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Abstract
Automatic geological interpretation, specifically modeling salt dome and fault detection, is controversial task on seismic 
images from complex geological media. In advanced techniques of seismic interpretation and modeling, various strategies 
are utilized for combination and integration different information layers to obtain an image adequate for automatic extrac-
tion of the object from seismic data. Efficiency of the selected feature extraction, data integration and image segmentation 
methods are the most important parameters that affect accuracy of the final model. Moreover, quality of the seismic data also 
affects confidence of the selected seismic attributes for integration. The present study proposed a new strategy for efficient 
delineation and modeling of geological objects on the seismic image. The proposed method consists of extraction specific 
features by the histogram of oriented gradients (HOG) method, statistical analysis of the HOG features, integration of features 
through hybrid attribute analysis and image classification or segmentation. The final result is a binary model of the target 
under investigation. The HOG method here modified accordingly for extraction of the related features for delineation of salt 
dome and fault zones from seismic data. The extracted HOG parameter then is statically analyzed to define the best state of 
information integration. The integrated image, which is the hybrid attribute, then is used for image classification, or image 
segmentation by the image segmentation method. The seismic image labeling procedure performs on the related seismic 
attributes, evaluated by the extracted HOG feature. Number of HOG feature and the analyzing parameters are also accord-
ingly optimized. The final image classification then is performed on an image which contains all the embedded information 
on all the related textural conventional and statistical attributes and features. The proposed methods here apply on four seis-
mic data examples, synthetic model of salt dome and faults and two real data that contain salt dome and fault. Results have 
shown that the proposed method can more accurately model the targets under investigation, compared to advanced extracted 
attributes and manual interpretations.
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Introduction

Geological interpretation based on geophysical data is the 
state-of-the-art of integrating various source of informa-
tion to build the most accurate and geologically plausible 
model of the subsurface structures. Generally, delinea-
tion the geometry and root of diapirs such as salt or mud 
diapirs, requires integration of various seismic attributes 
(Shafiq et al. 2017; Amin and Deriche 2015). The general 
way is to enhance resolution of the seismic image, extract 
seismic attribute and integrate their embedded informa-
tion. As an advantage in advanced integration and inter-
pretation method, the final image has to be appropriate 
for accurate automatic geological interpretation. Accurate 
automatic delineation model of complex geological tar-
gets, such as salt or mud diapirs, is an interested target in 
seismic image analysis, subsurface geological studies and 
natural resource explorations (Amin et al. 2017). Upward 
movement of competent layers such as salt or mud, and 
their intrusion into the adjacent layers, complicates the 
geometry of diapirs. This movement also dislocates large 
mass of fluids and sediments and makes diapir related 
structures such as anticline or listric normal faults (Shafiq 
et al. 2018). The geometry of the root and boundaries of 
diapirs and its interaction with adjacent sediments, which 
cannot accurately imaged and interpreted by conventional 
analyzing methods, supposed to be better identified using 
information integration of seismic attributes (Velidou et al. 
2015; Soleimani 2016a; Amin and Deriche 2016). Glinskii 
et al. (2008) mapped geometry of two mud volcanoes in 
the Taman mud-volcanic province by seismic measure-
ments. They improved the earth model of the mud volca-
nos by numerical simulation of seismic images. Somoza 
et al. (2012) analyzed the mud volcanoes in the western 
Alboran Sea and stated that accurate shape delineation and 
exact boundary modeling requires high resolution seis-
mic data and intensive interpreter interaction. By inves-
tigation on mud diapir on the Black sea, Xing and Spiess 
(2015) was shown that there is still deficiency in defini-
tion the exact root depth of mud volcanoes using conven-
tional image analysis in 2D seismic images. Shafiq et al. 
(2015) introduced 3D gradient of texture (3D-GoT) to area 
selection in seismic cube based on the different seismic 
texture of geological events. Using advanced analyzing 
tools, Maestrelli et al. (2017) defined mud volcanoes and 
revealed that seismic texture properties can be used in 3D 
seismic data for semi-automatic object selection. However, 
availability of high-resolution 3D seismic data is question-
able in the areas within the first stages of surveys. Thus, 
2D seismic data are commonly used for geological inter-
pretation and structural modeling in frontier steps of inves-
tigation (Halpert et al. 2014; Soleimani 2016b). However, 

