequency anomaly of the conductivity in Ref. [27].
The starting point for the calculation is the formula [29] for the
density response function expressed in terms of exact retarded
and advanced Green’s functions, GR,A, in a given realization
of disorder:

χ̃ (q, ω) = −
∫

dε

2π i

∫
dd p

(2π )d
nF(ε)

×{[GR(p + q, ε) − GA(p + q, ε)]GA(p, ε − ω)

+GR(p + q, ε + ω)[GR(p, ε) − GA(p, ε)]}, (12)

where nF(ε) is the Fermi function. This general expression is
then averaged over disorder realizations. We model disorder
by a white-noise potential with the strength � = (2πντ )−1,
where τ is the elastic scattering time (equal to the transport
time in this disorder model).

At this point, we have to select the diagrams from the dis-
order average that dominate the density-response function in
the long-time limit. In the conventional case of a low external
momentum q, the ladder sum of disorder lines features a pole
and thus yields a diffuson, governing the long-time tail. The
diffuson propagator describes the slow spread of the mean
square displacement and is associated with the particle returns
in arbitrary long times. At large external momentum, however,
the situation is different: as pointed out in the previous section,
the ladder sum in this case decays exponentially with time and
thus does not describe a long-term memory.

The memory effects—that control the long-time tails that
we are investigating—originate from the following type of
processes. A particle is scattered by an impurity, then per-
forms a diffusive motion during a long time t , which results
in its return to the original position, where it is scattered again
by the same impurity. By transferring the large external mo-
mentum via one or several impurity lines across the impurity
ladder, the latter can again carry a small momentum, which
results in a long-time tail.

In a more general form, the scattering on a single impurity
is replaced by scattering events on a few (two, three, ...) nearby
impurities. An example of a corresponding diagram is shown
in the left panel of Fig. 1. The shaded box in this diagram
is the diffuson (the ladder built out of impurity lines). Two
dashed lines crossing the diffuson correspond to a repeated
scattering of the particle on two nearby impurities after com-
pleting a closed diffusive path. The same diagram is shown, in
a different way, in the right panel of the same figure, with the
diffuson represented by a wavy line.

094201-3



PÖPPERL, GORNYI, AND MIRLIN PHYSICAL REVIEW B 106, 094201 (2022)

Every additional crossing line adds an additional smallness
of the order O(1/(kFl )). Disorder ladders can only be added
in combination with more crossing lines, since inserting one
as a vertex correction would lead to exponential suppression
of the diagram at high external momentum in the long-time
limit. For this reason, it suffices in the long-time and large
mean-free path limits to calculate the sum of diagrams with
the least number of disorder- and diffuson lines, which does
not vanish.

Let us start by considering the lowest-order processes de-
scribing repeated scattering on a single impurity. They are
represented by diagrams with a diffuson crossed by a single
impurity line. For weak disorder, these diagrams yield the
dominant contribution to the memory effects. For not so weak
disorder, diagrams with two or three crossing impurity lines
may give a comparable contribution but this will only correct
the overall numerical prefactor, without affecting the result in
any essential way.

We analyze the density response function χ̃ (q, ω) at low
frequencies (which correspond to long times t). The sum of
the diagrams with a diffuson and an impurity line inserted
in all possible ways (corresponding to a rescattering on this
impurity after executing the diffusive motion) can be written
as

χ̃ (q, ω) = −i ωB(q)
∫

dd Q

(2π )d
diff(Q, ω), (13)

where diff (Q, ω) is the diffuson,

diff (Q, ω) = 1

2πντ 2

1

DQ2 − iω
, (14)

and the prefactor B(q) is given by

B(q) = �

∫ ∞

−∞

dε

2π

[
−∂nF(ε)

∂ε

]
b(q, ε) (15)

with

b(q, ε) = lim
Q→0

lim
ω→0

[V1(q, Q, ε, ω) + V2(q, Q, ε, ω)]2. (16)

Here, V1 and V2 are the vertex functions represented by the
triangular diagrams shown in Fig. 2. In this figure, q is the
external momentum and −Q is the diffuson momentum, with
the difference q + Q carried by the impurity line crossing
the diffuson (as discussed in the introduction). Since −Q
and ω are the small momentum and frequency carried by the
diffuson, we can discard them when calculating the vertices V1

and V2, as indicated in Eq. (16). The formulas (15) and (16) are
obtained under the assumption that the vertex function V1 + V2

has a finite limit at Q → 0 and ω → 0. We show below by an
explicit calculation that this is indeed generically the case.

The vertex functions V1(q, Q, ε, ω) and V2(q, Q, ε, ω) en-
tering Eq. (16) are given by (see Fig. 2)

V1(q, Q, ε, ω) =
∫

dd p

(2π )d
GR(p + q, ω + ε)

× GA(p + q + Q, ε) GA(p, ε), (17)

V2(q, Q, ε, ω) =
∫

dd p

(2π )d
GR(p + q, ω + ε)

× GR(p − Q, ω + ε) GA(p, ε), (18)

FIG. 2. Triangle vertices V1(q, Q, ε, ω) and V2(q, Q, ε, ω) en-
tering Eq. (16). Here, q is the external momentum and −Q is the
diffuson momentum. Disorder lines are dashed, diffuson lines are
wavy. Retarded and advanced Green’s functions are marked with R
and A, respectively. The external vertices of the density response
function are marked by thick dots.

where GR and GA are, respectively, the disorder-averaged
retarded and advanced Green’s functions GR,A from Eq. (12),

GR(p, ε) = 1

ε − ξ (p) + i
2τ

= GA∗(p, ε), (19)

and ξ (p) is the dispersion relation of the clean system.
Substituting Eq. (15) into Eq. (13) and performing the

Fourier transformation from the frequency to the time domain,
we get

χ (q, t ) = B(q)

2πντ 2

∂

∂t
P(t ), (20)

where P(t ) is the diffusive return probability,

P(t ) =
∫

dd Q

(2π )d

∫
dω

2π
e−iωt 1

DQ2 − iω

=
∫

dd Q

(2π )d
e−DQ2t , (21)

equal to

P(t ) = (4πDt )−d/2. (22)

By definition, P(t ) is the probability density for a diffusing
particle that starts at a point x0 at time t = 0 to be found at the
same point after time t . Substituting Eq. (20) into Eqs. (4) and
(6), we get

I (t )

I0
= cP(t ), (23)

where

c = B(q)

2πν2τ 2
. (24)

According to Eq. (23), the long-time tail of the imbalance is
given (up to a coefficient) by the return probability P(t ).