poor quality of seismic image, influence on result of using 
conventional imaging, interpretation and integration tech-
niques. Mauri et al. (2017) stated that structural complex-
ity of the target in the seismic image is the most influential 
factor in improving accuracy of the automatic interpre-
tation. However, there are various methods for resolv-
ing those obstacles for geological target modeling and 
its boundary enhancement. It was shown that geological 
interpretation of diapirs and their geometrical properties 
can be defined through integration of various information 
layers (Soleimani and Rafie 2016; Singh et al. 2016; Shah-
bazi et al. 2016, 2020; Hegazy and AlRegib 2014). As an 
advanced method, integration of geophysical data used for 
detection of salt diapirs boundary (Soleimani et al. 2018a, 
b) and accurate delineation of mud diapir (Soleimani et al. 
2018b). Nevertheless, reduced temporal resolution, poor 
quality of seismic data and geometrical complexity of the 
target, diminish efficiency of those integration method 
(Di et al. 2018). An advanced proposed method for accu-
rate image segmentation is using the histogram of orients 
gradients (HOG). The HOG method generally applies for 
image analysis such as face recognition (Shu et al. 2011), 
moving activity recognition on videos (Aggarwal and Xia 
2014), landmine detection in ground-penetrating radar 
(Torrione et  al. 2014), event recognition on magnetic 
resonance imaging (MRI) data (Ahmed et al. 2017) and 
also for automatic tuberculosis screening in chest radio-
graphs (Vajda et al. 2018). The HOG method also apples 
to define simple 2D planar objects, such as fault, in inte-
gration with other methods, such as supervised machine 
learning algorithm (Guitton et al. 2017). One of the most 
important geological structures that is of great importance 
in exploration studies are faults. Fault structures can create 
structural traps by shifting the stratification. Therefore, 
the study of fault structures is important. Sometimes due 
to structural complexity and noise in seismic data, iden-
tifying the fault plane is a difficult process and it is not 
possible to determine their exact location. As mentioned 
above, seismic attributes are tools that reveal information 
contained in seismic data and allow the seismologist to 
interpret quantitatively. Bahorich and Farmer (1995) using 
coherence attribute detected faults in three-dimensional 
seismic data. Roberts (2001) detect the fault in 3D seis-
mic data by curvature attribute. Tingdahl and De Rooji 
(2005) detected the fault boundary by combining three 
attributes similarity, frequency and curvature by artificial 
neural network method. Boe and Daber (2010) extracted 
the curvature attribute from seismic data and then com-
bined result volume with RGB color blending for detect-
ing the structural information in seismic data. Aqrawi and 
Boe (2011) used the modify Sobel attribute for detecting 
fault in 3D seismic data. Zheng et al. (2014) combined the 
similarity, curvature and spectral decomposition attributes 
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with artificial neural network. Guo et al. (2018) detected 
the fault in seismic data by using the convolutional neural 
network and compere the result with independent meth-
ods. Hosseini-Fard et al. (2022) introduced a strategy for 
automatic geological interpretation on seismic images. 
Mousavi et al. (2022) presented a novel strategy for fault 
enhancement in seismic images and they compare the 
result with other approach.

To resolve the problem of complex geological object 
delineation on seismic image, the presented study proposes 
to modify the HOG method for application on seismic data. 
Thus, the HOG method here is modified to extract structural 
characterization and textural properties of geological object 
from seismic image. The main concern of this study is that 
the HOG by itself is not sufficient to discriminate between 
structures in a seismic image. Therefore, here is proposed 
to use statistical analysis of the HOG parameters for further 
accurate analysis. Also, through the attribute and feature 
extraction, a separate attribute as the hybrid texture attribute 
is also introduced. In the following the HOG method is ana-
lyzed for application of complex geological object delinea-
tion on seismic images. Then the proposed methodology is 
presented and applies on four seismic data (two synthetic 
data and two real data) examples containing complex geo-
logical objects. The first data example contains a salt dome, 
the second contains the fault and the third data contain the 
salt dome and fault. The HOG parameters are extracted for 
each data example, the statistical analysis is performed, fol-
lowed by the integration procedure. Afterwards, an image 
classification tools is applied on the integrated image to 
define the geometry of the salt dome and fault on each seis-
mic image. Results for each data are also compared and eval-
uated by results of other advanced interpretation methods 
and also manual interpretation on seismic images.