Let us recall at this point that our main motivation is the
physics on the ergodic side of the MBL transition. There,
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the interaction generates dephasing, thus destroying the lo-
calization. For this reason, we discard localization effects in
the above diagrammatic analysis. This is especially important
in 1D geometry, where the diffusive regime does not exist in
the absence of interaction since the localization length of a
noninteracting system is of the order of the mean free path. In
the case of higher-dimensional systems, d � 2, our analysis
applies also to noninteracting systems at not too strong disor-
der, such that the system is delocalized, i.e., the localization
length is much larger than the system size.

We have obtained the formulas (20) and (23) that relate the
long-time tails in the density response function to the return
probability: χ (q, t ) ∝ ∂P(t )/∂t and I (t ) ∝ P(t ). While we
have assumed conventional diffusive motion during the time
t described by a simple diffuson (14), the effect is expected
to remain valid in a more complex situation, when the particle
executes a subdiffusion between the original scattering and the
return to the same impurity. We will thus use these relations
below in such, more general sense.

A. 1D systems

We evaluate now the general formulas for the density re-
sponse function and the imbalance for the case of a 1D system.
To simplify the calculation, it is convenient to linearize the
dispersion relation

ξ (p) �
{
ξ+(p) = (p − kF) v, p > 0,

ξ−(p) = −(p + kF) v, p < 0,
(25)

where the branches ξ+ and ξ− correspond to right-moving
and left-moving particles. The linearization does not affect
the result in any essential way (up to an overall numerical
prefactor of order unity). Upon linearization, we can easily
carry out the integrations in Eqs. (17) and (18). We recall that
we are interested in the limit ω → 0, Q → 0. Further, we set
the external momentum to be q = π/a. For this value of q, the
particle always switches the branch at the external vertex. We
denote the triangle vertices with − → + change of the branch
at the external vertex (going along the arrow in Fig. 2, i.e.,
from GA to GR) by V ∓

1 , V ∓
2 and those with the change + → −

by V ±
1 and V ±

2 . The calculation outlined in Appendix A yields

V ∓
1 (ε) + V ∓

2 (ε) = 2τ

v

2kFv + 2ε − πv/a

(2kFv + 2ε − πv/a)2 + 1/τ 2
, (26)

and, similarly,

V ±
1 (ε) + V ±

2 (ε) = −2τ

v

2kFv − 2ε − πv/a

(2kFv − 2ε − πv/a)2 + 1/τ 2
.

(27)

For definiteness, we assume the half filling, kF = π/2a, in
the following. (For a different density, the result remains the
same, up to a prefactor.) We note in passing that, for half fill-
ing, the vertices (26) and (27) vanish exactly at ε = 0 (which
is a manifestation of an extra symmetry related to Umklapp
scattering), but are finite for any finite energy. Therefore, at
nonzero temperatures, the vertex factor given by Eq. (16)
is nonzero. Combining the contributions of the − → + and
+ → − processes to the triangle vertices, we get for the

prefactor B(q = π/a) in Eq. (13)

B = �

(
8τ

v

)2 ∫ ∞

−∞

dε

2π

[
−∂nF(ε)

∂ε

] (
ε

1/τ 2 + 4ε2

)2

. (28)

Since the initial density-wave state is highly excited, it
corresponds to a high temperature T , comparable to the band
width J . We thus make an assumption T τ 
 1 to calculate
the prefactor. The integral in Eq. (28) is then easily calcu-
lated, yielding B = τ 2/2πvT . This gives for the prefactor in
Eq. (20)

B

2πντ 2
= 1

4πT
, (29)

and thus c = v/4T for the prefactor c in Eq. (24). This
calculation of the prefactor (involving linearization of the
spectrum) is controllable for T � J . For an estimate, we can,
however, put here T ∼ J , which yields c ∼ a.

The above analysis, leading to the power-law decay of the
imbalance,

I (t ) ∝ P(t ) ∝ t−1/2, (30)

applies to the diffusive regime of transport that takes place at a
sufficiently weak disorder (well below the MBL transition) in
interacting disordered systems [11]. At the same time, numer-
ical studies show that a major part of the ergodic phase of such
systems is characterized by subdiffusive transport [11–15].
In this paper, we do not analyze a microscopic mechanism
leading to subdiffusion in a particular model. Instead, we
assume that the subdiffusive behavior holds and model it on
a phenomenological level by introducing a modified diffusion
propagator:

diff(Q, ω) → subdiff
β (Q, ω) ∼ 1

ντ 2

1

D(Q)Q2 − iω
, (31)

D(Q) = D̃|Q|β. (32)

Here β > 0 is the exponent controlling the subdiffusive char-
acter of the transport: β = 0 corresponds to normal diffusion,
while β 
 1 corresponds to the very slow transport as found
near the MBL transition. The propagator (31) corresponds to
the fractional diffusion equation [32]; the associated mean
square displacement

r2(t ) =
〈∫

dxx2n̄(x, t )

〉
(33)

reads (see, e.g., Ref. [32]):

r2(t ) ∼ (D̃t )
2

2+β . (34)

Now, we analyze the long-time tail in the imbalance. As
found above, it is proportional to the return probability P(t )
in the case of conventional diffusion. We argue that this re-
sult still holds true for subdiffusion. Indeed, this is expected
because diffusive and subdiffusive processes are established
at long times (long spatial scales), while the vertex functions
at high external momentum q ∼ kF are determined by large
momenta, i.e., by short time (or spatial) scales. Therefore,
microscopic details of the diffusive or subdiffusive process
can plausibly be assumed to be irrelevant for the vertices.
Using the anomalous-diffusion propagator (31), we get for the
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return probability

P(t ) ∼ (D̃t )−
1

2+β . (35)

Substituting this into Eqs. (20) and (23), we obtain the asymp-
totics of the density response function,

χ (q, t ) = B(q)

2πντ 2

∂

∂t
P(t ) ∝ t−1− 1

2+β , (36)

and of the imbalance,

I (t )

I0
= cP(t ) ∝ t− 1

2+β . (37)

The slow power-law decay of the imbalance (37) is in
agreement with numerical findings on the ergodic side of
the MBL transition [18–23]. Comparing Eqs. (34) and (37),
we see a relation between the exponent γx characterizing
the mean square displacement, r2(t ) ∝ tγx , and the exponent
γI describing the imbalance decay, I (t ) ∝ t−γI . Specifically,
we obtain γx = 2/(2 + β ) and γI = 1/(2 + β ), with the ra-
tio γI/γx = 1/2, independent of the subdiffusive exponent
β. This exponent relation was proposed in Ref. [14] and is
in reasonable agreement with numerical results on long-time
dynamics in large systems obtained within the time-dependent
Hartree-Fock approximation in Ref. [22].

It should be emphasized, however, that the above deriva-
tion of the relation between the exponents is based on the
assumption that the anomalous diffusion coefficient D(q) in
Eq. (31) depends on the momentum q and not on frequency ω.
This leads to Eq. (35) for the return probability and, thus, to
the scaling (37) of the imbalance. A more complex situation,
with the anomalous diffusion constant D(q, ω) showing (at
small ω and relatively large q) a scaling with both q and
ω, corresponds to multifractality. In such a situation (that it
is characteristic, in particular, to Anderson-transition critical
points) the scaling of the return probability P(t ) is charac-
terized by an exponent that is not directly determined by the
exponent of the mean square displacement. We will return to
this issue below.

B. 2D systems

We extend now the analysis to 2D systems, d = 2. One
natural extension of the imbalance to 2D systems on a square
lattice is the checkerboard imbalance

Icheck(t ) =
∑
i, j

(−1)i+ j 〈n(i, j)(t )〉
N

. (38)

Here i and j enumerate the rows and columns of the system,
respectively. Taking the continuum limit in analogy to the 1D
case, we find, in analogy with Eq. (4),

Icheck (t ) = 1

n0V

〈
ñ
(

qx = π

a
, qy = π

a
, t

)〉
. (39)

Alternatively, one can consider the columnar imbalance [19]
Icol(t ) corresponding to the density wave with wave vec-
tor qx = π/a and qy = 0. Our analytical treatment applies
equally to both Icheck(t ) and Icol(t ), so we use below the no-
tation I (t ) to refer to any of them. For numerical calculations,
we indicate which of the imbalances is shown.

Equations (20) and (23) give the tails of the density-
response function and of the imbalance in terms of the return
probability P(t ). In the case of normal diffusion, the return
probability is given by Eq. (22). This yields the scaling

χ (q, t ) ∝ t−2

for the density-response function and

I (t ) ∝ t−1 (40)

for the imbalance. Estimating the coefficients, we get
B/2πντ 2 ∼ 1/J for the coefficient in Eq. (20) and c ∼ a2 for
the coefficient in Eq. (23).

For a subdiffusive transport modelled by the anomalous
diffusion propagator, Eqs. (31) and (32), we obtain the results
analogous to Eqs. (35)–(37), with a replacement of the expo-
nent 1/(2 + β ) by 2/(2 + β ). For the ratio of the exponents,
this yields γI/γx = 1. Clearly, a similar consideration in arbi-
trary spatial dimensionality would give

γI/γx = d/2.

As was already pointed out in Sec. I, the 2D geometry
allows us to consider a regime of (nearly) diffusive transport
also in the absence of interaction. Indeed, even though the
noninteracting system gets localized in the thermodynamic
limit, the localization length ξ is much larger than the mean
free path l when the disorder is sufficiently weak. The trans-
port in the regime l � L � ξ has then diffusive character
(with weak-localization corrections for which the system size
L serves as an infrared cutoff [33]), and the decay of im-
balance can be investigated within the noninteracting picture.
This problem is studied numerically below in Sec. IV. The
noninteracting character of the model allows us to consider
rather large system sizes (200 × 200) within exact diagonal-
ization. We focus on times t much smaller than the time of
diffusive spreading through the system. Before turning our
attention to the numerical simulations, let us discuss the im-
plications of the weak localization for the above analytical
results.

The weak localization leads to a frequency-dependent log-
arithmic correction to the diffusion constant:

D(ω) � D0

(
1 − 1

πkF l
ln

1

ωτ

)
. (41)

Note that the asymptotics of the mean square deviation r2(t )
is controlled by the diffusion constant D(q, ω) at small ω and
small q, with Dq2 ∼ ω, so that we can put q = 0 in Eq. (41).
In the regime of frequencies where the correction is relatively
small, we can rewrite Eq. (41) as

D(ω) � D0(ωτ )
1

2πg , (42)

where we introduced the dimensionless conductance g =
kF l/2. This implies for the mean square deviation

r2(t ) ∼ t1− 1
2πg , (43)

i.e., a weak-localization correction to the exponent: γx = 1 −
1/2πg.

The tail of the return probability P(t ) is controlled by weak
multifractality of 2D systems (which is responsible for the
behavior of the diffusion constant D(q, ω) at small ω and
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relatively large q). The corresponding multifractal exponent
is [34–36] d2 = 2 − 2/πg, yielding

P(t ) ∼ t−d2/d = t−1+ 1
πg , (44)

and thus γI = 1 − 1/πg. We see that the corrections to γx and
γI are different (by factor of 2), and thus the exponents γx and
γI deviate not only from unity but also from each other.

IV. NUMERICAL RESULTS

As discussed above, the numerics in this paper is re-
stricted to noninteracting 2D systems. We calculate the
long-time asymptotics of both the checkerboard imbalance
and the columnar imbalance starting from the correspond-
ing maximum-imbalance states. In addition, we calculate the
linear-response density response function χ (qx, qy, t ), veri-
fying thereby the relation (23) between the long-time tail of
the imbalance and density response function. This also allows
us to check that the power-law tail of the density response
function has the same form for all momenta q.

We consider a square lattice of N = L × L sites described
by the Hamiltonian

H = J
∑
r,r′

δ〈r,r′〉c†
rcr′ +

∑
r

εrc†
rcr, (45)

where r and r′ label sites of the square lattice and

δ〈r,r′〉 =
{

1, r, r′ nearest neighbors,
0, else. (46)

We set J = a = 1. The onsite potential values εr are un-
correlated random numbers drawn from a random uniform
distribution in the interval [−W,W ].