The proposed methodology by HOG

The proposed method in this study consists of extracting the 
HOG features, deriving statistical parameters related to tex-
ture attributes and delineation of the target by integration of 
selected images. The key of image segmentation in seismic 
images is the approach used to define the features, which is 
the main contribution of the proposed method. Magnitude 
distribution and angle of gradient are the basis of the HOG 
features, for classification of any desired object in image. 
Initially a filter applied on the seismic image (SI), to esti-
mate the gradient in image. This filter is normally selected 
as:

(1a)hx = [−1, 0, 1],

The results of applying these filters on seismic image 
are two gradient images as:

where * shows the convolution operator. For each pixel of 
these two gradient images, extracted originally from seis-
mic image, two important parameters for each pixel are 
extracted. These parameters are the magnitude of the gradi-
ent and the angle of the dominant gradient as:

where G(i, j) is the gradient magnitude and �(i, j) repre-
sents the angle of the dominant gradient. The latter param-
eter differs from one seismic image to another, based on 
the continuity of reflectors of the geological objects and 
orientation of its features. These raw parameters obtained 
from the images are further processed to be used for image 
segmentation. Orientation binning applies also as the next 
step. Orientation binning consists of binning the image, 
normalizing and projecting the magnitude of gradients. The 
orientation binning process performs between gy =

−�

2
 and 

+�

2
 . In large seismic data, and specifically in the presence of 

random noise in data, which disturb clear identification of 
gradient orientation, individual pixels are merged to produce 
a group of pixels known as the cell. Similarly, combination 
of histogram of oriented gradients of merged pixels defines 
the same parameter in the cell. Before combination of pixel 
parameter into a cell, the magnitudes need to be normalized. 
According to the seismic image size, the computation time 
considerations, the level of image contamination by noise 
and the desired accuracy of modeling details of the struc-
ture, a group of cells can be merged to build a block (Naseer 
2020). The same procedure for parameter combinations and 
normalizations considerations, need to be accounted for. 
Subsequently, the gradient orientation and the magnitude 
of gradient in each cell or block of the seismic image are 
obtained. These parameters are then used for feature extrac-
tion. Figure 1a shows an example of deriving the HOG 
parameter of a seismic image. To extract the HOG param-
eter on predefined blocks of seismic image, a survey sketch 
of the sliding window needs to be defined. The general way 
is to design a 9 × 9 or 16 × 16 sliding window, which slides 
over the image from one corner point to the other, with or 

(1b)hy = [−1, 0, 1]T .

(2a)gx = SI ∗ hx,

(2b)gy = SI ∗ hy,

(3a)G(i, j) =
√

g2
x
(i, j) + g2

y
(i, j),

(3b)�(i, j) = tan−1

(

gy(i, j)

gx(i, j)

)

,
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without multi coverage of pixels or cells. Figure 1b shows 
four different seismic patter that might be all observed in a 
single window. According to the textural properties of the 
geological object in seismic image, individual representation 
or integrated illustrations of these HOG statistical param-
eters better enhances the target. The proposing statistical 
parameters here are the mean, minimum, maximum, vari-
ance, product, kurtosis and skewness of HOG values. It 
practically sounds to extract faults in seismic data using the 
statistical minimum and/or maximum HOG values. Also, the 
chaotic patterns in seismic images might be related to the 
salt or fault in seismic images. The statistical variance HOG 
parameter can also be used for better identification of the 
object boundary. However, it should be noted that any com-
bination of statistical parameters needed to be practically 
analyzed (Di and AlRegib 2020). As a result of practical 
analysis in this study, here is proposed to use a combination 
of maximum, minimum, mean, and variance HOG statistical 
parameters in each image block for boundary identification 
of geological objects, such as salt dome or faults. The com-
bination of these HOG statistical parameter here is known 
as the hybrid attribute HB(i,j):