We analyze the numerical results based on the predictions
for the density response function and the imbalance at long
times,

χ (q, t ) = χ0 exp(−t/tq ) + χ1

t1+γI
, (47)

I (t ) = I0 exp(−t/tq) + I1

tγI
. (48)

The first terms in these formulas correspond to the exponen-
tially decaying contribution from the Markovian approxima-
tion. Here, we keep these terms in addition to long-time tails,
in order to be able to describe the case of sufficiently small
values of q, such that the exponential decay is not yet strong at
times addressed by numerical simulations. The second terms
in Eqs. (47) and (48) are the long-time asymptotics governed
by return processes. The exponent γI is slightly below unity,
γI = 1 − 1/πg, as discussed in Sec. III B.

Since we are interested in the diffusive regime, we first
need to identify an appropriate disorder strength. If the
disorder is too weak, a density perturbation would spread
ballistically; on the other hand, too strong disorder would
lead to strong localization for considered system sizes. To
identify the diffusive regime, we calculate the mean square
displacement

r2(t ) =
〈

L∑
j=1

L∑
i=1

Ri, j[n(i, j)(t ) − n(i, j)(t = 0)]

〉
, (49)

Ri, j = [(i − i0)2 + ( j − j0)2]. (50)

FIG. 3. Mean square displacement r2(t ) (top) and checkerboard
imbalance Icheck (t ) (bottom) as functions of time for 2D systems
with disorder strengths W = 1.5 and W = 2. Calculations were per-
formed on a square lattice of 201 × 201 sites with open boundary
conditions; averaging over 5 disorder configurations was done. The
dashed lines in the upper panel are power-law fits, r2(t ) ∼ tγx , yield-
ing γx = 0.88 for W = 2 and γx = 0.98 for W = 1.5. The dashed
lines in the lower panels are power-law fits Icheck (t ) ∼ t−γI , yielding
γI = 0.61 for W = 2 and γI = 0.69 for W = 1.5. The black dotted
line shows an exponential decay exp(−t/τ ) with τ = 1 in units of
the hopping time for comparison.

Here, n(i, j)(t ) is the particle density at site (i, j) at time t ,
with i and j labeling rows and columns, respectively, and
angular braces denote an average over disorder configurations.
The site (i0, j0) is the original position of the density packet.
Specifically, we initialize the system with

n(i, j)(t = 0) = δi,i0δ j, j0 . (51)

In order to minimize finite-size effects, we choose the site
(i0, j0) to be located in the center of the system.

The results for r2(t ) for disorder strengths W = 1.5 and 2
are presented in the upper panel of Fig. 3. We find the asymp-
totic power-laws r2(t ) ∼ t0.88 for W = 2 and r2(t ) ∼ t0.98 for
W = 1.5. The exponents are slightly below unity, in agree-
ment with the expectation γx = 1 − 1/2πg. Therefore, these
values of disorder correspond to the diffusive regime with
weak-localization corrections. For stronger disorder (W = 2),
the correction is more significant as expected. Using r2(t ) =
4D0t and D0 = v2τ/2 at time t ≈ 10 at which the diffusion
is fully established, we get an estimate for the mean free
time: τ ≈ 2 for W = 1.5 and τ ≈ 1 for W = 2. The mean free
time decreases with increasing W approximately as 1/W 2, as
expected for relatively weak disorder. We have also verified
that if the initial state is chosen as a 1D domain wall and
the corresponding 1D mean square displacement is calculated,
the same results are obtained as for the disk mean square
displacement (49).
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The following comment is in order here. Since our ini-
tial condition contains single-particle states with different
energies, our numerical procedure effectively involves the
corresponding averaging. The dominant contribution comes
from the broad central part of the band, where the dimension-
less conductance g weakly depends on energy and where the
majority of states is located. At the same time, one expects
also a contribution of band tails, where g is smaller, so that
the states have a localization length shorter than our system
size. For the mean square displacement r2(t ), this would only
induce a small correction to the effective diffusion constant.
At the same time, the contribution of localized states should
lead to a saturation of the imbalance at long times, t → ∞.
Thus, by inspecting the behavior of the imbalance, one can
numerically find out whether the localized states from the
band tails are essential for the dynamics on a given time
scale. We will see below that, within the time range of our
numerics, t = 102, the role of band tails is negligible, even
for our stronger disorder, W = 2. Therefore, within this time
range, we essentially probe the physics associated with the
majority of states in the central part of the band. This justifies
our description, Eqs. (47) and (48). Indeed, we will see below
that the predicted power laws for the imbalance and density re-
sponse function are nicely observed in numerical simulations.

A. Imbalance

After having identified the diffusive regime by inspecting
the mean square displacement, we turn to the numerical anal-
ysis of the imbalance. The checkerboard imbalance for W =
1.5 and W = 2 is shown in the lower panel of Fig. 3. A power-
law decay of the imbalance is clearly observed. Fitting the im-
balance tail to a power-law ∝ t−γI , we find γI ≈ 0.69 for W =
1.5 and γI ≈ 0.61 for W = 2. The values of the exponent γI

are somewhat below unity, in agreement with the analytical
prediction γI = 1 − 1/πg. The deviation of γI from unity is
larger for larger disorder, as expected. Further, the deviations
of γI from unity are larger than the respective deviations of γx,
again in agreement with the analytical expectations.

As pointed out above, the imbalance does not exhibit any
saturation within the considered time window (even though it
drops down to a relatively small value ∼10−3). This shows
that strongly localized states in the band tails do not play any
essential role in this time range. In Appendix B, we explicitly
check this statement by evaluating the fraction of strongly-
localized states contributing to the imbalance dynamics in the
transient time window t � 100. We also demonstrate there
that the conductance in the band of extended states only
slightly deviates from the value in the band center. As a
result, the contributions of different energies to the imbalance
produce, in our transient time window, a function that is indis-
tinguishable from a simple power law.