This attribute is define for determining the salt dome 
boundary, where �B(i,j) shows the maximum, �B(i,j) represents 
the minimum, �B(i,j) represents the mean, and �B(i,j) shows 
the variance value. The parameter � is also added to pre-
vent possible division by zero. The HB(i,j) attribute section 
is an appropriate input section for the next step of using a 
supervised or unsupervised image classification, to provide 

(4)HB(i,j) =
�B(i,j)

[

�B(i,j) ×
(

�B(i,j) − �B(i,j)
)]

+ �
.

a binary image of the target under investigation. There is 
no preference here in selection of supervised or unsuper-
vised methods for applying on the extracted hybrid attribute 
image. Here is proposed to use the support vector machine 
(SVM) method to classify the pixels. Nevertheless, it is also 
possible to perform unsupervised learning strategies to solve 
the same problem, or some strategies between supervised 
or unsupervised learning methods (Chen 2017; Kumar and 
Mandal 2018). Similar to the steps mentioned above, all 
steps are taken to determine the fault, with the difference 
that the value of HB(i,j) is determined.

The simplified stepwise algorithm proposed in this study 
for 2D HOG statistical parameter analysis on seismic image 
comes in Fig. 1.

Delineation of salt dome by HOG

The first field data example is a seismic image containing a 
salt dome, surrounded by horizontal and dipping reflectors. 
The data used in this section are divided into two categories: 
synthetic data and real data. Synthetic data is the SEAM 
Phase I Earth Model, which is a generalized 3D representa-
tion of petroleum interests in the deep-water Gulf of Mexico. 
The synthetic model used in this study is part of SEAM 
Interpretation Challenge synthetic data. The complete seis-
mic cross section of this model is drawn in Fig. 2a. The 
black rectangle drawn on this section is part of the model 
used in this study. The purpose of selecting this rectangle 
is to reduce the volume of calculations and their processing 
time.

According to the aim of the study, relevance attrib-
utes for evaluation of the HOG extraction procedure are 
selected for application on synthetic and real data. The 

Fig. 1   The simplified stepwise flowchart of the proposed method
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proposed method for HOG feature extraction and further 
image segmentation for salt dome definition are subse-
quently applied on the selected data example. It is sup-
posed that the proposed method produces realistic image 
of the body of the salt dome, since there is no specific 
internal reflector within the salt. The proposed method 
separates areas with different seismic texture in seismic 
image. Generally, top of the salt dome is easily detected by 
the HOG features. It is due to the sharp boundary between 
the salt dome and upper layers, as areas with two differ-
ent HOG features. To extract the HOG features from the 
seismic images, it is required to label the seismic image 
in advance. These labels are used for further classification 
and statistical analysis of the HOG parameters within each 
seismic pattern. To better select different seismic pattern 
on seismic image and accurate labeling, the instantaneous 
phase attribute used here (Fig. 3b). Four different seis-
mic patterns are labeled on the seismic image, illustrated 
in Fig. 3a. In the next step, two other important HOG 
application parameters, which are the window size and 

number of features are analyzed. To define the optimum 
window size, large number of values with various number 
of features were analyzed. The appropriate value for the 
selected window size and number feature are equal to 5 
and 6, respectively.

As can be seen in Fig. 3, the maximum and minimum 
attributes performed poorly in identifying the bottom of the 
salt dome (Fig. 3b and c). Also, the range and mean attrib-
utes did not have a high ability to identify the bottom of the 
salt dome. The variance attribute (Fig. 3e) and the product 
attribute (Fig. 3f) performed better in identifying the salt 
dome boundary than the other attributes, but they were also 
unable to identify the salt dome floor. The kurtosis (Fig. 3g) 
and skewness (Fig. 3h) parameters detect the side boundaries 
of the salt dome.

More investigation results reveal that using the new pro-
posed hybrid texture attribute probably increases accuracy 
of salt dome boundary detection. Result of applying the new 
hybrid texture attribute is shown in Fig. 4a. The salt dome 
here is depicted with more accuracy than any other attribute. 