In order to emphasize the significance of the slow, power-
law decay, we also show the Markovian result exp(−t/τ )
with τ = 1 in the plot (black dotted line). On the scale
of t ≈ 10, this exponential contribution becomes negligible
(∼10−4). For our largest times, t ≈ 100, it drops down to
a value as small as ∼10−40. Our numerical results therefore
clearly confirm an important role of classical memory effects
in the imbalance of a disordered system. Furthermore, the

FIG. 4. Checkerboard and columnar imbalance as functions of
time at disorder W = 1.5. Simulations were performed on square
lattices of 101 × 101 and 100 × 100 sites, respectively, with open
boundary conditions and with averaging over 60 disorder config-
urations. The dashed lines are power-law fits I (t ) ∼ t−γI , yielding
γI = 0.61 for the checkerboard imbalance and γI = 0.51 for the
columnar imbalance.

predicted difference between the imbalance- and mean-square
displacement exponents, γI and γx, is observed numerically.

As shown in Fig. 4, the behavior of the columnar imbal-
ance is very similar to that of the checkerboard imbalance.
Indeed, they are very close numerically and show almost the
same power-law decay, with γI ≈ 0.51 for the checkerboard
imbalance and γI ≈ 0.61 for the columnar imbalance. The
system size in this figure is N = 101 × 101, i.e., smaller than
in Fig. 3 (where N = 201 × 201). A slightly smaller value of
γI for the checkerboard imbalance in comparison with Fig. 3
is thus attributed to finite-size effects.

B. Density response function

We have also performed numerical simulations of the den-
sity response function χ (qx, qy, t ), which is predicted to decay
at long times as t−1−γI , see Eq. (47). Note that this prediction
applies for any value of the momentum (qx, qy). To make a
direct connection with the numerical analysis of the imbalance
in Sec. IV A, we carry out a linear-response calculation with
respect to a thermal state with the chemical potential chosen
in the center of the band, μ = 0, and with a temperature of the
order of the band width; see Appendix C for details.

Instead of directly investigating the long-time tail of the
correlator χ (qx, qy, t ), we perform its numerical integration
to obtain the long-time behavior of the imbalance at the con-
sidered wave vector [see Eqs. (4) and (6)]:

Iqx,qy (t ) ∝
∫ t

0
dt ′χ (qx, qy, t ′) − χ̃0. (52)

Here the constant χ̃0 is equal to the zero-frequency limit of
the density response function, χ̃0 ≡ χ̃ (ω = 0, qx, qy), which
ensures Iqx,qy (t ) → 0 at t → ∞. In order to characterize
the long-time tails, we fit the integrated density response∫ t

0 dt ′χ (qx, qy, t ′) in a late-time window t ∈ [20, 100] to the
function

f (t ) = f0 + f1t−γI (53)

with fitting parameters f0, f1, and γI . The constant f0 corre-
sponds to χ̃0 of Eq. (52) and is subtracted to get the imbalance.
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FIG. 5. (Top) Numerical results for the imbalance Iq(t ) ≡
Iqx=q,qy=q(t ) obtained according to Eq. (52) from the density re-
sponse function for W = 1.5, L = 80, and temperature T = 3, with
periodic boundary conditions. The data was averaged over about
500 disorder realizations. Imbalance Iq(t ) is calculated for momenta
q = qn = 2πn/L with n ∈ [2, 39]. The numerical factor between
imbalance and integrated density response function is obtained from
a comparison of the long-time tail of the largest-q curve to the
directly calculated imbalance result (cf. Fig. 4). (Bottom) Compar-
ison between the checkerboard imbalance directly calculated from
the time evolution of a checkerboard state (with L = 101) and the
checkerboard imbalance from the density response function. For this
comparison, the shift constant and factor were determined by fitting
the integrated density response function to a power-law with the same
exponent as found for the checkerboard imbalance from the direct
calculation.

In this way, we obtain the imbalance Iqx,qy (t ) and the imbal-
ance exponent γI for the whole range of momenta (qx, qy).

In Fig. 5, we show Iq(t ) ≡ Iqx=q,qy=q(t ) at temperature T =
3 for a square system with L = 80 and disorder W = 1.5,
for momenta q = qn = 2πn/L with n = 2, 3, . . . , 39. For this
plot the integrated density was rescaled by a factor determined
from comparison of the large-q tails to the directly calculated
imbalance. (Since the actual factor between imbalance and
integrated response depends on the momentum, this can lead
to the small-q curves exceeding unity at short times.) The
values of momenta increase from top to bottom. For the lowest
momenta, the power-law decay can barely be observed within
the time window of the simulation, since the exponential con-
tribution decays slowly. For larger momenta, the exponential
contribution decays very quickly, so that Iq(t ) is governed by
the power-law tail starting already from rather short times. We
observe that, for sufficiently large q, all imbalance curves be-
come parallel straight lines in the long-time limit, confirming
the momentum independence of the exponent.

In Fig. 6, we show the values of the exponent γI (nx, ny)
corresponding to Iqnx ,qny

(t ). The left panel shows a color map
of the exponent as a function of nx and ny for nx, ny =
2, 3, . . . , 39. The right panel displays the diagonal exponents,

nx = ny = n. As expected from the imbalance plots, the time
window of our simulation does not suffice to find reliably
the power-law exponents in the low momentum sector n � 8,
as the exponential component decays too slowly. This region
is therefore excluded in both panels. The error bars in the
right panel show the range of exponents, for which the mean
square error of the obtained fit deviates by up to five percent
from the optimum fit. The numerical results are consistent
with the analytical predictions that γI is independent of q
and is somewhat below 1 (because of weak multifractality).
Further, the numerical value γI (q39) ≈ 0.8, corresponding to
the checkerboard imbalance, is in a good agreement with
γI ≈ 0.7 extracted from the direct checkerboard imbalance
calculation in Sec. IV A. This agreement is also demonstrated
in the lower panel of Fig. 5 where the checkerboard imbalance
obtained by direct simulations and from the density response
function are compared. For this plot, the shift constant χ̃0

was obtained by fitting the integrated density response to a
power-law with the exponent found for the directly calculated
imbalance (slightly differing from the optimal-fit exponent for
the integrated density); the overall scaling factor was fixed by
comparing the tails.

V. SUMMARY AND CONCLUSIONS

In this paper, we have shown that memory effects lead to
a power-law asymptotic tail of the imbalance in disordered
systems, I (t ) ∝ t−γI . We have derived a relation between the
imbalance and the density response function and showed that
I (t ) ∝ P(t ), where P(t ) is the probability for a particle to
be found at the original point after a long time t (“return
probability”). In the case of normal diffusive transport, the
analysis based on classical memory effects related to diffusive
returns yields γI = d/2, where d is the spatial dimensionality.
Having in mind the ergodic side of the MBL transition, we
have also considered the regime of subdiffusive transport.
Specifically, we used its phenomenological modeling in terms
of a momentum-dependent diffusion constant, D(q) ∝ qβ ,
which yields the mean square deviation r2(t ) ∝ tγx with γx =
2/(2 + β ). For the imbalance in this situation, we obtained a
power-law decay with the exponent γI = d/(2 + β ), implying
the ratio γI/γx = d/2, independent of the subdiffusive expo-
nent β.

To complement the analytical results, we have performed
numerical simulations for noninteracting disordered 2D sys-
tems. In these simulations, we have chosen a disorder
range that ensures the diffusive character of transport for
considered system sizes. More accurately, in view of the
weak-localization effects, the transport is “weakly subdiffu-
sive,” i.e., the exponent γx is slightly below unity. For such
systems, we have demonstrated a crucial role of memory
effects in the long-time behavior of the imbalance and found
a power-law decay of the imbalance. The corresponding ex-
ponent γI shows a downward deviation from unity, which is
related to weak multifractality of eigenstates of 2D nonin-
teracting disordered systems. This deviation leads to a weak
violation of the relation γI = γx.

Our results explain the slow, power-law decay of the imbal-
ance on the ergodic side of the MBL transition, as observed in
numerical simulations of 1D disordered interacting systems
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FIG. 6. (Left) Tomography of power-law exponents γI (qx, qy ) for imbalance obtained according to Eq. (52) from the density response
function. Exponents are obtained from fitting the long-time tail to a power-law in the time interval t ∈ [20, 100]. The range (nx < 8, ny < 8)
is excluded since the time window of the simulation does not allow us to extract reliably the power-law exponents at these momenta. (Right)
Exponents γI (qx = qy = q) describing the power-law tails of the imbalance curves shown in Fig. 5. The error bars are the intervals for which
the mean square error of the corresponding fit is up to five percent larger than the mean square error of the optimal fit.

[18–23]. The relation γI = γx that we find by modeling the
subdiffusive transport by a diffusion constant D(q) ∝ qβ is
consistent with numerical observations [14,22]. The subdif-
fusive transport in this class of system is usually attributed to
Griffiths effects related to rare strongly localized spots. Our
analysis is, however, rather general and shows that, whatever
the mechanism of the subdiffusion is, it will lead to the corre-
sponding slow decay of the imbalance due to mode coupling
induced by the memory effects.

A slow decay of the imbalance was also numerically ob-
served on the ergodic side of the MBL transition in 2D
systems [19,22]. In this case, it was found that the correspond-
ing effective exponent γI increases with time, saturating at
the value γI = 1 at long times. This is consistent with the
relation γI = γx, since in 2D geometry the Griffiths effects
cannot suppress the conventional diffusion (γx = 1). An in-
crease of γI towards unity at intermediate times is a transient
effect attributed to trapping of particles at rare localized spots
[22,28].

A slow, power-law decay of the imbalance was numeri-
cally found also for 1D quasiperiodic systems. Specifically, it
was observed [22] that the exponent γI increases with time,
saturating at the value γI = 1. This is in consistency with
the relation γI = (d/2)γx, in view of the ballistic character
of transport (γx = 2) in quasiperiodic systems. It is worth
pointing out, however, that our analysis in this paper was
performed for truly random systems, so that its application
to quasiperiodic systems should be viewed as a conjecture.
Further work in this direction is needed, especially in view
of the importance of quasiperiodic systems for experimental
investigations.

A weak violation of the relation γI = (d/2)γx in 2D nonin-
teracting disordered systems in the weak-localization regime

poses the question as to whether the relation is exact on the
ergodic side of the MBL transition. The mechanism related to
quantum coherence of single-particle states, which is respon-
sible for multifractality in 2D noninteracting systems, should
not be relevant for the ergodic interacting systems at high tem-
perature, in view of decoherence. This provides an expectation
that the relation γI = (d/2)γx strictly holds (for the exponents
characterizing the limiting long-time behavior) in the ergodic
phase of an interacting disordered system. In fact, Ref. [28]
identified other power-law contributions related to trapping
of particles by localized spots in 1D geometry. These con-
tributions are, however, subleading (i.e., decaying faster) in
comparison with that studied in the present paper, and thus do
not affect our derivation of the relation γI = (d/2)γx. Further
computational and experimental work towards a systematic
verification of the relation between the exponents γI and γx

on the ergodic side of the MBL transition would be of much
interest.
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APPENDIX A: CALCULATION OF VERTICES IN THE
NON-MARKOVIAN TERM IN IMBALANCE IN 1D

SYSTEMS

In this Appendix, we calculate the sum of triangle vertices
V1 + V2, Fig. 2, for 1D systems with linearized dispersion
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(25). For the vertices V ∓
1,2 that switch the branch from − to + at external momentum q = π/a, we have the following integral

over the momentum in infinite limits, −∞ < p < ∞:

V ∓
1 (ε) + V ∓

2 (ε)

=
∫ ∞

−∞

d p

2π

1

ε − ξ−(p) − i
2τ

1

ε − ξ+(p + π/a) + i
2τ

[
1

ε − ξ−(p) + i
2τ

+ 1

ε − ξ+(p + π/a) − i
2τ

]

=
∫ ∞

−∞

d p

2π

1

ε + (p + kF)v − i
2τ

1

ε − (p + π/a − kF)v + i
2τ

[
1

ε + (p + kF)v + i
2τ

+ 1

ε − (p + π/a − kF)v − i
2τ

]
. (A1)

Each term contains the poles in the upper and lower half-planes. The contour integration yields

V ∓
1 (ε) + V ∓

2 (ε) = τ

v

(
1

2ε + 2kF v − πv/a + i/τ
+ 1

2ε + 2kF v − πv/a − i/τ

)
, (A2)

which results in Eq. (26) of the main text. Equation (27) is obtained analogously.
Let us now explicitly demonstrate the vanishing of the sum of vertices V +