Fig. 2   a An inline from the 3D SEAM Interpretation Challenge synthetic data, b the selected subsection of the seismic image, and c the binary 
model. Data is licensed under ©2013 by SEG Advanced Modeling Corporation, SEAM Open Data
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For quantitative evaluation of the images, they need to be 
converted to binary models. This conversion was performed 
by applying automatic thresholding and morphological cor-
rection methods in MATLAB software. Figure 4b shows 
the binary model obtained from the hybrid attribute. Also, 
to compare the accuracy of the proposed method with other 
conventional classification methods, the salt dome boundary 
was determined using SVM method. Figure 4c shows the 
binary model obtained from SVM method.

For accuracy evaluation, result is compared by the model 
obtained through the manual interpretation. To calculate 
the accuracy, two methods of comparing pixel to pixel 
and F1 score were used. In the first method, by comparing 
the synthetic binary model pixel to pixel with the binary 
model obtained from the hybrid attribute, the accuracy of 
this attribute was determined and its value is equal to 97% 
and the accuracy of the SVM method is 96.4%. Sensitiv-
ity and specificity are two important indicators in statistical 
evaluation of the performance of binary classification test 
results. F1 score uses these two indicators to determine the 
accuracy of a method. The value of a calculated for HOG 
hybrid attribute is equal to 86.5% and the value for SVM 
method is 85.8%. Nevertheless, accuracy of salt boundary 
detection by automatic interpretation here is comparable 
with manual interpretation. However, bottom salt boundary 
in manual interpretation is under question, which resolved 
here by proposed method. Figure 5b shows the edge content 
attribute and Fig. 5c shows the chaos attribute for evaluation 
of the proposed method (Fig. 5a), which shows consistency 
between results.

The performance of the proposed attribute on a real seis-
mic salt dome data was also examined. Figure 6a shows 
the seismic sections of the real salt dome along with its 
binary model, which in this study, part of this data has been 
used, which is shown with a black box on it. Figure 6b is 
the intended data from the section of Fig. 6a. Figure 6c is 
the binary model that result of the average interpretations 
made by three experienced interpreters. The seismic data is 
selected from NLOG, Dutch oil and gas portal. The selected 
line relates to the M block in the North Sea, the Dutch sec-
tion, and the selected line is 84A209. First, HOG attributes 
were extracted from the data shown in Fig. 7. The appropri-
ate value for the selected window size and number feature 
are equal to 27 and 45, respectively. The HOG attributes 
mean, minimum and maximum that shown in Fig. 7a–c 
detect the texture of salt dome and have not been very suc-
cessful in identifying the boundary of the salt dome. The 
HOG attributes variance, product, range, skewness and 
kurtosis each shows a part of the salt dome boundary in 
Fig. 7d–h, respectively.

As can be seen in the attribute shown in Fig. 7, none of 
the attributes alone are able to identify the salt dome, espe-
cially its boundary. Therefore, HOG hybrid attribute was 
generated using Eq. 4. Figure 8 shows this attribute along 
with the binary model. Similar to the synthetic model, the 
value of accuracy was calculated using two methods of com-
paring pixels to pixels and F1 score method. The value of 
accuracy from comparing the pixels is 94.36% and the value 
of F1 score is 82.68% which are acceptable values.

Fig. 3   The result of HOG attribute: a mean, b maximum, c minimum, d range, e variance, f product, g kurtosis, and h skewness. All vertical 
axes represent time in seconds and horizontal axes represent distance in meter
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Fig. 4   a The Hybrid attribute, b the binary model from hybrid attribute that obtained by segmentation, and c the binary model obtained by the 
SVM method

Fig. 5   a HOG hybrid attribute, b edge content attribute, and c chaos attribute
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Fig. 6   a Seismic section of real salt dome, b selected real seismic data in this study, and c the binary model of real salt dome obtained from 
manual interpretation. Data are from NLOG, Dutch oil, and gas portal, selected from M block, line 84A209



Acta Geophysica	

1 3

Figure 9 compares the hybrid attribute produced with 
other attributes such as chaos attribute and edge content 
attribute in same size window. As can be seen, the HOG 
hybrid attribute has defined the boundary and texture of 
the salt dome better than the other two attributes and is 
less affected by the surrounding layers, which indicates 
the high ability of this attribute to determine the boundary 
of the salt dome.