1 (ε) + V +
2 (ε) that do not switch the branch + to

branch −. The calculation is analogous to the above:

V +
1 (ε) + V +

2 (ε)

=
∫ ∞

−∞

d p

2π

1

ε − ξ+(p) − i
2τ

1

ε − ξ+(p + π/a) + i
2τ

[
1

ε − ξ+(p) + i
2τ

+ 1

ε − ξ+(p + π/a) − i
2τ

]

=
∫ ∞

−∞

d p

2π

1

ε − (p − kF)v − i
2τ

1

ε − (p + π/a − kF)v + i
2τ

[
1

ε − (p − kF)v + i
2τ

+ 1

ε − (p + π/a − kF)v − i
2τ

]
. (A3)

Again, each of the two terms taken separately has poles in the upper and lower half-planes. However, the sum of the terms
vanishes exactly after the contour integration:

V +
1 (ε) + V +

2 (ε) = i

v

(
1

−πv/a + i/τ

1

i/τ
+ 1

πv/a − i/τ

1

i/τ

)
= 0. (A4)

Clearly, the same cancellation also occurs for the branch ξ− of
left-movers.

APPENDIX B: ADDITIONAL NUMERICAL CHECKS TO
SEC. IV: FRACTION OF LOCALIZED STATES AND

ENERGY DEPENDENCE OF THE CONDUCTANCE IN
CALCULATIONS OF THE IMBALANCE

In Sec. IV, we numerically investigate memory effects
in the (transient) diffusive regime of a 2D Anderson lattice.
Our numerical results on the decay of the imbalance I (t ) in
this regime are in agreement with the analytical prediction
(Sec. III B) of the power law behavior I (t ) ∝ t−γI , with expo-
nent γI = 1 − 1/(πg) for a noninteracting 2D system. Here, g
is the conductance and the term −1/(πg) in the exponent γI

originates from a weak-localization correction to the classical
memory effects (γI = 1).

It might come as a surprise that the imbalance numerics
presented in Sec. IV is described so well by a power law
I (t ) ∝ t−γI , for the following two reasons. First, even though
we consider not too strong disorder, there is a fraction of
localized states, with localization lengths smaller than the size
of the system. Some of these localized states (in the tails of the
band) are so strongly localized that their localization length is
already probed on the time scales of our numerical simula-
tions. Since the imbalanced initial condition for the numerics
(for example, a checkerboard pattern in the density) encom-
passes the full range of energies, such strongly-localized states
would also contribute to the imbalance. Their contribution is

different from the power law that is characteristic for delo-
calized states: a strongly localized state is expected to give
a time-independent contribution. Second, as the conductance
g(ε) is generically energy-dependent, the initial condition for
the imbalance implies averaging of the corresponding power-
law decay over energy [here ν(ε) is the density of states]:

I (t ) ∝
∫

dεν(ε) t−(1− 1
πg(ε) ). (B1)

In Sec. IV, we provide explanation on why the numer-
ical data for the imbalance in the transient diffusive time
window are described so well by a power law with a single
power law exponent γI = 1 − 1/(πg). First, the fraction of
strongly localized states in band tails is very small, so that
they do not play any essential role in the considered time
regime. The dominant contribution to the imbalance in this
time range comes from the broad central region of the band
(encompassing nearly all states), while the expected asymp-
totic saturation (due to strong localization) will set in at still
longer times. Second, in this broad central part of the band, g
is sufficiently large and depends only weakly on the energy, so
that the average (B1) is numerically almost indistinguishable
from a simple power law. The purpose of this Appendix is
to demonstrate these two statements explicitly by numerically
evaluating g(ε) and ν(ε) across the energy band.

To this end, we calculate the eigenstates and eigenvec-
tors of Hamiltonian (45) for 4000 disorder realizations with
W = 1.5 and 2, in a system of N = 40 × 40 sites. From the
eigenenergies we obtain the density of states ν(ε), and for
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each eigenstate ψ (ε) at energy ε we determine the inverse
participation ratio (IPR)

P2(ε) =
N∑

i=1

|ψi(ε)|4. (B2)

Calculating the mean value 〈P2(ε)〉2 and the variance
var[P2(ε)] of P2(ε) (with respect to averaging over disorder
realizations), we obtain information on the conductance g(ε)
and the localization length ξ (ε), as we are now going to ex-
plain. For delocalized states (localization length much larger
than the system size), the IPR is given by the random-matrix-
theory value 〈P2〉 ≈ 3/N , with a weak-localization correction.
On the other hand, for strongly localized states (with ξ � L),
the IPR becomes much larger than this value. We can get an
estimate of the localization length ξ of such a strongly local-
ized state by assuming (for 1 � ξ � L) that it spreads within
the area ξ 2, resulting in P2 ∼ 3/ξ 2. This allows us to estimate
the contribution of the localized states to the conductance.
Further, we use IPR fluctuations to extract the conductance
for the weakly localized states via [36]

g(ε) =
√
A 〈P2(ε)〉2

var[P2(ε)]
, (B3)

where A is a numerical factor that depends on the spatial
dimensionality and boundary conditions; in our case A ≈
0.123. Using the obtained conductance and density of states,
we numerically verify that energy averaging (B1) indeed does
not lead to any essential deviations from a simple power law
(in the considered time window).

Before presenting our numerical data, we point out that the
localization length ξ (ε) in the same 2D model was determined
numerically by the transfer-matrix approach in Ref. [37] (see
upper panel of Fig. 2 there). The disorder used in Ref. [37]
was W = 2.5 in our units, i.e., somewhat stronger than in
our simulations. The results of Ref. [37] show that, even for
this stronger disorder, the fraction of strongly localized states
with ξ < 10 (see below for the reason of the choice of this
boundary) is very small. Furthermore, the conductance that
can be estimated (from the one-loop formula) as g ≈ π−1 ln ξ

varies in a relatively narrow interval only, 1.3 � g � 1.7, in
the energy range |ε| < 3.5 comprising an overwhelming ma-
jority of all states. These results fully support the above two
statements [formulated in the paragraph below Eq. (B1)], in
consistency with our numerics discussed below.

In Fig. 7, we show the numerically obtained density of
states (first row), average IPR (second row), conductance
(third row), and imbalance decay obtained from Eq. (B1)
(fourth row) for W = 1.5 (left column) and W = 2 (right
column). Inspecting the density of states, we observe that
nearly all states lie within the energy band of the clean sys-
tem, |ε| < 4. Already from this figure, one sees that almost
the whole band is effectively delocalized, with only a small
fraction of strongly localized states in the tails. From the IPR
values, we find that states within |ε| � 4 are “delocalized”
from the finite-size perspective of the system, with ξ 
 L and
thus 〈P2〉 ∼ 3/N ∼ 0.002.

Diffusion with D ∼ 1 over times t ∼ 100 implies spread-
ing over ∼√

100 = 10 sites in each direction. Therefore states

with ξ � 10 still appear delocalized in the time window ex-
plored with our numerics in Sec. IV. Placing a cutoff at
〈P2〉 = 0.02 � 3/102 on the density of states (dotted lines)
to separate the strongly localized states, we find that the
fraction of strongly localized states is indeed very small:
≈99% of all states at W = 1.5 and ≈97% of the states at
W = 2 are delocalized according to this criterion. Further, for
the conductance within the energy window corresponding to
delocalized states, we find values between approximately 0.6
and 2.3 (0.5 and 1.2) for W = 1.5 (W = 2). Note that the fact
that g(ε) has a local minimum at the band center is in full
agreement with the results of Ref. [37].

Using the obtained results for ν(ε) and g(ε), we nu-
merically calculate the energy-averaged imbalance curves
according to Eq. (B1), which are shown in the fourth row in
Fig. 7. We find that the resulting curves for both values of dis-
order are virtually indistinguishable from power laws (dashed
lines, slightly shifted for ease of comparing), with γI = 0.78
at W = 1.5 and γI = 0.65 at W = 2. These results are in good
agreement with the values extracted from the direct imbalance
simulations, γI = 0.69 for W = 1.5 and γI = 0.61 for W = 2,
see Fig. 3.

The fact that, despite the energy averaging (B1), the im-
balance is described so well by a single-power law is fully
consistent with the observation that, in most of the band, the
conductance g(ε) varies only weakly around its band-center
value g(0) (see the third row in Fig. 7). Specifically, we find
that for ∼85% of states, the conductance g(ε) is within ≈25%
from its band-center value g(0).

The localized states are expected to give a time-
independent contribution ∼1/ξ 2 to the imbalance. Even for
our stronger disorder, we thus get an estimated contribution on
the level of 10−4. This fully supports our interpretation of the
numerics, as provided in Sec. IV. The power laws observed
there are transient and will eventually saturate. However, the
level at which saturation appears is very small (∼10−4) and is
not relevant in the considered time range (where the imbalance
drops down only to ∼10−3).

APPENDIX C: NUMERICAL CALCULATION OF THE
DENSITY RESPONSE FUNCTION

To calculate χ (q, t ) in a 2D noninteracting system numer-
ically, we start from the definition in the site space:

χ̂r,r′ (t ) = −iθ (t )〈[n̂r(t ), n̂r′ (t )]〉. (C1)

Here r and r′ label the sites on the two dimensional grid and
n̂r(t ) is the number operator in site space, with

ñ(qx, qy, t ) =
∑

r

e−iqran̂r(t ). (C2)

Applying Wick’s theorem, we find

χ̂r,r′ (t ) = −2Im{〈c†
r′ (t )cr〉〈cr′ (t )c†

r〉}
= −2Im{[G<

r′,r(t, 0)]∗G>
r′,r(t, 0)}, (C3)
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FIG. 7. Density of states ν (first row), inverse participation ratio P2 (second row), and conductance g (third row) as functions of energy
ε; imbalance I as a function of time on a double-logarithmic scale (fourth row). These results are obtained from exact diagonalization after
averaging over 4000 disorder realizations of Hamiltonian (45) in a system of 40 × 40 sites at disorder W = 1.5 (left column) and W = 2 (right
column). The vertical dotted lines separate the effectively delocalized states (ξ 
 10) from the localized states (ξ � 10) in band tails. The
imbalance was obtained (up to a constant prefactor) from ν(ε) and g(ε) using Eq. (B1). For convenience of comparison, the prefactors in the
imbalance plots are chosen by fixing the values at time t = 10 to the direct results in Fig. 3. Dashed lines are power-law fits slightly shifted
with respect to the imbalance curves (B1) (solid) to make them easier to distinguish.

where we have identified the lesser and greater Green’s func-
tions G< and G>. These Green’s functions are time-evolved
according to

G≶
r,r′ (t, 0) =

∑
r′′

Ur,r′′ (t ) G≶
r′′,r′ (0, 0), (C4)

Ur,r′ (t ) = [exp(−iHt )]r,r′ , (C5)

where H is the Hamiltonian in the site space.
We specify the initial condition in the eigenbasis of H (de-

noted with Greek indices), according to the Fermi distribution:

G≶
r,r′ (0, 0) = vr,αGH,≶

α,β (v†)β,r′ , (C6)

GH,<
α,β (0, 0) = i

δα,β

exp[β(εα − μ)] + 1
,

GH,>
α,β (0, 0) = δα,β

[−i + GH,<
α,β (0, 0)

]
. (C7)

Here, {εα} and {vr,α} are the eigenenergies and eigenvec-
tors of H . The chemical potential μ is chosen in the middle of
the band, and the temperature T = 1/β is of the order of the

bandwidth. We obtain χ (qx, qy, t ) by calculating the Fourier
transform of χ̂r−r′ (t ) and performing the disorder average.

From χ (qx, qy, t ), the imbalance tails are extracted by us-
ing the relations

Icheck (t ) = 1

n0V
〈ñ(qx = π/a, qy = π/a, t )〉,

n0 = 1

V
〈ñ(q = 0)〉, (C8)

〈ñ(qx, qy, t )〉=〈ñ(qx, qy, 0)〉
[

1 + 1

ν

∫ t

0
dt ′χ (qx, qy, t − t ′)

]
,

(C9)

see Sec. II. We then perform numerical integration of
χ (qx, qy, t ), and fit the time dependence of the result using
Eq. (53). Comparing with the initial value of the imbalance,
we find an estimate for the fit parameter f1,

f1 ∼ 〈ñ(qx, qy, 0)〉
〈ñ(q = 0)〉ν . (C10)
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