Delineation of fault by HOG

As mentioned in the previous sections, identifying the 
location of major and minor faults in seismic sections is 
another challenge for interpreter. One of the tools that help 
to identify the location of faults in seismic sections is seis-
mic attributes. Many seismic attributes help achieve this 
goal, but none alone can detect the exact location of faults. 
According to the results obtained from HOG attributes and 
HOG hybrid in identifying the salt dome boundary's, it 
was decided to evaluate the efficiency of this attribute in 
identifying the location of the fault in this study. For this 
purpose, first a synthetic model with main and secondary 
faults was prepared, which can be seen in the figure of 10 

seismic sections. The selected seismic data here is a part 
of the data (Fig. 10b) that known as the BP 2007 synthetic 
data (Fig. 10a), which is created by Hemang Shah and is 
provided courtesy of BP Exploration Operation Company 
Limited (“BP”).

In order to extract the HOG attributes from the synthetic 
model, many size of the window and number feats were 
examined and finally a window with size 9 and number fea-
ture 25 was selected as the optimal parameters of the attrib-
ute. Therefore, using these two parameters, HOG attributes 
were extracted from the synthetic model which are shown 
in Fig. 11. As shown in Fig. 11, kurtosis, maximum, range, 
and variance attributes (Fig. 11a, b, f, and h) have almost the 
same behavior, mean and skewness attributes (Fig. 11c and 
g) have acted almost similarly, and minimum and product 
attributes (Fig. 11d and e), unlike the salt dome, are not very 
effective in detecting faults.

Depending on how each of the HOG attributes works in 
identifying the fault, similar to the salt dome, a relation can 
be obtained to produce the hybrid attribute. For this purpose, 
according to Fig. 12, four windows of the same size in two 
fault and non-fault zones were considered and the values 
of each of the HOG attributes are prepared according to 
Table 1.

Fig. 7   The HOG attributes: a mean, b minimum, c maximum, d variance, e product, f range, g skewness, and h kurtosis
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Fig. 8   a The HOG hybrid attribute, and b binary model of HOG hybrid attribute

Fig. 9   a HOG hybrid attribute, b chaos attribute, and c edge content attribute
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As can be seen in Table  1, the values of the three 
parameters kurtosis, mean and variance have the most dif-
ferences compared to other parameters in fault and non-
fault zones, so using these three parameters, the fault zone 
can be determined relative to non-fault. By examining the 
mathematical relationships that can be established between 
these parameters, the best mathematical relationship in 
order to identify the fault zone is:

(5)HB(i,j) =
Variance(i, j)

((kurtosis(i, j) −mean(i, j))2
.

Figure 13 shows the results obtained from this HOG 
hybrid attribute. As can be seen in the figure, this attribute 
has performed better in determining the fault zone than 
the other attributes shown in Fig. 11, and the position of 
the main and secondary faults has been better identified.

This method was also investigated on other a real seismic 
data that has faults. Figure 14 shows the seismic sections 
related to this data. The selected data is known as the Kerry 
3D seismic data, which is available from New Zealand GNS 
website. All the steps implemented on the synthetic data 
have been performed on this data as well.

Fig. 10   a The seismic section, and b the selected subsection for the study. This data was created by Hemang Shah and is provided courtesy of 
BP Exploration Operation Company Limited (“BP”)
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For this data, the most suitable window sizes and num-
ber feature are 5 and 15, respectively. Finally, HOG attrib-
utes are extracted from real data, the results can be seen 
in Fig. 15. As can be seen, in general, this attribute has a 
good ability to determine the position of fault zones, because 
despite the large number of faults in a relatively small range, 

each fault is well separated from each other. The behavior of 
the four attributes mean, range, skewness and variance are 
similar to each other (Fig. 15c, f, g, h) and the behavior of 
the attribute’s kurtosis, minimum, maximum and product are 
similar to each other (Fig. 15a, b, d, e).

Fig. 11   HOG attributes extracted from fault synthetic model: a kurtosis, b maximum, c mean, d minimum, e product, f rang, g skewness, and h 
variance

Fig. 12   Windows intended for checking their data in HOG attributes Fig. 13   HOG hybrid attribute for detecting the fault zone
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Using Eq. 5, HOG hybrid attribute is extracted from the 
real data and shown in Fig. 16a. The advantage of this attrib-
ute compared to other attributes that shown in Fig. 15 is that 

this attribute is not affected by background layers, which 
has caused the position of faults to be better displayed. In 
order to qualitatively compare the results obtained from 

Table 1   Statistical parameters 
of HOG attribute in 4 windows

Seismic Kurtosis Mean Max Range Skewness Variance Zone

Figure 12a 0.0384 0.5661 0.1881 0.2616 0.344 0.5856 Fault zone
Figure 12b 0.3339 0.1699 0.5513 0.592 0.6574 0.9171 Non-fault zone
Figure 12c 0.033 0.634 0.1747 0.2491 0.3172 0.5089 Fault zone
Figure 12d 0.407 0.1578 0.6039 0.6398 0.7058 0.9247 Non-fault zone

Fig. 14   a The seismic section of the real field data, and b the selected sub section. Data is Kerry 3D, available from the New Zealand Petroleum 
and Minerals (NZPM), the New Zealand GNS website
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this attribute with common attributes, the Sobel attribute 
extracted from this data is shown in Fig. 16b. As it is clear 
from the qualitative comparison of the two, the hybrid attrib-
ute has determined the location of the faults more accurately 
than the Sable attribute.

Discussion on results and methodology

There are available wide diverse attributes for the selected 
purpose, whether texture or non-texture based. To derive 
the proposed approached, a wide literature study was per-
formed for selecting the most appropriate attributes for 
salt dome automatic selection from seismic data (Berth-
elot et  al. 2011, 2013; Amin et  al. 2015; Lobos et  al. 
2016). Hence, the most well-known applicable attributes 
were analyzed in the background and only the attribute 
with the best performance presented here for comparison. 
The background analysis was not restricted only to the 
non-texture-based attributes; however, these attributes can 
somehow predict the salt dome and fault in the first and 
third data examples, respectively. It should be noted that 
in the first data example, high quality of synthetic salt 
dome seismic data and sufficient contrast between the salt 
dome and the surrounding media, allows better prediction 

of salt dome using various attributes. However, the third 
data example is the synthetic fault seismic data where 
many major and minor faults have appeared. Considering 
selection of the optimized parameters for applying the 
methodology on seismic data, there is no specific algo-
rithm available for defining optimum window size and 
number of features. But there are some general considera-
tions for selection of the window size on HOG. Generally, 
the size of the window depends on the size of the object 
under investigation in the seismic image (Chen et  al. 
2016). Small objects, such as thin salt dome with narrow 
width (diameter in 3D) or fault, require small window 
size. Obviously, large geological objects require larger 
window size for application of extraction of the HOG 
features. Small window size provides sharper boundary 
and larger window size, smoothen the object’s boundaries 
in the final image. Small window size is also much more 
sensitive to the random noise in data, while larger win-
dow size is robust against random noise. The computation 
time is another issue that should be considered. Obvi-
ously large window size increases the computation time in 
each step. However, reducing the percentage of coverage 
in adjacent sliding windows, reduces the total computa-
tion time. Analysis have shown that small sliding window 
size with the same coverage percent between neighboring 

Fig. 15   The HOG attributes that extracted from real fault seismic data: a Kurtosis, b maximum, c mean, d minimum, e product, f range, g skew-
ness, and h variance
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windows, increases the total computation time. But it is 
not a deterministic task and should be defined during 
application in each individual seismic data. In the spe-
cific parallel algorithm and availability of HPC in this 
study, preference is to use small window size for fault 
detection and large window size for salt dome detection. 
In the first data example, since the salt dome in seismic 
image is rather large, thus larger window size selected for 
better identification of salt boundary. In the third data, 
since fault have narrow widths, thus small window size 
used to attain higher resolution in the final image. Nev-
ertheless, seismic data in the third data example suffers 
from higher level of random noise, which required using 
small window size by care. The other important param-
eter in the presented method, is the number of features. 
There is no specific algorithm available for selection 
optimum number of features. Nevertheless, as a general 

consideration, small number of features smooths the final 
image, reduce the computation time and lessen sensitiv-
ity to irrelevant small objects. Large number of features, 
however, is more sensitive to random noise, increases the 
computation time and increases level of confidence in 
selection of the specific object under investigation. There-
fore, in clean seismic data with HPC available and for 
large data set, preference is to use large number of fea-
tures. However, it should be analyzed that how the result 
might differ when large number of features are used, in 
comparison with result using smaller number of features. 
The background analysis has shown that for clean data 
with simple structure, 30 features might obtain high qual-
ity result. However, same results, or very close to that, 
can be also achieved by even 10 features. It is possible 
that by tolerating minor error, same result with 5 features 
would be obtained, but saving large computation time 
and unnecessary calculations. So, it is mostly a tradeoff 
between the cost and the quality of result. For these spe-
cific data examples used in this study, application of small 
window size resulted to blurred image with interaction 
of irrelevant object, especially in top of the salt dome. 
Using small window size for the third data example, the 
location of fault zones is well defined. Obviously, param-
eter selection becomes more complicated when diverse 
geological objects with different geometrical properties 
are present in a single seismic image. In such circum-
stances, a unique window size and feature number does 
not attain to high quality result for both objects. Thus, 
the only alternative is to separate image and apply the 
proposed strategy in separate images. In the next step, 
several windows are selected in different attributes posi-
tions (target and non-target) and based on the statistical 
values of the attributes in each window, a suitable math-
ematical relation will be considered to produce a hybrid 
attribute. The other major concern about the accuracy of 
result and prediction confidence in salt dome area selec-
tion by the automatic methods arise from the labeling 
step. There is diversity of methods available for labeling, 
such as the convolutional neural network (CNN)-based 
methods combined by the k‐means clustering (Kumar and 
Sain 2018; Chen et al. 2019). However, one should practi-
cally investigate performance of each method on diverse 
type of seismic data to find whether they will complicate 
the issue or they will suppress the problem. Soleimani 
and Shokri (2015) and Soltani et al. (2017) stated that 
any unsupervised labeling on seismic image, strongly 
depends on the random noise content of the data, quality 
of the seismic image, complexity in the geometry of the 
target under investigation and the contrast level between 
the geological object and its surrounding media. Van Gent 
et al. (2011) and Farrokhnia et al. (2018) also stated that 
presence of internal reflection in geological objects (e.g., 

Fig. 16   a HOG Hybrid attribute extracted from fault real seismic 
data, and b Sobel attribute
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impurities in salt dome), intrusion of mud or salt into the 
enclosed media (e.g., salt glaciers and horizontal intru-
sion of mud in mud diapir) and interdigitated boundary of 
the object reduced performance of unsupervised labeling. 
All these parameters complicate application of unsuper-
vised labeling on seismic data. However, for large 3D 
seismic data, supervised labeling might require exces-
sive human interaction, which increase the final total cost 
and computation time. Obviously, for clean seismic data 
with simple shaped geological object under investigation, 
unsupervised labeling provides acceptable results. But 
care should be taken in seismic data with specifications 
mentioned above. Therefore, it is a tradeoff between using 
supervised and unsupervised labeling method on seismic 
data base on the above-mentioned criteria (Zhang et al. 
2018; Qu et al. 2019). Considering the above-mentioned 
criteria, the SVM classification method was selected for 
this study, after analyzing performance of other classifi-
cation methods. It should be noted that quantitative com-
parison of the results can be done by comparing the ratio 
of the numbers of pixels defined as salt dome, to the true 
number of pixels definitely known as the exact salt dome.

Conclusion

Application of the integration method on the HOG extracted 
statistical parameters showed that the proposed methods 
gives reliable model of the complex geological object under 
investigation. Comparison of results with the proposed 
method and the manual interpretation and also other indi-
vidual and combined attributes, revealed that the proposed 
method can define that target boundary and fault zone with 
higher accuracy. This is specifically an advantage for the 
salt dome with unclear root and bottom boundary. The final 
model of the target obtained by the proposed method also 
stated that the proposed method, resolve the obstacle of low-
quality seismic image and unclear boundary for accurate 
geological interpretation on seismic images.
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